Modeling Virus-Associated Central Nervous System Disease in Non-Human Primates
Abstract
1. Introduction
2. Flaviviruses
2.1. Zika Virus
2.2. NHP Models of Zika Virus
2.3. West Nile Virus
2.4. NHP Models of West Nile Virus
3. Alphaviruses
3.1. Eastern Equine Encephalitis Virus
3.2. Venezuelan Equine Encephalitis Virus
3.3. Western Equine Encephalitis Virus
4. Herpesviruses
4.1. Varicella-Zoster Virus
4.2. NHP Models of Varicella-Zoster Virus
4.3. Herpes Simplex Viruses
4.4. NHP Models of Herpes Simplex Virus
4.5. Cytomegalovirus
4.6. NHP Models of Cytomegalovirus
5. Human Immunodeficiency Virus
NHP Models of HIV: Simian Immunodeficiency Virus
6. Coronaviruses of Severe Acute Respiratory Syndrome
NHP Models of SARS-CoV-2
7. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE-2 | Angiotensin-Converting Enzyme-2 |
AGM | African green monkey |
AIDS | Acquired immunodeficiency syndrome |
cART | Combination antiretroviral therapy |
CNS | Central nervous system |
COVID-19 | Coronavirus disease 2019 |
CM | Cynomolgus macaque |
EEEV | Eastern equine encephalitis virus |
EEV | Equine encephalitis virus |
HAND | HIV-associated neurocognitive disorders |
HIV | Human immunodeficiency virus |
HCMV | Human cytomegalovirus |
HSV | Herpes simplex virus |
NHP | Non-human primate |
ORF | Open reading frame |
RM | Rhesus macaque |
RhCMV | Rhesus cytomegalovirus |
SARS-CoV-2 | Coronavirus of severe acute respiratory syndrome |
SIV | Simian immunodeficiency virus |
SVV | Simian varicella virus |
VEEV | Venezuelan equine encephalitis virus |
VZV | Varicella zoster virus |
WEEE | Western equine encephalitis virus |
WNV | West Nile virus |
ZIKV | Zika virus |
References
- Hoogland, I.C.; Houbolt, C.; van Westerloo, D.J.; van Gool, W.A.; van de Beek, D. Systemic inflammation and microglial activation: Systematic review of animal experiments. J. Neuroinflamm. 2015, 12, 114. [Google Scholar] [CrossRef] [PubMed]
- Dick, G.W.A.; Kitchen, S.F.; Haddow, A.J. Zika Virus (I). Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 1952, 46, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.R.; Chen, T.-H.; Hancock, W.T.; Powers, A.M.; Kool, J.L.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; Dubray, C.; et al. Zika Virus Outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 2009, 360, 2536–2543. [Google Scholar] [CrossRef] [PubMed]
- Diallo, D.; Sall, A.A.; Diagne, C.T.; Faye, O.; Faye, O.; Ba, Y.; Hanley, K.A.; Buenemann, M.; Weaver, S.C.; Diallo, M. Zika Virus Emergence in Mosquitoes in Southeastern Senegal, 2011. PLoS ONE 2014, 9, e109442. [Google Scholar] [CrossRef] [PubMed]
- Mansuy, J.M.; Dutertre, M.; Mengelle, C.; Fourcade, C.; Marchou, B.; Delobel, P.; Izopet, J.; Martin-Blondel, G. Zika virus: High infectious viral load in semen, a new sexually transmitted pathogen? Lancet Infect. Dis. 2016, 16, 405. [Google Scholar] [CrossRef] [PubMed]
- Christian, K.M.; Song, H.; Ming, G.-L. Pathophysiology and Mechanisms of Zika Virus Infection in the Nervous System. Annu. Rev. Neurosci. 2019, 42, 249–269. [Google Scholar] [CrossRef] [PubMed]
- Miner, J.J.; Diamond, M.S. Zika Virus Pathogenesis and Tissue Tropism. Cell Host Microbe 2017, 21, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Komarasamy, T.V.; Adnan, N.A.A.; James, W.; Balasubramaniam, V. Zika Virus Neuropathogenesis: The Different Brain Cells, Host Factors and Mechanisms Involved. Front. Immunol. 2022, 13, 773191. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Luo, Z.; Zeng, J.; Chen, W.; Foo, S.S.; Lee, S.A.; Ge, J.; Wang, S.; Goldman, S.A.; Zlokovic, B.V.; et al. Zika Virus NS4A and NS4B Proteins Deregulate Akt-mTOR Signaling in Human Fetal Neural Stem Cells to Inhibit Neurogenesis and Induce Autophagy. Cell Stem Cell 2016, 19, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Bindu; Pandey, H.S.; Seth, P. Interplay Between Zika Virus-Induced Autophagy and Neural Stem Cell Fate Determination. Mol. Neurobiol. 2023, 61, 9927–9944. [Google Scholar] [CrossRef] [PubMed]
- Pielnaa, P.; Al-Saadawe, M.; Saro, A.; Dama, M.F.; Zhou, M.; Huang, Y.; Huang, J.; Xia, Z. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology 2020, 543, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Rayner, J.O.; Kalkeri, R.; Goebel, S.; Cai, Z.; Green, B.; Lin, S.; Snyder, B.; Hagelin, K.; Walters, K.B.; Koide, F. Comparative Pathogenesis of Asian and African-Lineage Zika Virus in Indian Rhesus Macaque’s and Development of a Non-Human Primate Model Suitable for the Evaluation of New Drugs and Vaccines. Viruses 2018, 10, 229. [Google Scholar] [CrossRef] [PubMed]
- Moreno, G.K.; Newman, C.M.; Koenig, M.R.; Mohns, M.S.; Weiler, A.M.; Rybarczyk, S.; Weisgrau, K.L.; Vosler, L.J.; Pomplun, N.; Schultz-Darken, N.; et al. Long-Term Protection of Rhesus Macaques from Zika Virus Reinfection. J. Virol. 2020, 94, e01881-19. [Google Scholar] [CrossRef] [PubMed]
- Panganiban, A.T.; Blair, R.V.; Hattler, J.B.; Bohannon, D.G.; Bonaldo, M.C.; Schouest, B.; Maness, N.J.; Kim, W.-K. A Zika virus primary isolate induces neuroinflammation, compromises the blood-brain barrier and upregulates CXCL12 in adult macaques. Brain Pathol. 2020, 30, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, A.J.; Roberts, V.H.J.; Grigsby, P.L.; Haese, N.; Schabel, M.C.; Wang, X.; Lo, J.O.; Liu, Z.; Kroenke, C.D.; Smith, J.L.; et al. Zika virus infection in pregnant rhesus macaques causes placental dysfunction and immunopathology. Nat. Commun. 2018, 9, 263. [Google Scholar] [CrossRef] [PubMed]
- Martinot, A.J.; Abbink, P.; Afacan, O.; Prohl, A.K.; Bronson, R.; Hecht, J.L.; Borducchi, E.N.; Larocca, R.A.; Peterson, R.L.; Rinaldi, W.; et al. Fetal Neuropathology in Zika Virus-Infected Pregnant Female Rhesus Monkeys. Cell 2018, 173, 1111–1122.e1110. [Google Scholar] [CrossRef] [PubMed]
- Gurung, S.; Reuter, N.; Preno, A.; Dubaut, J.; Nadeau, H.; Hyatt, K.; Singleton, K.; Martin, A.; Parks, W.T.; Papin, J.F.; et al. Zika virus infection at mid-gestation results in fetal cerebral cortical injury and fetal death in the olive baboon. PLoS Pathog. 2019, 15, e1007507. [Google Scholar] [CrossRef] [PubMed]
- de Alwis, R.; Zellweger, R.M.; Chua, E.; Wang, L.-F.; Chawla, T.; Sessions, O.M.; Marlier, D.; Connolly, J.E.; von Messling, V.; Anderson, D.E. Systemic inflammation, innate immunity and pathogenesis after Zika virus infection in cynomolgus macaques are modulated by strain-specificity within the Asian lineage. Emerg. Microbes Infect. 2021, 10, 1457–1470. [Google Scholar] [CrossRef] [PubMed]
