Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (717)

Search Parameters:
Keywords = viral coinfection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3221 KiB  
Article
Development of a Deer Tick Virus Infection Model in C3H/HeJ Mice to Mimic Human Clinical Outcomes
by Dakota N. Paine, Erin S. Reynolds, Charles E. Hart, Jessica Crooker and Saravanan Thangamani
Viruses 2025, 17(8), 1092; https://doi.org/10.3390/v17081092 (registering DOI) - 7 Aug 2025
Abstract
Deer tick virus (DTV) is a Tick-Borne Orthoflavivirus endemic to the United States, transmitted to humans through bites from the deer tick, Ixodes scapularis, which is also the primary vector of Borrelia burgdorferi s.l., the causative agent of Lyme disease. Human [...] Read more.
Deer tick virus (DTV) is a Tick-Borne Orthoflavivirus endemic to the United States, transmitted to humans through bites from the deer tick, Ixodes scapularis, which is also the primary vector of Borrelia burgdorferi s.l., the causative agent of Lyme disease. Human infection with DTV can result in acute febrile illness followed by central nervous system complications, such as encephalitis and meningoencephalitis. Currently, there are mouse models established for investigating the pathogenesis and clinical outcomes of DTV that mimic human infections, but the strains of mice utilized are refractory to infection with B. burgdorferi s.l. Here, we describe the pathogenesis and clinical outcomes of DTV infection in C3H/HeJ mice. Neurological clinical signs, mortality, and weight loss were observed in all DTV-infected mice during the investigation. Infected animals demonstrated consistent viral infection in their organs. Additionally, neuropathology of brain sections indicated the presence of meningoencephalitis throughout the brain. This data, along with the clinical outcomes for the mice, indicates successful infection and showcases the neuroinvasive nature of the virus. This is the first study to identify C3H/HeJ mice as an appropriate model for DTV infection. As C3H/HeJ mice are already an established model for B. burgdorferi s.l. infection, this model could serve as an ideal system for investigating disease progression and pathogenesis of co-infections. Full article
(This article belongs to the Special Issue Tick-Borne Viruses 2026)
Show Figures

Figure 1

2 pages, 128 KiB  
Abstract
Invasive Group A Streptococcus and Respiratory Viral Coinfections in Alberta, Canada, from 2018 to 2024
by Skyler Ngo, Alexa Thompson and Gregory J. Tyrrell
Proceedings 2025, 124(1), 4; https://doi.org/10.3390/proceedings2025124004 - 6 Aug 2025
Abstract
Intro: The epidemiology of invasive group A Streptococcus (iGAS) has been previously documented in Alberta, Canada; however, the role coinfections with respiratory viral infections (VRIs) play with associated emm types remains unclear [...] Full article
40 pages, 1970 KiB  
Review
Periodontal Microbial Profiles Across Periodontal Conditions in Pediatric Subjects: A Narrative Review
by Federica Di Spirito, Maria Pia Di Palo, Giuseppina De Benedetto, Federica Piedepalumbo, Marzio Galdi, Davide Cannatà, Noemi Cafà and Maria Contaldo
Microorganisms 2025, 13(8), 1813; https://doi.org/10.3390/microorganisms13081813 - 3 Aug 2025
Viewed by 152
Abstract
Periodontal diseases in pediatric subjects represent a challenging and relatively underexplored area compared to the extensive data available about periodontal diseases in adults. The present narrative review aims to explore the periodontal status and the related subgingival and/or salivary microbial profiles in pediatric [...] Read more.
Periodontal diseases in pediatric subjects represent a challenging and relatively underexplored area compared to the extensive data available about periodontal diseases in adults. The present narrative review aims to explore the periodontal status and the related subgingival and/or salivary microbial profiles in pediatric subjects (≤18 years), focusing also on the state of health or systemic diseases. In healthy periodontium, early colonizers, such as Streptococcus and Actinomyces spp., dominate the subgingival microbiota, supporting an eubiosis state. Low levels of Candida albicans and latent Herpesviridae may be detected. In gingivitis, the microbial profile shifts towards more pathogenic species, including Prevotella intermedia and Fusobacterium nucleatum. In necrotizing gingivitis, typically affecting systemically compromised children, the microbial profile is characterized by spirochetes, Fusobacterium, and Prevotella intermedia. Viral coinfections—especially with HSV, CMV, and EBV—are more frequently detected. In periodontitis, the microbiota was dominated by red complex pathogens along with Aggregatibacter actinomycetemcomitans in the aggressive forms, especially in systemically compromised children, as Herpesviridae reactivation and co-infections. Fungal involvement is less well characterized; Candida albicans may be present, particularly in cases of severe immune suppression. Nevertheless, the lack of pediatric longitudinal studies investigating periodontal disease progression after periodontal treatment and related changes in microbiological composition limited the understanding and exploration of the oral microbiota over time. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

