Arboviral Lifecycle 2025

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Invertebrate Viruses".

Deadline for manuscript submissions: closed (28 February 2025) | Viewed by 2287

Special Issue Editor


E-Mail Website
Guest Editor
Infectious Disease Center, Shenzhen Bay Laboratory, Shenzhen, China
Interests: virus evolution and transmission; arboviruses; vaccines
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The increasing spread and incidence of arbovirus infections present significant public health challenges. Over recent decades, dengue has escalated to hyperendemic levels, while yellow fever has resurfaced with urban outbreaks. The 2005 emergence of Chikungunya, which reached pandemic levels by 2013, marked a critical juncture. Since then, the concurrent circulation of dengue, yellow fever, Chikungunya, and Zika—primarily transmitted by Aedes aegypti—has led to explosive outbreaks with severe consequences, including congenital anomalies and neurological disorders. Additionally, the recent emergence and re-emergence of other arboviruses, such as the Oropouche virus (OROV), further complicate the public health landscape, underscoring the dynamic and evolving nature of these infections.

Understanding the lifecycle of arboviruses is crucial to addressing these challenges. This encompasses not only the virus's transmission dynamics through vectors but also its interaction with hosts at various stages of infection. The lack of specific serological tests for distinguishing between these viruses complicates surveillance efforts in the region. Additionally, gaps in knowledge regarding vector competence and the virus's ability to adapt to different environmental conditions and hosts are critical barriers to controlling their spread.

This Special Issue aims to explore and elucidate the intricacies of the arbovirus lifecycle, from viral entry into the mosquito vector to human infection and disease manifestation. Emphasizing the importance of comprehensive studies on vector biology, viral evolution, and host–pathogen interactions, we invite contributions that will enhance our understanding and lead to the development of more effective diagnostics, vaccines, and vector control strategies.

Dr. Jianying Liu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • arbovirus
  • viral infection and transmission
  • viral receptors
  • host antiviral immunity
  • viral epidemics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 2256 KiB  
Article
Mild Zika Virus Infection in Mice Without Motor Impairments Induces Working Memory Deficits, Anxiety-like Behaviors, and Dysregulation of Immunity and Synaptic Vesicle Pathways
by Jaime Alexander Chivatá-Ávila, Paola Rojas-Estevez, Alejandra M. Muñoz-Suarez, Esthefanny Caro-Morales, Aura Caterine Rengifo, Orlando Torres-Fernández, Jose Manuel Lozano and Diego A. Álvarez-Díaz
Viruses 2025, 17(3), 405; https://doi.org/10.3390/v17030405 - 12 Mar 2025
Viewed by 645
Abstract
Background: The Zika virus (ZIKV) is an arbovirus linked to “Congenital Zika Syndrome” and a range of neurodevelopmental disorders (NDDs), with microcephaly as the most severe manifestation. Milder NDDs, such as autism spectrum disorders and delays in neuropsychomotor and language development, often go [...] Read more.
Background: The Zika virus (ZIKV) is an arbovirus linked to “Congenital Zika Syndrome” and a range of neurodevelopmental disorders (NDDs), with microcephaly as the most severe manifestation. Milder NDDs, such as autism spectrum disorders and delays in neuropsychomotor and language development, often go unnoticed in neonates, resulting in long-term social and academic difficulties. Murine models of ZIKV infection can be used to mimic part of the spectrum of motor and cognitive deficits observed in humans. These can be evaluated through behavioral tests, enabling comparison with gene expression profiles and aiding in the characterization of ZIKV-induced NDDs. Objectives: This study aimed to identify genes associated with behavioral changes following a subtle ZIKV infection in juvenile BALB/c mice. Methods: Neonatal mice were subcutaneously inoculated with ZIKV (MH544701.2) on postnatal day 1 (DPN) at a dose of 6.8 × 103 PFU. Viral presence in the cerebellum and cortex was quantified at 10- and 30-days post-infection (DPI) using RT-qPCR. Neurobehavioral deficits were assessed at 30 DPI through T-maze, rotarod, and open field tests. Next-Generation Sequencing (NGS) was performed to identify differentially expressed genes (DEGs), which were analyzed through Gene Ontology (GO) and KEGG enrichment. Gene interaction networks were then constructed to explore gene interactions in the most enriched biological categories. Results: A ZIKV infection model was successfully established, enabling brain infection while allowing survival beyond 30 DPI. The infection induced mild cognitive behavioral changes, though motor and motivational functions remained unaffected. These cognitive changes were linked to the functional repression of synaptic vesicles and alterations in neuronal structure, suggesting potential disruptions in neuronal plasticity. Conclusions: Moderate ZIKV infection with circulating strains from the 2016 epidemic may cause dysregulation of genes related to immune response, alterations in cytoskeletal organization, and modifications in cellular transport mediated by vesicles. Despite viral control, neurocognitive effects persisted, including memory deficits and anxiety-like behaviors, highlighting the long-term neurological consequences of ZIKV infection in models that show no apparent malformations. Full article
(This article belongs to the Special Issue Arboviral Lifecycle 2025)
Show Figures

Figure 1

16 pages, 4361 KiB  
Article
Serum-Free Suspension Culture of the Aedes albopictus C6/36 Cell Line for Chimeric Orthoflavivirus Vaccine Production
by Joshua S. Dawurung, Jessica J. Harrison, Naphak Modhiran, Roy A. Hall, Jody Hobson-Peters and Henry de Malmanche
Viruses 2025, 17(2), 250; https://doi.org/10.3390/v17020250 - 12 Feb 2025
Cited by 1 | Viewed by 921
Abstract
Chimeric orthoflaviviruses derived from the insect-specific Binjari virus (BinJV) offer a promising basis for safe orthoflavivirus vaccines. However, these vaccines have so far only been produced using adherent C6/36 Aedes albopictus mosquito cell cultures grown in serum-supplemented media, limiting their scalable manufacture. To [...] Read more.
Chimeric orthoflaviviruses derived from the insect-specific Binjari virus (BinJV) offer a promising basis for safe orthoflavivirus vaccines. However, these vaccines have so far only been produced using adherent C6/36 Aedes albopictus mosquito cell cultures grown in serum-supplemented media, limiting their scalable manufacture. To address this, we adapted C6/36 cells for serum-free suspension culture using Sf900-III medium, achieving high peak cell densities (up to 2.5 × 107 cells/mL). Higher agitation rates reduced cell aggregation, and cryopreservation and direct-to-suspension revival were successful, confirming the adapted line’s stability for research and industrial applications. Despite this, BinJV-based chimeric orthoflaviviruses, including BinJV/WNVKUN, a candidate vaccine for West Nile virus, and similar vaccines (BinJV/DENV2 and BinJV/JEVNSW22) for dengue 2 virus and Japanese encephalitis virus, respectively, exhibited substantially reduced titres in C6/36 cultures infected in Sf900-III, a phenomenon attributed to the medium’s acidic pH. Switching to the more alkaline, serum-free CD-FortiCHO medium enhanced the replication of these chimeric viruses to peak titres between 1.7 × 107 and 7.6 × 109 infectious units per mL whilst preserving viral integrity. These findings suggest that suspension-adapted C6/36 cultures in CD-FortiCHO medium can support high-yield vaccine production for various orthoflaviviruses and highlight the important role of cell culture media pH for orthoflavivirus bioprocessing. This scalable mosquito cell-based system could reduce production costs and improve vaccine accessibility, supporting efforts to combat arbovirus-related public health challenges. Full article
(This article belongs to the Special Issue Arboviral Lifecycle 2025)
Show Figures

Figure 1

Back to TopTop