- Block, L.N.; Aliota, M.T.; Friedrich, T.C.; Schotzko, M.L.; Mean, K.D.; Wiepz, G.J.; Golos, T.G.; Schmidt, J.K. Embryotoxic impact of Zika virus in a rhesus macaque in vitro implantation model. Biol. Reprod. 2020, 102, 806–816. [Google Scholar] [CrossRef] [PubMed]
- Mohr, E.L.; Block, L.N.; Newman, C.M.; Stewart, L.M.; Koenig, M.; Semler, M.; Breitbach, M.E.; Teixeira, L.B.C.; Zeng, X.; Weiler, A.M.; et al. Ocular and uteroplacental pathology in a macaque pregnancy with congenital Zika virus infection. PLoS ONE 2018, 13, e0190617. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, R.J.; Haese, N.N.; Smith, J.L.; Colgin, L.M.A.; MacAllister, R.P.; Greene, J.M.; Parkins, C.J.; Kempton, J.B.; Porsov, E.; Wang, X.; et al. A neonatal nonhuman primate model of gestational Zika virus infection with evidence of microencephaly, seizures and cardiomyopathy. PLoS ONE 2020, 15, e0227676. [Google Scholar] [CrossRef] [PubMed]
- Tisoncik-Go, J.; Stokes, C.; Whitmore, L.S.; Newhouse, D.J.; Voss, K.; Gustin, A.; Sung, C.J.; Smith, E.; Stencel-Baerenwald, J.; Parker, E.; et al. Disruption of myelin structure and oligodendrocyte maturation in a macaque model of congenital Zika infection. Nat. Commun. 2024, 15, 5173. [Google Scholar] [CrossRef] [PubMed]
- Adams Waldorf, K.M.; Nelson, B.R.; Stencel-Baerenwald, J.E.; Studholme, C.; Kapur, R.P.; Armistead, B.; Walker, C.L.; Merillat, S.; Vornhagen, J.; Tisoncik-Go, J.; et al. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat. Med. 2018, 24, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Adams Waldorf, K.M.; Stencel-Baerenwald, J.E.; Kapur, R.P.; Studholme, C.; Boldenow, E.; Vornhagen, J.; Baldessari, A.; Dighe, M.K.; Thiel, J.; Merillat, S.; et al. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat. Med. 2016, 22, 1256–1259. [Google Scholar] [CrossRef] [PubMed]
- Coffey, L.L.; Keesler, R.I.; Pesavento, P.A.; Woolard, K.; Singapuri, A.; Watanabe, J.; Cruzen, C.; Christe, K.L.; Usachenko, J.; Yee, J.; et al. Intraamniotic Zika virus inoculation of pregnant rhesus macaques produces fetal neurologic disease. Nat. Commun. 2018, 9, 2414. [Google Scholar] [CrossRef] [PubMed]
- Robbiani, D.F.; Olsen, P.C.; Costa, F.; Wang, Q.; Oliveira, T.Y.; Nery, N., Jr.; Aromolaran, A.; do Rosário, M.S.; Sacramento, G.A.; Cruz, J.S.; et al. Risk of Zika microcephaly correlates with features of maternal antibodies. J. Exp. Med. 2019, 216, 2302–2315. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.; Gottlieb, D.; Diamond, M.S. Infection and injury of neurons by West Nile encephalitis virus. J. Virol. 2003, 77, 13203–13213. [Google Scholar] [CrossRef] [PubMed]
- van Marle, G.; Antony, J.; Ostermann, H.; Dunham, C.; Hunt, T.; Halliday, W.; Maingat, F.; Urbanowski, M.D.; Hobman, T.; Peeling, J.; et al. West Nile Virus-Induced Neuroinflammation: Glial Infection and Capsid Protein-Mediated Neurovirulence. J. Virol. 2007, 81, 10933–10949. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.A.; Wang, H.; Siddharthan, V.; Morrey, J.D.; Diamond, M.S. Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc. Natl. Acad. Sci. USA 2007, 104, 17140–17145. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.K.; Kilpatrick, M.A.; Connor Stroud, F.; Paul, K.; Wolf, F.; Else, J.G. Seroprevalence of West Nile virus in nonhuman primates as related to mosquito abundance at two national primate research centers. Comp. Med. 2007, 57, 115–119. [Google Scholar] [PubMed]
- Ratterree, M.S.; da Rosa, A.P.T.; Bohm, R.P.; Cogswell, F.B.; Phillippi, K.M.; Caillouet, K.; Schwanberger, S.; Shope, R.E.; Tesh, R.B. West Nile virus infection in nonhuman primate breeding colony, concurrent with human epidemic, southern Louisiana. Emerg Infect Dis. 2003, 9, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.N.; Cameron, A.I.; Morales, P.R.; Burnside, W.M. West Nile Virus Seroprevalence in an Outdoor Nonhuman Primate Breeding Colony in South Florida. J. Am. Assoc. Lab. Anim. Sci. 2021, 60, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Ratterree, M.S.; Gutierrez, R.A.; Travassos da Rosa, A.P.; Dille, B.J.; Beasley, D.W.; Bohm, R.P.; Desai, S.M.; Didier, P.J.; Bikenmeyer, L.G.; Dawson, G.J. Experimental infection of rhesus macaques with West Nile virus: Level and duration of viremia and kinetics of the antibody response after infection. J. Infect. Dis. 2004, 189, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Wolf, R.F.; Papin, J.F.; Hines-Boykin, R.; Chavez-Suarez, M.; White, G.L.; Sakalian, M.; Dittmer, D.P. Baboon model for West Nile Virus infection and vaccine evaluation. Virology 2006, 355, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Verstrepen, B.E.; Fagrouch, Z.; van Heteren, M.; Buitendijk, H.; Haaksma, T.; Beenhakker, N.; Palù, G.; Richner, J.M.; Diamond, M.S.; Bogers, W.M.; et al. Experimental infection of rhesus macaques and common marmosets with a European strain of West Nile virus. PLoS Negl. Trop. Dis. 2014, 8, e2797. [Google Scholar] [CrossRef] [PubMed]
- Wertheimer, A.M.; Uhrlaub, J.L.; Hirsch, A.; Medigeshi, G.; Sprague, J.; Legasse, A.; Wilk, J.; Wiley, C.A.; Didier, P.; Tesh, R.B.; et al. Immune response to the West Nile virus in aged non-human primates. PLoS ONE 2010, 5, e15514. [Google Scholar] [CrossRef] [PubMed]
- Sampson, B.A.; Ambrosi, C.; Charlot, A.; Reiber, K.; Veress, J.F.; Armbrustmacher, V. The pathology of human West Nile virus infection. Hum. Pathol. 2000, 31, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Ølberg, R.-A.; Barker, I.K.; Crawshaw, G.J.; Bertelsen, M.F.; Drebot, M.A.; Andonova, M. West Nile virus encephalitis in a Barbary macaque (Macaca sylvanus). Emerg. Infect. Dis. 2004, 10, 712. [Google Scholar] [CrossRef] [PubMed]
- Manuelidis, E.E. Neuropathology of Experimental West Nile Virus Infection in Monkeys. J. Neuropathol. Exp. Neurol. 1956, 15, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Pogodina, V.V.; Frolova, M.P.; Malenko, G.V.; Fokina, G.I.; Koreshkova, G.V.; Kiseleva, L.L.; Bochkova, N.G.; Ralph, N.M. Study on West Nile virus persistence in monkeys. Arch. Virol. 1983, 75, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Maximova, O.A.; Sturdevant, D.E.; Kash, J.C.; Kanakabandi, K.; Xiao, Y.; Minai, M.; Moore, I.N.; Taubenberger, J.; Martens, C.; Cohen, J.I.; et al. Virus infection of the CNS disrupts the immune-neural-synaptic axis via induction of pleiotropic gene regulation of host responses. eLife 2021, 10, e62273. [Google Scholar] [CrossRef] [PubMed]