13 pages, 931 KiB  
Article
Ultrasensitive and Multiplexed Target Detection Strategy Based on Photocleavable Mass Tags and Mass Signal Amplification
by Seokhwan Ji, Jin-Gyu Na and Woon-Seok Yeo
Nanomaterials 2025, 15(15), 1170; https://doi.org/10.3390/nano15151170 - 29 Jul 2025
Viewed by 273
Abstract
Co-infections pose significant challenges not only clinically, but also in terms of simultaneous diagnoses. The development of sensitive, multiplexed analytical platforms is critical for accurately detecting viral co-infections, particularly in complex biological environments. In this study, we present a mass spectrometry (MS)-based detection [...] Read more.
Co-infections pose significant challenges not only clinically, but also in terms of simultaneous diagnoses. The development of sensitive, multiplexed analytical platforms is critical for accurately detecting viral co-infections, particularly in complex biological environments. In this study, we present a mass spectrometry (MS)-based detection strategy employing a target-triggered hybridization chain reaction (HCR) to amplify signals and in situ photocleavable mass tags (PMTs) for the simultaneous detection of multiple targets. Hairpin DNAs modified with PMTs and immobilized loop structures on magnetic particles (Loop@MPs) were engineered for each target, and their hybridization and amplification efficiency was validated using native polyacrylamide gel electrophoresis (PAGE) and laser desorption/ionization MS (LDI-MS), with silica@gold core–shell hybrid (SiAu) nanoparticles being employed as an internal standard to ensure quantitative reliability. The system exhibited excellent sensitivity, with a detection limit of 415.12 amol for the hepatitis B virus (HBV) target and a dynamic range spanning from 1 fmol to 100 pmol. Quantitative analysis in fetal bovine serum confirmed high accuracy and precision, even under low-abundance conditions. Moreover, the system successfully and simultaneously detected multiple targets, i.e., HBV, human immunodeficiency virus (HIV), and hepatitis C virus (HCV), mixed in various ratios, demonstrating clear PMT signals for each. These findings establish our approach as a robust and reliable platform for ultrasensitive multiplexed detection, with strong potential for clinical and biomedical research. Full article
(This article belongs to the Special Issue Synthesis and Application of Optical Nanomaterials: 2nd Edition)
Show Figures