- Maximova, O.A.; Speicher, J.M.; Skinner, J.R.; Murphy, B.R.; St Claire, M.C.; Ragland, D.R.; Herbert, R.L.; Pare, D.R.; Moore, R.M.; Pletnev, A.G. Assurance of neuroattenuation of a live vaccine against West Nile virus: A comprehensive study of neuropathogenesis after infection with chimeric WN/DEN4Δ30 vaccine in comparison to two parental viruses and a surrogate flavivirus reference vaccine. Vaccine 2014, 32, 3187–3197. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C.; Winegar, R.; Manger, I.D.; Forrester, N.L. Alphaviruses: Population genetics and determinants of emergence. Antivir. Res. 2012, 94, 242–257. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; Schmaljohn, C.S.; Badger, C.; Ostrowski, K.; Zeng, X.; Grimes, S.D.; Rayner, J.O. Comparative pathology study of Venezuelan, eastern, and western equine encephalitis viruses in non-human primates. Antivir. Res. 2020, 182, 104875. [Google Scholar] [CrossRef] [PubMed]
- Steele, K.E.; Twenhafel, N.A. REVIEW PAPER: Pathology of Animal Models of Alphavirus Encephalitis. Vet. Pathol. 2010, 47, 790–805. [Google Scholar] [CrossRef] [PubMed]
- Bastian, F.O.; Wende, R.D.; Singer, D.B.; Zeller, R.S. Eastern Equine Encephalomyelitis: Histopathologic and Ultrastructural Changes with Isolation of the Virus in a Human Case. Am. J. Clin. Pathol. 1975, 64, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.A. Focal neurologic signs in western equine encephalitis. Can. Med. Assoc. J. 1984, 130, 1019–1021. [Google Scholar] [PubMed]
- Bruyn, H.B.; Lennette, E.H. Western equine encephalitis in infants; a report on three cases with sequelae. Calif. Med. 1953, 79, 362–366. [Google Scholar] [PubMed]
- de la Monte, S.M.; Castro, F.; Bonilla, N.J.; de Urdaneta, A.G.; Hutchins, G.M. The Systemic Pathology of Venezuelan Equine Encephalitis Virus Infection in Humans. Am. J. Trop. Med. Hyg. 1985, 34, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Delfraro, A.; Burgueño, A.; Morel, N.; González, G.; García, A.; Morelli, J.; Pérez, W.; Chiparelli, H.; Arbiza, J. Fatal human case of Western equine encephalitis, Uruguay. Emerg. Infect. Dis. 2011, 17, 952–954. [Google Scholar] [CrossRef] [PubMed]
- Englund, J.A.; Breningstall, G.N.; Heck, L.J.; Lazuick, J.S.; Karabatsos, N.; Calisher, C.H.; Tsai, T.F. Diagnosis of western equine encephalitis in an infant by brain biopsy. Pediatr. Infect. Dis. J. 1986, 5, 382–383. [Google Scholar] [CrossRef] [PubMed]
- Lad, E.M.; Ong, S.S.; Proia, A.D. Ocular histopathology in Eastern equine encephalitis: A case report. Am. J. Ophthalmol. Case Rep. 2016, 5, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Cain, M.D.; Salimi, H.; Gong, Y.; Yang, L.; Hamilton, S.L.; Heffernan, J.R.; Hou, J.; Miller, M.J.; Klein, R.S. Virus entry and replication in the brain precedes blood-brain barrier disruption during intranasal alphavirus infection. J. Neuroimmunol. 2017, 308, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Hughes, H.R.; Velez, J.O.; Davis, E.H.; Laven, J.; Gould, C.V.; Panella, A.J.; Lambert, A.J.; Staples, J.E.; Brault, A.C. Fatal Human Infection with Evidence of Intrahost Variation of Eastern Equine Encephalitis Virus, Alabama, USA, 2019. Emerg. Infect. Dis. 2021, 27, 1886–1892. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, L.C.; Reed, D.S. Nonhuman primate models of encephalitic alphavirus infection: Historical review and future perspectives. Curr. Opin. Virol. 2012, 2, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Albe, J.R.; Ma, H.; Gilliland, T.H.; McMillen, C.M.; Gardner, C.L.; Boyles, D.A.; Cottle, E.L.; Dunn, M.D.; Lundy, J.D.; O’Malley, K.J.; et al. Physiological and immunological changes in the brain associated with lethal eastern equine encephalitis virus in macaques. PLoS Pathog. 2021, 17, e1009308. [Google Scholar] [CrossRef] [PubMed]
- Trefry, J.C.; Rossi, F.D.; Accardi, M.V.; Dorsey, B.L.; Sprague, T.R.; Wollen-Roberts, S.E.; Shamblin, J.D.; Kimmel, A.E.; Glass, P.J.; Miller, L.J.; et al. The utilization of advance telemetry to investigate critical physiological parameters including electroencephalography in cynomolgus macaques following aerosol challenge with eastern equine encephalitis virus. PLoS Negl. Trop. Dis. 2021, 15, e0009424. [Google Scholar] [CrossRef] [PubMed]
- Reed, D.S.; Lackemeyer, M.G.; Garza, N.L.; Norris, S.; Gamble, S.; Sullivan, L.J.; Lind, C.M.; Raymond, J.L. Severe Encephalitis in Cynomolgus Macaques Exposed to Aerosolized Eastern Equine Encephalitis Virus. J. Infect. Dis. 2007, 196, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Porter, A.I.; Erwin-Cohen, R.A.; Twenhafel, N.; Chance, T.; Yee, S.B.; Kern, S.J.; Norwood, D.; Hartman, L.J.; Parker, M.D.; Glass, P.J.; et al. Characterization and pathogenesis of aerosolized eastern equine encephalitis in the common marmoset (Callithrix jacchus). Virol. J. 2017, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Reed, D.S.; Lind, C.M.; Sullivan, L.J.; Pratt, W.D.; Parker, M.D. Aerosol Infection of Cynomolgus Macaques with Enzootic Strains of Venezuelan Equine Encephalitis Viruses. J. Infect. Dis. 2004, 189, 1013–1017. [Google Scholar] [CrossRef] [PubMed]
- Burke, C.W.; Froude, J.W.; Rossi, F.; White, C.E.; Moyer, C.L.; Ennis, J.; Pitt, M.L.; Streatfield, S.; Jones, R.M.; Musiychuk, K.; et al. Therapeutic monoclonal antibody treatment protects nonhuman primates from severe Venezuelan equine encephalitis virus disease after aerosol exposure. PLoS Pathog. 2019, 15, e1008157. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Lundy, J.D.; Cottle, E.L.; O’Malley, K.J.; Trichel, A.M.; Klimstra, W.B.; Hartman, A.L.; Reed, D.S.; Teichert, T. Applications of minimally invasive multimodal telemetry for continuous monitoring of brain function and intracranial pressure in macaques with acute viral encephalitis. PLoS ONE 2020, 15, e0232381. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Lundy, J.D.; O’Malley, K.J.; Klimstra, W.B.; Hartman, A.L.; Reed, D.S. Electrocardiography Abnormalities in Macaques after Infection with Encephalitic Alphaviruses. Pathogens 2019, 8, 240. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.L.; Russell-Lodrigue, K.E.; Killeen, S.Z.; Wang, E.; Leal, G.; Bergren, N.A.; Vinet-Oliphant, H.; Weaver, S.C.; Roy, C.J. IRES-Containing VEEV Vaccine Protects Cynomolgus Macaques from IE Venezuelan Equine Encephalitis Virus Aerosol Challenge. PLoS Negl. Trop. Dis. 2015, 9, e0003797. [Google Scholar] [CrossRef] [PubMed]
- Monath, T.P.; Calisher, C.H.; Davis, M.; Bowen, G.S.; White, J. Experimental Studies of Rhesus Monkeys Infected with Epizootic and Enzootic Subtypes of Venezuelan Equine Encephalitis Virus. J. Infect. Dis. 1974, 129, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Dahal, B.; Lin, S.-C.; Carey, B.D.; Jacobs, J.L.; Dinman, J.D.; van Hoek, M.L.; Adams, A.A.; Kehn-Hall, K. EGR1 upregulation following Venezuelan equine encephalitis virus infection is regulated by ERK and PERK pathways contributing to cell death. Virology 2020, 539, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Bhattacharya, B.; Puri, R.K.; Maheshwari, R.K. Venezuelan equine encephalitis virus infection causes modulation of inflammatory and immune response genes in mouse brain. BMC Genom. 2008, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Reed, D.S.; Larsen, T.; Sullivan, L.J.; Lind, C.M.; Lackemeyer, M.G.; Pratt, W.D.; Parker, M.D. Aerosol Exposure to Western Equine Encephalitis Virus Causes Fever and Encephalitis in Cynomolgus Macaques. J. Infect. Dis. 2005, 192, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Connolly, S.A.; Jardetzky, T.S.; Longnecker, R. The structural basis of herpesvirus entry. Nat. Rev. Microbiol. 2020, 19, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Davison, A.J. Herpesvirus systematics. Vet. Microbiol. 2010, 143, 52–69. [Google Scholar] [CrossRef] [PubMed]
- Sorel, O.; Messaoudi, I. Varicella Virus-Host Interactions During Latency and Reactivation: Lessons From Simian Varicella Virus. Front. Microbiol. 2018, 9, 3170. [Google Scholar] [CrossRef] [PubMed]
- Haberthur, K.; Messaoudi, I. Animal models of varicella zoster virus infection. Pathogens 2013, 2, 364–382. [Google Scholar] [CrossRef] [PubMed]
- Herlin, L.K.; Hansen, K.S.; Bodilsen, J.; Larsen, L.; Brandt, C.; Andersen, C.Ø.; Hansen, B.R.; Lüttichau, H.R.; Helweg-Larsen, J.; Wiese, L.; et al. Varicella Zoster Virus Encephalitis in Denmark from 2015 to 2019—A Nationwide Prospective Cohort Study. Clin. Infect. Dis. 2021, 72, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H.; Hayashi, M.; Nagumo, S.; Ichikawa, K.; Aoki, N.; Ohshima, Y.; Watanabe, S.; Koya, T.; Abé, T.; Ohashi, R.; et al. Disseminated Varicella-zoster Virus Infection Causing Fatal Pneumonia in an Immunocompromised Patient with Chronic Interstitial Pneumonia. Intern. Med. 2021, 60, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Lenfant, T.; L’Honneur, A.-S.; Ranque, B.; Pilmis, B.; Charlier, C.; Zuber, M.; Pouchot, J.; Rozenberg, F.; Michon, A. Neurological complications of varicella zoster virus reactivation: Prognosis, diagnosis, and treatment of 72 patients with positive PCR in the cerebrospinal fluid. Brain Behav. 2021, 12, e2455. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.-H.; Xie, Y.-N.; Ji, Y.; Han, J.-Z.; Zhu, J.-G. A case of varicella zoster encephalitis with glossopharyngeal and vagus nerve injury as primary manifestation combined with medulla lesion. J. Int. Med. Res. 2019, 47, 2256–2261. [Google Scholar] [CrossRef] [PubMed]
- Arruti, M.; Piñeiro, L.D.; Salicio, Y.; Cilla, G.; Goenaga, M.A.; López de Munain, A. Incidence of varicella zoster virus infections of the central nervous system in the elderly: A large tertiary hospital-based series (2007–2014). J. NeuroVirol. 2017, 23, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Yuan, Y.; Wang, J.; Zhang, Y.; Liu, H.; Zhang, Z. Meningitis/meningoencephalitis caused by varicella zoster virus reactivation: A retrospective single-center case series study. Am. J. Transl. Res. 2022, 14, 491–500. [Google Scholar] [PubMed]
- Song, Y.-X.; Li, Y.; Jiang, Y.-M.; Liu, T. Detection of varicella-zoster virus from cerebrospinal fluid using advanced fragment analysis in a child with encephalitis: A case report. BMC Infect. Dis. 2019, 19, 342. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Tetsuka, S.; Ogawa, T.; Hashimoto, R.; Okada, S.; Kato, H. An Autopsy Case of Varicella Zoster Virus Encephalitis with Multiple Brain Lesions. Intern. Med. 2020, 59, 1643–1647. [Google Scholar] [CrossRef] [PubMed]
- Bakradze, E.; Kirchoff, K.F.; Antoniello, D.; Springer, M.V.; Mabie, P.C.; Esenwa, C.C.; Labovitz, D.L.; Liberman, A.L. Varicella Zoster Virus Vasculitis and Adult Cerebrovascular Disease. Neurohospitalist 2019, 9, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Willer, D.O.; Ambagala, A.P.N.; Pilon, R.; Chan, J.K.; Fournier, J.; Brooks, J.; Sandstrom, P.; Macdonald, K.S. Experimental infection of Cynomolgus Macaques (Macaca fascicularis) with human varicella-zoster virus. J. Virol. 2012, 86, 3626–3634. [Google Scholar] [CrossRef] [PubMed]
- Traina-Dorge, V.; Palmer, B.E.; Coleman, C.; Hunter, M.; Frieman, A.; Gilmore, A.; Altrock, K.; Doyle-Meyers, L.; Nagel, M.A.; Mahalingam, R. Reactivation of Simian Varicella Virus in Rhesus Macaques after CD4 T Cell Depletion. J. Virol. 2019, 93, e01375–18. [Google Scholar] [CrossRef] [PubMed]
- Arnold, N.; Meyer, C.; Engelmann, F.; Messaoudi, I. Robust gene expression changes in the ganglia following subclinical reactivation in rhesus macaques infected with simian varicella virus. J. Neurovirol. 2017, 23, 520–538. [Google Scholar] [CrossRef] [PubMed]
- Depledge, D.P.; Ouwendijk, W.J.D.; Sadaoka, T.; Braspenning, S.E.; Mori, Y.; Cohrs, R.J.; Verjans, G.; Breuer, J. A spliced latency-associated VZV transcript maps antisense to the viral transactivator gene 61. Nat. Commun. 2018, 9, 1167. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Kerns, A.; Barron, A.; Kreklywich, C.; Streblow, D.N.; Messaoudi, I. Simian varicella virus gene expression during acute and latent infection of rhesus macaques. J. Neurovirol. 2011, 17, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Kerns, A.; Haberthur, K.; Dewane, J.; Walker, J.; Gray, W.; Messaoudi, I. Attenuation of the adaptive immune response in rhesus macaques infected with simian varicella virus lacking open reading frame 61. J. Virol. 2013, 87, 2151–2163. [Google Scholar] [CrossRef] [PubMed]