Graphical abstract

13 pages, 1231 KiB  
Article
Respiratory Virus Prevalence Across Pre-, During-, and Post-SARS-CoV-2 Pandemic Periods
by Michele Manno, Grazia Pavia, Simona Gigliotti, Marta Pantanella, Giorgio Settimo Barreca, Cinzia Peronace, Luigia Gallo, Francesca Trimboli, Elena Colosimo, Angelo Giuseppe Lamberti, Nadia Marascio, Giovanni Matera and Angela Quirino
Viruses 2025, 17(8), 1040; https://doi.org/10.3390/v17081040 - 25 Jul 2025
Viewed by 359
Abstract
The COVID-19 pandemic significantly impacted the circulation, seasonality, and disease burden of viral respiratory infections. This study aimed to evaluate the impact of SARS-CoV-2 on the frequency of viral respiratory infections at a teaching hospital in Southern Italy by comparing data from before, [...] Read more.
The COVID-19 pandemic significantly impacted the circulation, seasonality, and disease burden of viral respiratory infections. This study aimed to evaluate the impact of SARS-CoV-2 on the frequency of viral respiratory infections at a teaching hospital in Southern Italy by comparing data from before, during, and after the COVID-19 pandemic and by investigating how the emergence of SARS-CoV-2 affected the circulation and seasonality of other respiratory viruses. This retrospective and prospective study was performed on de-identified nasopharyngeal specimens classified as pre-COVID-19 (before 15 March 2020), during-COVID-19 (from 16 March 2020 to 5 May 2023), and post-COVID-19 (from 6 May 2023 to 31 December 2024). Overall, 790 out of 3930 (20%) patient samples tested positive for at least one respiratory virus. The mean age of patients was 60 ± 19 years, with significant positivity rates observed in the 65–98 age group (p ≤ 0.05) across all periods. In the pre-COVID-19 period, the most prevalent virus was influenza A (47.5%, 47/99), followed by the human rhinovirus (19.2%, 19/99). During the COVID-19 pandemic, SARS-CoV-2 was the most prevalent (64.9%, 290/447), before decreasing to 38% (92/244) after the pandemic, while influenza A’s positivity prevalence increased to 14.3% (35/244). Rhinovirus/enterovirus remained relatively stable throughout all periods. The pandemic notably altered viral co-infection dynamics, with its effects lasting into the post-COVID-19 period. Specifically, a marked decrease in influenza A circulation was observed, while respiratory syncytial virus (RSV) epidemiology remained stable and significant co-circulation of rhinovirus/enterovirus with SARS-CoV-2 persisted. Therefore, since COVID-19 and influenza affect the same high-risk groups, those individuals must be vaccinated against both viruses. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

16 pages, 2780 KiB  
Article
Impact of Wheat Resistance Genes on Wheat Curl Mite Fitness and Wheat Streak Mosaic Dynamics Under Single and Mixed Infections
by Saurabh Gautam and Kiran R. Gadhave
Viruses 2025, 17(7), 1010; https://doi.org/10.3390/v17071010 - 18 Jul 2025
Viewed by 380
Abstract
The wheat curl mite (WCM, Aceria tosichella Keifer), a complex of eriophyid mite species, transmits wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV), which in single or mixed infections cause wheat streak mosaic (WSM) disease—a major threat to wheat production across [...] Read more.
The wheat curl mite (WCM, Aceria tosichella Keifer), a complex of eriophyid mite species, transmits wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV), which in single or mixed infections cause wheat streak mosaic (WSM) disease—a major threat to wheat production across the U.S. Great Plains. Resistant wheat cultivars bearing Cmc3 and Cmc4 (targeting WCM), Wsm1 and Wsm2 (targeting WSMV), and Wsm1 (targeting TriMV) are widely used to manage this pest–pathogen complex. However, comprehensive studies investigating how these resistance mechanisms influence both vector biology and virus transmission remain scarce. To address this gap, we evaluated disease development and WCM fitness across nine wheat cultivars with differential resistance profiles under single and mixed infections of WSMV and TriMV. We found strong viral synergy in co-infected plants, with TriMV accumulation markedly enhanced during mixed infections, irrespective of host genotype. Symptom severity and virus titers (both WSMV and TriMV) were highest in the cultivars carrying Wsm2, suggesting a potential trade-off in resistance effectiveness under mixed infection pressure. While mite development time (egg to adult) was unaffected by host genotype or infection status, mite fecundity was significantly reduced on infected plants carrying Wsm1 or Wsm2, but not on those with Cmc3 and Cmc4. Notably, virus accumulation in mites was reduced on the cultivars with Cmc3 and Cmc4, correlating with virus titers in the host tissues. Our findings highlight the complex interplay between host resistance, virus dynamics, and vector performance. Cultivars harboring Cmc3 and Cmc4 may offer robust field-level protection by simultaneously suppressing mite reproduction and limiting virus accumulation in both plant and vector. Full article
(This article belongs to the Special Issue Molecular and Biological Virus-Plant-Insect Vector Interactions)
Show Figures