- Whitmer, T.; Malouli, D.; Uebelhoer, L.S.; DeFilippis, V.R.; Früh, K.; Verweij, M.C. The ORF61 Protein Encoded by Simian Varicella Virus and Varicella-Zoster Virus Inhibits NF-κB Signaling by Interfering with IκBα Degradation. J. Virol. 2015, 89, 8687–8700. [Google Scholar] [CrossRef] [PubMed]
- Verweij, M.C.; Wellish, M.; Whitmer, T.; Malouli, D.; Lapel, M.; Jonjić, S.; Haas, J.G.; DeFilippis, V.R.; Mahalingam, R.; Früh, K. Varicella Viruses Inhibit Interferon-Stimulated JAK-STAT Signaling through Multiple Mechanisms. PLoS Pathog. 2015, 11, e1004901. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-M.; Park, C.-G. Intratracheal inoculation of human varicella zoster virus (VZV.; MAV strain) vaccine successfully induced VZV IgG antibodies in rhesus monkeys. Lab. Anim. Res. 2021, 37, 14. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Engelmann, F.; Arnold, N.; Krah, D.L.; ter Meulen, J.; Haberthur, K.; Dewane, J.; Messaoudi, I. Abortive intrabronchial infection of rhesus macaques with varicella-zoster virus provides partial protection against simian varicella virus challenge. J. Virol. 2015, 89, 1781–1793. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, C.S.; Traina-Dorge, V.; Doyle-Meyers, L.; Das, A.; Looper, J.; Mescher, T.; Feia, B.; Medina, E.; Nagel, M.A.; Mahalingam, R.; et al. Simian varicella virus infection and reactivation in rhesus macaques trigger cytokine and Aβ40/42 alterations in serum and cerebrospinal fluid. J. NeuroVirol. 2024, 30, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Roberts, E.D.; Baskin, G.B.; Soike, K.; Gibson, S.V. Pathologic changes of experimental simian varicella (Delta herpesvirus) infection in African green monkeys (Cercopithecus aethiops). Am. J. Vet. Res. 1984, 43, 523–530. [Google Scholar] [CrossRef]
- Bubak, A.N.; Traina-Dorge, V.; Como, C.N.; Feia, B.; Pearce, C.M.; Doyle-Meyers, L.; Das, A.; Looper, J.; Mahalingam, R.; Nagel, M.A. Elevated serum substance P during simian varicella virus infection in rhesus macaques: Implications for chronic inflammation and adverse cerebrovascular events. J. Neurovirol. 2020, 26, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Margolis, T.P.; Imai, Y.; Yang, L.; Vallas, V.; Krause, P.R. Herpes simplex virus type 2 (HSV-2) establishes latent infection in a different population of ganglionic neurons than HSV-1: Role of latency-associated transcripts. J. Virol. 2007, 81, 1872–1878. [Google Scholar] [CrossRef] [PubMed]
- Lafferty, W.E.; Coombs, R.W.; Benedetti, J.; Critchlow, C.; Corey, L. Recurrences after Oral and Genital Herpes Simplex Virus Infection. New Engl. J. Med. 1987, 316, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Tognarelli, E.I.; Palomino, T.F.; Corrales, N.; Bueno, S.M.; Kalergis, A.M.; González, P.A. Herpes Simplex Virus Evasion of Early Host Antiviral Responses. Front. Cell Infect. Microbiol. 2019, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- Goode, D.; Truong, R.; Villegas, G.; Calenda, G.; Guerra-Perez, N.; Piatak, M.; Lifson, J.D.; Blanchard, J.; Gettie, A.; Robbiani, M.; et al. HSV-2-driven increase in the expression of α4β7 correlates with increased susceptibility to vaginal SHIV(SF162P3) infection. PLoS Pathog. 2014, 10, e1004567. [Google Scholar] [CrossRef] [PubMed]
- Reszka, N.; Zhou, C.; Song, B.; Sodroski, J.G.; Knipe, D.M. Simian TRIM5alpha proteins reduce replication of herpes simplex virus. Virology 2010, 398, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Kenney, J.; Rodríguez, A.; Kizima, L.; Seidor, S.; Menon, R.; Jean-Pierre, N.; Pugach, P.; Levendosky, K.; Derby, N.; Gettie, A.; et al. A modified zinc acetate gel, a potential nonantiretroviral microbicide, is safe and effective against simian-human immunodeficiency virus and herpes simplex virus 2 infection in vivo. Antimicrob. Agents Chemother. 2013, 57, 4001–4009. [Google Scholar] [CrossRef] [PubMed]
- Stanfield, B.A.; Pahar, B.; Chouljenko, V.N.; Veazey, R.; Kousoulas, K.G. Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies. Vaccine 2017, 35, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Feng, X.; Wang, L.; Yi, T.; Zheng, L.; Jiang, G.; Fan, S.; Liao, Y.; Feng, M.; Zhang, Y.; et al. A HSV1 mutant leads to an attenuated phenotype and induces immunity with a protective effect. PLoS Pathog. 2020, 16, e1008703. [Google Scholar] [CrossRef] [PubMed]
- Hunter, W.D.; Martuza, R.L.; Feigenbaum, F.; Todo, T.; Mineta, T.; Yazaki, T.; Toda, M.; Newsome, J.T.; Platenberg, R.C.; Manz, H.J.; et al. Attenuated, replication-competent herpes simplex virus type 1 mutant G207: Safety evaluation of intracerebral injection in nonhuman primates. J. Virol. 1999, 73, 6319–6326. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, S.; Hook, L.M.; Shaw, C.E.; Pahar, B.; Stagray, J.A.; Liu, D.; Veazey, R.S.; Friedman, H.M. An HSV-2 Trivalent Vaccine Is Immunogenic in Rhesus Macaques and Highly Efficacious in Guinea Pigs. PLoS Pathog. 2017, 13, e1006141. [Google Scholar] [CrossRef] [PubMed]
- Ugaonkar, S.R.; Wesenberg, A.; Wilk, J.; Seidor, S.; Mizenina, O.; Kizima, L.; Rodriguez, A.; Zhang, S.; Levendosky, K.; Kenney, J.; et al. A novel intravaginal ring to prevent HIV-1, HSV-2, HPV, and unintended pregnancy. J. Control Release 2015, 213, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Derby, N.; Aravantinou, M.; Kenney, J.; Ugaonkar, S.R.; Wesenberg, A.; Wilk, J.; Kizima, L.; Rodriguez, A.; Zhang, S.; Mizenina, O.; et al. An intravaginal ring that releases three antiviral agents and a contraceptive blocks SHIV-RT infection, reduces HSV-2 shedding, and suppresses hormonal cycling in rhesus macaques. Drug Deliv. Transl. Res. 2017, 7, 840–858. [Google Scholar] [CrossRef] [PubMed]
- Hutterer, C.; Milbradt, J.; Hamilton, S.; Zaja, M.; Leban, J.; Henry, C.; Vitt, D.; Steingruber, M.; Sonntag, E.; Zeitträger, I.; et al. Inhibitors of dual-specificity tyrosine phosphorylation-regulated kinases (DYRK) exert a strong anti-herpesviral activity. Antivir. Res. 2017, 143, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Xu, X.; Liao, Y.; Wang, Y.; Wang, J.; Feng, M.; Wang, L.; Zhang, Y.; He, Z.; Yang, F.; et al. Attenuated Phenotype and Immunogenic Characteristics of a Mutated Herpes Simplex Virus 1 Strain in the Rhesus Macaque. Viruses 2018, 10, 234. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Cai, H.; Xu, X.; Feng, M.; Wang, L.; Liao, Y.; Zhang, Y.; He, Z.; Yang, F.; Yu, W.; et al. The Characteristics of Herpes Simplex Virus Type 1 Infection in Rhesus Macaques and the Associated Pathological Features. Viruses 2017, 9, 26. [Google Scholar] [CrossRef] [PubMed]