Figure 1

11 pages, 761 KiB  
Communication
First Report of Triple Viral Co-Infection (PPV, PCV2, PCMV) in Wild Boars in the Western Balkans
by Dimitrije Glišić, Sofija Šolaja, Kukilo Stevan, Vesna Milićević, Miloš Vučićević, Jelena Aleksić and Dajana Davitkov
Pathogens 2025, 14(7), 710; https://doi.org/10.3390/pathogens14070710 - 18 Jul 2025
Viewed by 466
Abstract
Wild boars are recognized reservoirs of numerous viral pathogens, posing a significant risk to domestic pig populations, particularly in areas with poor biosecurity. This study assessed the prevalence and co-infection patterns of porcine circovirus type 2 (PCV2), porcine parvovirus (PPV), porcine cytomegalovirus (PCMV), [...] Read more.
Wild boars are recognized reservoirs of numerous viral pathogens, posing a significant risk to domestic pig populations, particularly in areas with poor biosecurity. This study assessed the prevalence and co-infection patterns of porcine circovirus type 2 (PCV2), porcine parvovirus (PPV), porcine cytomegalovirus (PCMV), African swine fever virus (ASFV), classical swine fever virus (CSFV), and pseudorabies virus (PRV) in wild boars from western Serbia and the Republic of Srpska (Bosnia and Herzegovina). Sixty-six spleen samples from legally hunted wild boars were analyzed by qPCR. All animals were negative for ASFV, CSFV, and PRV. The cumulative prevalence of infection with at least one of the other three viruses was 86.4% (95% CI: 76.2–92.8%). PCMV was detected in 74.2% of samples, PCV2 in 50%, and PPV in 28.8%. Co-infections were common: 42.4% of animals were positive for two viruses, and 12.1% for all three. A statistically significant association was observed between triple co-infection and sex, with higher rates in males. Subadult wild boars showed the highest PCV2 + PCMV co-infection rate (p = 0.0547). These findings highlight the need to expand molecular surveillance, particularly for PCMV, in both wild and domestic pigs, especially in regions reliant on low-biosecurity backyard farming. Full article
(This article belongs to the Special Issue Current Challenges in Veterinary Virology)
Show Figures

Figure 1

15 pages, 1347 KiB  
Article
Investigation of the Prevalence of High-Risk Human Papillomavirus, Human Herpesvirus-8, and Herpes Simplex Virus-2 in Cervical Biopsy Samples Using the Real-Time PCR Method
by Ayfer Bakır, Betül Yüzügüldü, Eylül Beren Tanık, Muhammed Furkan Kürkçü, Gizem Korkut and Firdevs Şahin Duran
Trop. Med. Infect. Dis. 2025, 10(7), 200; https://doi.org/10.3390/tropicalmed10070200 - 17 Jul 2025
Viewed by 329
Abstract
Persistent high-risk human papillomavirus (HR-HPV) infection is closely associated with the development of cervical intraepithelial neoplasia (CIN) and cervical cancer. In recent years, the potential impact of viral co-infections on this process has also been investigated. This study investigated the presence of HR-HPV, [...] Read more.
Persistent high-risk human papillomavirus (HR-HPV) infection is closely associated with the development of cervical intraepithelial neoplasia (CIN) and cervical cancer. In recent years, the potential impact of viral co-infections on this process has also been investigated. This study investigated the presence of HR-HPV, HSV-1/2, and HHV-8 DNA in formalin-fixed paraffin-embedded (FFPE) cervical biopsy samples, as well as their association with lesion severity. A total of 276 FFPE cervical tissue samples were evaluated. Viral DNA was detected by real-time PCR. The samples were histopathologically classified as normal/non-dysplastic, low-grade (LSIL), and high-grade (HSIL) lesions. HR-HPV DNA was detected in 112 samples (40.6%), with the highest prevalence observed in the 30–39 age group (51.2%). Among the HPV-positive cases, 46.5% (52/112) had single-type infections, 32.1% (36/112) had multiple-type infections, and 21.4% (24/112) were untypable. Together, these categories accounted for all HPV-positive samples. The most common genotype was HPV-16 (16.7%). HHV-8 and HSV-2 DNA were not detected. HSV-1 DNA was detected in only three non-dysplastic, HPV-negative cervical samples. In conclusion, HR-HPV DNA was detected in 40.6% of cervical biopsy samples and showed a significant association with increasing histological severity, highlighting its critical role in the progression of cervical lesions. Although the absence of HHV-8 and HSV-2 suggests a limited contribution of these viruses to cervical disease, the use of a single real-time PCR assay limits the ability to draw generalized conclusions regarding their clinical relevance. Further large-scale, multicenter studies employing both tissue-based and serological approaches are needed to validate these findings and to better understand the dynamics of viral co-infections in cervical disease. Full article
(This article belongs to the Special Issue Molecular Epidemiology of Human Papillomavirus Infection)
Show Figures