- Aravantinou, M.; Frank, I.; Arrode-Bruses, G.; Szpara, M.; Grasperge, B.; Blanchard, J.; Gettie, A.; Derby, N.; Martinelli, E. A model of genital herpes simplex virus Type 1 infection in Rhesus Macaques. J. Med. Primatol. 2017, 46, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Aravantinou, M.; Mizenina, O.; Calenda, G.; Kenney, J.; Frank, I.; Lifson, J.D.; Szpara, M.; Jing, L.; Koelle, D.M.; Teleshova, N.; et al. Experimental Oral Herpes Simplex Virus-1 (HSV-1) Co-infection in Simian Immunodeficiency Virus (SIV)-Infected Rhesus Macaques. Front. Microbiol. 2017, 8, 2342. [Google Scholar] [CrossRef] [PubMed]
- London, W.T.; Nahmias, A.J.; Naib, Z.M.; Fuccillo, D.A.; Ellenberg, J.H.; Sever, J.L. A nonhuman primate model for the study of the cervical oncogenic potential of herpes simplex virus type 2. Cancer Res. 1974, 34, 1118–1121. [Google Scholar] [PubMed]
- Lo, M.; Zhu, J.; Hansen, S.G.; Carroll, T.; Farr Zuend, C.; Nöel-Romas, L.; Ma, Z.-M.; Fritts, L.; Huang, M.-L.; Sun, S.; et al. Acute Infection and Subsequent Subclinical Reactivation of Herpes Simplex Virus 2 after Vaginal Inoculation of Rhesus Macaques. J. Virol. 2019, 93, e01574-18. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Jordan, T.; Dowdell, K.; Herbert, R.; Moore, I.N.; Koelle, D.M.; Cohen, J.I. A nonhuman primate model for genital herpes simplex virus 2 infection that results in vaginal vesicular lesions, virus shedding, and seroconversion. PLoS Pathog. 2024, 20, e1012477. [Google Scholar] [CrossRef] [PubMed]
- Edwards, E.E.; Birch, S.M.; Hoppes, S.M.; Keating, M.K.; Stoica, G. Pathology in Practice. J. Am. Vet. Med. Assoc. 2018, 253, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Todo, T.; Feigenbaum, F.; Rabkin, S.D.; Lakeman, F.; Newsome, J.T.; Johnson, P.A.; Mitchell, E.; Belliveau, D.; Ostrove, J.M.; Martuza, R.L. Viral Shedding and Biodistribution of G207, a MuItimutated, Conditionally Replicating Herpes Simplex Virus Type 1, after Intracerebral Inoculation in Aotus. Mol. Ther. 2000, 2, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Roth, J.C.; Cassady, K.A.; Cody, J.J.; Parker, J.N.; Price, K.H.; Coleman, J.M.; Peggins, J.O.; Noker, P.E.; Powers, N.W.; Grimes, S.D.; et al. Evaluation of the safety and biodistribution of M032, an attenuated herpes simplex virus type 1 expressing hIL-12, after intracerebral administration to aotus nonhuman primates. Hum. Gene Ther. Clin. Dev. 2014, 25, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Costa, É.A.; Luppi, M.M.; de Campos Cordeiro Malta, M.; Luiz, A.P.M.F.; de Araujo, M.R.; Coelho, F.M.; Fonseca, F.G.d.; Ecco, R.; Resende, M. Outbreak of Human Herpesvirus Type 1 Infection in Nonhuman Primates (Callithrix penincillata). J. Wildl. Dis. 2011, 47, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Imura, K.; Chambers, J.K.; Uchida, K.; Nomura, S.; Suzuki, S.; Nakayama, H.; Miwa, Y. Herpes simplex virus type 1 infection in two pet marmosets in Japan. J. Vet. Med. Sci. 2014, 76, 1667–1670. [Google Scholar] [CrossRef] [PubMed]
- Longa, C.S.; Bruno, S.F.; Pires, A.R.; Romijn, P.C.; Kimura, L.S.; Costa, C.H.C. Human herpesvirus 1 in wild marmosets, Brazil, 2008. Emerg. Infect. Dis. 2011, 17, 1308–1310. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, P.; Reeves, M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat. Rev. Microbiol. 2021, 19, 759–773. [Google Scholar] [CrossRef] [PubMed]
- Maltezou, P.-G.; Kourlaba, G.; Kourkouni, Ε.; Luck, S.; Blázquez-Gamero, D.; Ville, Y.; Lilleri, D.; Dimopoulou, D.; Karalexi, M.; Papaevangelou, V. Maternal type of CMV infection and sequelae in infants with congenital CMV: Systematic review and meta-analysis. J. Clin. Virol. 2020, 129, 104518. [Google Scholar] [CrossRef] [PubMed]
- Fowler, K.B.; Boppana, S.B. Congenital cytomegalovirus infection. Semin. Perinatol. 2018, 42, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Itell, H.L.; Kaur, A.; Deere, J.D.; Barry, P.A.; Permar, S.R. Rhesus monkeys for a nonhuman primate model of cytomegalovirus infections. Curr. Opin. Virol. 2017, 25, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Burwitz, B.J.; Malouli, D.; Bimber, B.N.; Reed, J.S.; Ventura, A.B.; Hancock, M.H.; Uebelhoer, L.S.; Bhusari, A.; Hammond, K.B.; Espinosa Trethewy, R.G.; et al. Cross-Species Rhesus Cytomegalovirus Infection of Cynomolgus Macaques. PLoS Pathog. 2016, 12, e1006014. [Google Scholar] [CrossRef] [PubMed]
- Marsh, A.K.; Ambagala, A.P.; Perciani, C.T.; Russell, J.N.H.; Chan, J.K.; Janes, M.; Antony, J.M.; Pilon, R.; Sandstrom, P.; Willer, D.O.; et al. Examining the species-specificity of rhesus macaque cytomegalovirus (RhCMV) in cynomolgus macaques. PLoS ONE 2015, 10, e0121339. [Google Scholar] [CrossRef] [PubMed]
- Malouli, D.; Nakayasu, E.S.; Viswanathan, K.; Camp, D.G., 2nd; Chang, W.L.W.; Barry, P.A.; Smith, R.D.; Früh, K. Reevaluation of the coding potential and proteomic analysis of the BAC-derived rhesus cytomegalovirus strain 68-1. J. Virol. 2012, 86, 8959–8973. [Google Scholar] [CrossRef] [PubMed]
- Abel, K.; Martinez, J.; Yue, Y.; Lacey, S.F.; Wang, Z.; Strelow, L.; Dasgupta, A.; Li, Z.; Schmidt, K.A.; Oxford, K.L.; et al. Vaccine-induced control of viral shedding following rhesus cytomegalovirus challenge in rhesus macaques. J. Virol. 2011, 85, 2878–2890. [Google Scholar] [CrossRef] [PubMed]
- Powers, C.; Früh, K. Rhesus CMV: An emerging animal model for human CMV. Med. Microbiol. Immunol. 2008, 197, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Lockridge, K.M.; Sequar, G.; Zhou, S.S.; Yue, Y.; Mandell, C.P.; Barry, P.A. Pathogenesis of experimental rhesus cytomegalovirus infection. J. Virol. 1999, 73, 9576–9583. [Google Scholar] [CrossRef] [PubMed]
- Baskin, G.B. Disseminated cytomegalovirus infection in immunodeficient rhesus monkeys. Am. J. Pathol. 1987, 129, 345–352. [Google Scholar] [PubMed]
- Roark, H.K.; Jenks, J.A.; Permar, S.R.; Schleiss, M.R. Animal Models of Congenital Cytomegalovirus Transmission: Implications for Vaccine Development. J. Infect. Dis. 2020, 221, S60–S73. [Google Scholar] [CrossRef] [PubMed]
- Bialas, K.M.; Tanaka, T.; Tran, D.; Varner, V.; Cisneros De La Rosa, E.; Chiuppesi, F.; Wussow, F.; Kattenhorn, L.; Macri, S.; Kunz, E.L.; et al. Maternal CD4+ T cells protect against severe congenital cytomegalovirus disease in a novel nonhuman primate model of placental cytomegalovirus transmission. Proc. Natl. Acad. Sci. USA 2015, 112, 13645–13650. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Nelson, C.S.; Bialas, K.M.; Chiuppesi, F.; Amos, J.; Gurley, T.C.; Marshall, D.J.; Eudailey, J.; Heimsath, H.; Himes, J.; et al. Plasmablast Response to Primary Rhesus Cytomegalovirus (CMV) Infection in a Monkey Model of Congenital CMV Transmission. Clin. Vaccine Immunol. 2017, 24, e00510–e00516. [Google Scholar] [CrossRef] [PubMed]
- Whitney, J.B.; Hill, A.L.; Sanisetty, S.; Penaloza-MacMaster, P.; Liu, J.; Shetty, M.; Parenteau, L.; Cabral, C.; Shields, J.; Blackmore, S.; et al. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 2014, 512, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Fukazawa, Y.; Lum, R.; Okoye, A.A.; Park, H.; Matsuda, K.; Bae, J.Y.; Hagen, S.I.; Shoemaker, R.; Deleage, C.; Lucero, C.; et al. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat. Med. 2015, 21, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Cadena, A.M.; Ventura, J.D.; Abbink, P.; Borducchi, E.N.; Tuyishime, H.; Mercado, N.B.; Walker-Sperling, V.; Siamatu, M.; Liu, P.T.; Chandrashekar, A.; et al. Persistence of viral RNA in lymph nodes in ART-suppressed SIV/SHIV-infected Rhesus Macaques. Nat. Commun. 2021, 12, 1474. [Google Scholar] [CrossRef] [PubMed]
- Abreu, C.; Veenhuis, R.; Avalos, C.; Graham, S.; Parrilla, D.; Ferreira, E.; Queen, S.; Shirk, E.; Bullock, B.; Li, M.; et al. Myeloid and CD4 T Cells Comprise the Latent Reservoir in Antiretroviral Therapy-Suppressed SIVmac251-Infected Macaques. mBio 2019, 10, e01659-19. [Google Scholar] [CrossRef] [PubMed]
- Clements, J.; Li, M.; Gama, L.; Bullock, B.; Carruth, L.; Mankowski, J.; Zink, M. The central nervous system is a viral reservoir in simian immunodeficiency virus–infected macaques on combined antiretroviral therapy: A model for human immunodeficiency virus patients on highly active antiretroviral theraby. J. NeuroVirol. 2005, 11, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Perez, S.; Johnson, A.M.; Xiang, S.H.; Li, J.; Foley, B.T.; Doyle-Meyers, L.; Panganiban, A.; Kaur, A.; Veazey, R.S.; Wu, Y.; et al. Persistence of SIV in the brain of SIV-infected Chinese rhesus macaques with or without antiretroviral therapy. J. Neurovirol. 2018, 24, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Avalos, C.; Abreu, C.; Queen, S.; Li, M.; Price, S.; Shirk, E.; Engle, E.; Forsyth, E.; Bullock, B.; Mac Gabhann, F.; et al. Brain Macrophages in Simian Immunodeficiency Virus-Infected, Antiretroviral-Suppressed Macaques: A Functional Latent Reservoir. mBio 2017, 8, e01186-17. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh, N.; Roda, W.; Branton, W.; Clain, J.; Rabezanahary, H.; Zghidi-Abouzid, O.; Gelman, B.; Angel, J.; Cohen, E.; Gill, M.; et al. Lentiviral Infections Persist in Brain despite Effective Antiretroviral Therapy and Neuroimmune Activation. mBio 2021, 12, e0278421. [Google Scholar] [CrossRef] [PubMed]
- Tavazzi, E.; Morrison, D.; Sullivan, P.; Morgello, S.; Fischer, T. Brain inflammation is a common feature of HIV-infected patients without HIV encephalitis or productive brain infection. Curr. HIV Res. 2014, 12, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Cysique, L.; Jugé, L.; Gates, T.; Tobia, M.; Moffat, K.; Brew, B.; Rae, C. Covertly active and progressing neurochemical abnormalities in suppressed HIV infection. Neurol. R Neuroimmunol. Neuroinflamm. 2018, 5, e430. [Google Scholar] [CrossRef] [PubMed]
- Vera, J.H.; Guo, Q.; Cole, J.H.; Boasso, A.; Greathead, L.; Kelleher, P.; Rabiner, E.A.; Kalk, N.; Bishop, C.; Gunn, R.N.; et al. Neuroinflammation in treated HIV-positive individuals: A TSPO PET study. Neurology 2016, 86, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Garvey, L.; Pavese, N.; Politis, M.; Ramlackhansingh, A.; Brooks, D.; Taylor-Robinson, S.; Winston, A. Increased microglia activation in neurologically asymptomatic HIV-infected patients receiving effective ART. AIDS 2014, 28, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Solis-Leal, A.; Siddiqui, S.; Wu, F.; Mohan, M.; Hu, W.; Doyle-Meyers, L.; Dufour, J.; Ling, B. Neuroinflammatory Profiling in SIV-Infected Chinese-Origin Rhesus Macaques on Antiretroviral Therapy. Viruses 2022, 14, 139. [Google Scholar] [CrossRef] [PubMed]
- Macneughton, M.; Davies, H. Ribonucleoprotein-like structures from coronavirus particles. J. Gen. Virol. 1978, 39, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Sturman, L.; Holmes, K.; Behnke, J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Virol. 1980, 33, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.; Cavanagh, D. The molecular biology of coronaviruses. Adv. Virus Res. 1997, 48, 1–100. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.; Herrler, G.; Wu, N.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e278. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, A.; Liu, J.; Martinot, A.J.; McMahan, K.; Mercado, N.B.; Peter, L.; Tostanoski, L.H.; Yu, J.; Maliga, Z.; Nekorchuk, M.; et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science 2020, 369, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Melin, A.D.; Janiak, M.C.; Marrone, F., 3rd; Arora, P.S.; Higham, J.P. Comparative ACE2 variation and primate COVID-19 risk. Commun. Biol. 2020, 3, 641. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, W.; Chen, Z.; Lu, S.; Yang, F.; Bi, Z.; Bao, L.; Mo, F.; Li, X.; Huang, Y.; et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature 2020, 586, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Baum, A.; Ajithdoss, D.; Copin, R.; Zhou, A.; Lanza, K.; Negron, N.; Ni, M.; Wei, Y.; Mohammadi, K.; Musser, B.; et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science 2020, 370, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z.; et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020, 369, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Blair, R.V.; Vaccari, M.; Doyle-Meyers, L.A.; Roy, C.J.; Russell-Lodrigue, K.; Fahlberg, M.; Monjure, C.J.; Beddingfield, B.; Plante, K.S.; Plante, J.A.; et al. Acute Respiratory Distress in Aged, SARS-CoV-2-Infected African Green Monkeys but Not Rhesus Macaques. Am. J. Pathol. 2021, 191, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.; Mayer, M.G.; Shu, Q.; Linh, H.; Bao, D.; Blair, R.V.; He, Y.; Lyon, C.J.; Hu, T.Y.; Fischer, T.; et al. Cerebrospinal Fluid Protein Markers Indicate Neuro-Damage in SARS-CoV-2-Infected Nonhuman Primates. Mol. Cell Proteom. 2023, 22, 100523. [Google Scholar] [CrossRef] [PubMed]