Figure 1

12 pages, 3211 KiB  
Article
CRISPR/Cas12a-Based One-Tube RT-RAA Assay for PoRV Genotyping
by Mingfang Bi, Zunbao Wang, Kaijie Li, Yuhe Ren, Dan Ma and Xiaobing Mo
Int. J. Mol. Sci. 2025, 26(14), 6846; https://doi.org/10.3390/ijms26146846 - 16 Jul 2025
Viewed by 350
Abstract
Porcine rotavirus (PoRV), a primary etiological agent of viral diarrhea in piglets, frequently co-infects with other enteric pathogens, exacerbating disease severity and causing substantial economic losses. Its genetic recombination capability enables cross-species transmission potential, posing public health risks. Globally, twelve G genotypes and [...] Read more.
Porcine rotavirus (PoRV), a primary etiological agent of viral diarrhea in piglets, frequently co-infects with other enteric pathogens, exacerbating disease severity and causing substantial economic losses. Its genetic recombination capability enables cross-species transmission potential, posing public health risks. Globally, twelve G genotypes and thirteen P genotypes have been identified, with G9, G5, G3, and G4 emerging as predominant circulating strains. The limited cross-protective immunity between genotypes compromises vaccine efficacy, necessitating genotype surveillance to guide vaccine development. While conventional molecular assays demonstrate sensitivity, they lack rapid genotyping capacity and face technical limitations. To address this, we developed a novel diagnostic platform integrating reverse transcription recombinase-aided amplification (RT-RAA) with CRISPR–Cas12a. This system employs universal primers for the simultaneous amplification of G4/G5/G9 genotypes in a single reaction, coupled with sequence-specific CRISPR recognition, achieving genotyping within 50 min at 37 °C with 100 copies/μL sensitivity. Clinical validation showed a high concordance with reverse transcription quantitative polymerase chain reaction (RT-qPCR). This advancement provides an efficient tool for rapid viral genotyping, vaccine compatibility evaluation, and optimized epidemic control strategies. Full article
(This article belongs to the Special Issue Protein Design and Engineering in Biochemistry)
Show Figures