- Heming, M.; Li, X.; Rauber, S.; Mausberg, A.K.; Borsch, A.L.; Hartlehnert, M.; Singhal, A.; Lu, I.N.; Fleischer, M.; Szepanowski, F.; et al. Neurological Manifestations of COVID-19 Feature T Cell Exhaustion and Dedifferentiated Monocytes in Cerebrospinal Fluid. Immunity 2021, 54, 164–175.e6. [Google Scholar] [CrossRef] [PubMed]
- Rutkai, I.; Mayer, M.G.; Hellmers, L.M.; Ning, B.; Huang, Z.; Monjure, C.J.; Coyne, C.; Silvestri, R.; Golden, N.; Hensley, K.; et al. Neuropathology and virus in brain of SARS-CoV-2 infected non-human primates. Nat. Commun. 2022, 13, 1745. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, A.; Arrigoni, A.; Caroli, A.; Cava, M.; Remuzzi, A.; Longhi, L.G.; Barletta, A.; Zangari, R.; Lorini, F.L.; Sessa, M.; et al. Cerebral Microbleeds Assessment and Quantification in COVID-19 Patients With Neurological Manifestations. Front. Neurol. 2022, 13, 884449. [Google Scholar] [CrossRef] [PubMed]
- Etter, M.M.; Martins, T.A.; Kulsvehagen, L.; Possnecker, E.; Duchemin, W.; Hogan, S.; Sanabria-Diaz, G.; Muller, J.; Chiappini, A.; Rychen, J.; et al. Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: A prospective cross-sectional study. Nat. Commun. 2022, 13, 6777. [Google Scholar] [CrossRef] [PubMed]
- Lindskog, C.; Mear, L.; Virhammar, J.; Fallmar, D.; Kumlien, E.; Hesselager, G.; Casar-Borota, O.; Rostami, E. Protein Expression Profile of ACE2 in the Normal and COVID-19-Affected Human Brain. J. Proteome Res. 2022, 21, 2137–2145. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.C.; Li, M.; Deng, W.; Ma, C.H.; Chen, Y.S.; Sun, Y.Q.; Du, T.; Liu, Q.L.; Li, W.J.; Zhang, B.; et al. Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques. Protein Cell 2022, 13, 920–939. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, J.; Radke, J.; Dittmayer, C.; Franz, J.; Thomas, C.; Mothes, R.; Laue, M.; Schneider, J.; Brunink, S.; Greuel, S.; et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 2020, 24, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Beckman, D.; Bonillas, A.; Diniz, G.B.; Ott, S.; Roh, J.W.; Elizaldi, S.R.; Schmidt, B.A.; Sammak, R.L.; Van Rompay, K.K.A.; Iyer, S.S.; et al. SARS-CoV-2 infects neurons and induces neuroinflammation in a non-human primate model of COVID-19. Cell Rep. 2022, 41, 111573. [Google Scholar] [CrossRef] [PubMed]
- de Melo, G.D.; Lazarini, F.; Levallois, S.; Hautefort, C.; Michel, V.; Larrous, F.; Verillaud, B.; Aparicio, C.; Wagner, S.; Gheusi, G.; et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci. Transl. Med. 2021, 13, eabf8396. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Wang, K.; Yu, J.; Howard, D.; French, L.; Chen, Z.; Wen, C.; Xu, Z. The Spatial and Cell-Type Distribution of SARS-CoV-2 Receptor ACE2 in the Human and Mouse Brains. Front. Neurol. 2020, 11, 573095. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, X.; Geng, D.; Mei, N.; Wu, P.Y.; Huang, C.C.; Jia, T.; Zhao, Y.; Wang, D.; Xiao, A.; et al. Cerebral Micro-Structural Changes in COVID-19 Patients—An MRI-based 3-month Follow-up Study. EClinicalMedicine 2020, 25, 100484. [Google Scholar] [CrossRef] [PubMed]
- De Tanti, A.; Conforti, J.; Bruni, S.; De Gaetano, K.; Cappalli, A.; Basagni, B.; Bertoni, D.; Saviola, D. Cognitive and psychological outcomes and follow-up in severely affected COVID-19 survivors admitted to a rehabilitation hospital. Neurol. Sci. 2023, 44, 1481–1489. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Ma, W.; Song, T.Z.; Wu, Z.; Liu, Z.; Hu, Z.; Han, J.B.; Xu, L.; Zeng, B.; Wang, B.; et al. Single-nucleus transcriptomic profiling of multiple organs in a rhesus macaque model of SARS-CoV-2 infection. Zool. Res. 2022, 43, 1041–1062. [Google Scholar] [CrossRef] [PubMed]
Virus | Neurotropism | Advantages of NHP Model | Disadvantages of NHP Model |
---|---|---|---|
Zika virus | Directly neurotropic | Recapitulates human clinical disease | Microcephaly not observed in RM |
West Nile virus | Directly neurotropic | Macaques are naturally susceptible | Most infections are subclinical |
Eastern equine encephalitis virus | Directly neurotropic | Aerosol infection model | Most infections are subclinical |
Venezuelan equine encephalitis virus | Directly neurotropic | Recapitulates human disease symptoms | |
Western equine encephalitis virus | Directly neurotropic | Aerosol infection model | Limited studies |
Varicella -zoster virus | Directly neurotropic | Recapitulates human disease, including latency | Limited CNS disease |
Herpes simplex virus-1 | Directly neurotropic | Latency modeling | Limited CNS disease in macaques |
Herpes simplex virus-2 (HSV-2) | Directly neurotropic | HIV co-infection models | Macaques are refractory to HSV-2 |
Cytomegalovirus (CMV) | Directly neurotropic | Structural and genetic similarities between HCMV and RhCMV | Infections often subclinical, limited seronegative colonies |
HIV | Indirectly neuropathogenic | Virus homology with SIV, recapitulates human clinical disease progression | Limited to Asian-origin macaques |
SARS-CoV-2 | Indirectly neuropathogenic | Naturally susceptible and recapitulate human disease progression including neurological complications and long COVID-19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vail, K.J.; Macha, B.N.; Hellmers, L.; Fischer, T. Modeling Virus-Associated Central Nervous System Disease in Non-Human Primates. Int. J. Mol. Sci. 2025, 26, 6886. https://doi.org/10.3390/ijms26146886
Vail KJ, Macha BN, Hellmers L, Fischer T. Modeling Virus-Associated Central Nervous System Disease in Non-Human Primates. International Journal of Molecular Sciences. 2025; 26(14):6886. https://doi.org/10.3390/ijms26146886
Chicago/Turabian StyleVail, Krystal J., Brittany N. Macha, Linh Hellmers, and Tracy Fischer. 2025. "Modeling Virus-Associated Central Nervous System Disease in Non-Human Primates" International Journal of Molecular Sciences 26, no. 14: 6886. https://doi.org/10.3390/ijms26146886
APA StyleVail, K. J., Macha, B. N., Hellmers, L., & Fischer, T. (2025). Modeling Virus-Associated Central Nervous System Disease in Non-Human Primates. International Journal of Molecular Sciences, 26(14), 6886. https://doi.org/10.3390/ijms26146886