Figure 1

44 pages, 1364 KiB  
Review
Oncoviruses in the Oral Cavity: Recent Advances in Understanding Viral Infections and Tumorigenesis
by Letícia Bomfim Campos, Ana Carolina Silva Guimarães, Jéssica Gonçalves Pereira, Carla Sousa da Silva, Nathália Alves Araújo de Almeida, Pedro do Nascimento Marinho, Rafaela Moraes Pereira de Sousa, Irena Duś-Ilnicka and Vanessa Salete de Paula
Int. J. Mol. Sci. 2025, 26(14), 6721; https://doi.org/10.3390/ijms26146721 - 13 Jul 2025
Viewed by 525
Abstract
Oncoviruses, such as Epstein–Barr virus (EBV), human papillomavirus (HPV), and Kaposi sarcoma-associated herpesvirus (KSHV), have been widely discussed for their oncogenic risk. Initially, the oral cavity was disregarded. In recent years, orientation has shifted to the importance of the oral cavity and cancer-related [...] Read more.
Oncoviruses, such as Epstein–Barr virus (EBV), human papillomavirus (HPV), and Kaposi sarcoma-associated herpesvirus (KSHV), have been widely discussed for their oncogenic risk. Initially, the oral cavity was disregarded. In recent years, orientation has shifted to the importance of the oral cavity and cancer-related issues via Handbook 19 titled “Oral Cancer Prevention” by the International Agency for Research on Cancer, the WHO Global Oral Health Status Report 2022, and multiple other actions focused on reducing the oversight of this neglected area. Oncoviruses play a significant role in oral cavity malignancies by establishing persistent infections, evading host immune responses, and inducing cellular transformation through the disruption of normal regulatory pathways. Molecular biology and microbiome research have advanced our understanding of the complex interplay between oncoviruses and oral microbiota, demonstrating how coinfections and dysbiosis can enhance viral oncogenic potential. These findings improve the understanding of virus-induced oral cancers and support the development of novel diagnostic and therapeutic strategies. This narrative review focuses on the relationship between oncoviruses and the oral cavity by focusing on how a specific virus triggers tumorigenesis for each of the described viruses and how it affects oral cavity cancer development. Finally, we describe recent advances and future perspectives including vaccines and/or treatment. Full article
(This article belongs to the Special Issue Viral Infections and Cancer: Recent Advances and Future Perspectives)
Show Figures

Figure 1

16 pages, 3513 KiB  
Article
Identification and Distribution of Begomoviruses Infecting Cassava Fields in Sierra Leone
by Musa Decius Saffa, Alusaine Edward Samura, Mohamed Alieu Bah, Angela Obiageli Eni, Ezechiel B. Tibiri, Saïdou Zongo, William J.-L. Amoakon, Fidèle Tiendrébéogo, Justin Simon Pita and Prince Emmanuel Norman
Plants 2025, 14(14), 2142; https://doi.org/10.3390/plants14142142 - 11 Jul 2025
Viewed by 470
Abstract
A dearth of knowledge exists on identifying the begomoviruses and distributing cassava mosaic viruses across key cassava-growing regions of Sierra Leone. The study aimed to identify and map the distribution of cassava mosaic disease (CMD)-associated viruses in farmers’ fields in Sierra Leone. Cassava [...] Read more.
A dearth of knowledge exists on identifying the begomoviruses and distributing cassava mosaic viruses across key cassava-growing regions of Sierra Leone. The study aimed to identify and map the distribution of cassava mosaic disease (CMD)-associated viruses in farmers’ fields in Sierra Leone. Cassava (Manihot esculenta Crantz) leaf samples were collected in 109 smallholder farms during a geo-referenced survey conducted from 10th May to 5th June 2024. Molecular diagnostics were carried out to identify the viral strains associated with CMD. Findings revealed that infection by stem cutting was more predominant in the south, east, north, and northwest regions than in the west region. In contrast, infection by whitefly was predominant in the west, north, and northwest regions. PCR screening of 426 samples coupled with sequence analysis revealed the presence of African cassava mosaic-like (ACMV-like) viruses, and East African cassava mosaic-like (EACMV-like) viruses as single infections at 78.1% and 1.3%, respectively. Co-infections of ACMV-like and EACMV-like viruses were detected in 20.6% of the tested samples. In addition, 70.6% of the samples positive for EACMV-like virus (single and mixed infections) were found to be positive for East African cassava mosaic Cameroon virus (EACMCMV). The ACMV and co-infection of ACMV and EACMV viruses were present in all regions, while EACMCV was detected in all regions except the western area. The results indicate more prevalence of the EACMCMV variant in Sierra Leone. This study suggests utilization of participatory surveillance and good agronomic practices to manage CMD in Sierra Leone. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

20 pages, 853 KiB  
Review
Dengue and Flavivirus Co-Infections: Challenges in Diagnosis, Treatment, and Disease Management
by Rosmen Sufi Aiman Sabrina, Nor Azila Muhammad Azami and Wei Boon Yap
Int. J. Mol. Sci. 2025, 26(14), 6609; https://doi.org/10.3390/ijms26146609 - 10 Jul 2025
Viewed by 573
Abstract
Co-infections of dengue serotypes and dengue with other flaviviruses pose substantial hurdles in disease diagnosis, treatment options, and disease management. The overlapping geographic distributions and mosquito vectors significantly enhance the probability of co-infections. Co-infections may result in more severe disease outcomes due to [...] Read more.
Co-infections of dengue serotypes and dengue with other flaviviruses pose substantial hurdles in disease diagnosis, treatment options, and disease management. The overlapping geographic distributions and mosquito vectors significantly enhance the probability of co-infections. Co-infections may result in more severe disease outcomes due to elevated viral loads, modulation of the immune response, and antibody enhancement. Cross-reactivity in serological assays and the likeness of clinical presentations add to the ongoing challenges in disease diagnosis. Molecular diagnostics such as reverse transcription polymerase chain reaction (RT-PCR) and next-generation sequencing (NGS) are, therefore, employed for more specific disease diagnosis although requiring substantial resources. Despite the advancements, specific anti-flaviviral therapy is still limited, hence the urgency for further investigative research into various therapeutic approaches, including peptide inhibitors, host-targeted therapies, and RNA-based interventions. This review discusses the epidemiology, clinical ramifications, and diagnostic obstacles associated with flavivirus co-infections whilst assessing prospective strategies for better disease prevention, treatment, and management. Addressing these critical gaps is essential for disease mitigation whilst improving patient management especially in regions where co-circulation of flaviviruses is common and their diseases are highly endemic. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

14 pages, 1293 KiB  
Article
Comprehensive Survey of PCV2 and PCV3 in Domestic Pigs and Wild Boars Across Portugal: Prevalence, Geographical Distribution and Genetic Diversity
by Bernardo Almeida, Margarida D. Duarte, Ana Duarte, Teresa Fagulha, Fernanda Ramos, Tiago Luís, Inês Caetano, Sílvia C. Barros, Fábio Abade dos Santos and Ana Margarida Henriques
Pathogens 2025, 14(7), 675; https://doi.org/10.3390/pathogens14070675 - 9 Jul 2025
Viewed by 389
Abstract
Porcine circoviruses are significant pathogens that affect swine populations worldwide, with implications for animal health and productivity. While PCV2 is well-documented, particularly due to widespread vaccination programs, PCV3 is less understood, and its epidemiological impact is still under investigation. This study screened for [...] Read more.
Porcine circoviruses are significant pathogens that affect swine populations worldwide, with implications for animal health and productivity. While PCV2 is well-documented, particularly due to widespread vaccination programs, PCV3 is less understood, and its epidemiological impact is still under investigation. This study screened for PCV2 and PCV3 in pigs and wild boars across Portugal to assess their prevalence. Also, nucleotide sequence determination was performed to evaluate the genetic diversity of these viruses. Stool samples from 160 pigs belonging to different groups (quarantine, nursery, fattening and adult pigs), as well as organ samples from 120 hunted wild boars, were analyzed. Samples were collected from twelve of the eighteen mainland Portuguese districts with positive cases being detected in nine of them. Pigs had a lower prevalence of PCV2 (1.9%) than PCV3 (11.2%), but the opposite was true in wild boars (76.7% for PCV2 and 55.0% for PCV3). The lower PCV2 prevalence in pigs can be attributed to the PCV2 vaccination program implemented. Additionally, these viruses were significantly more prevalent in wild boars (90.8% were infected with at least one of the viruses) than in domestic pigs (only 12.5%). This significant difference highlights the impact of the controlled environment in pig farms on disease prevention in contrast to the higher exposure risks faced by wild boars in their natural habitat. Compared to a previous study from 2023, we observed a slight decrease in the percentage of positive cases for both PCV2 and PCV3. Phylogenetic analysis of sequences obtained by Sanger sequencing allowed us to conclude that the samples from domestic pigs belong to the PCV2a and PCV3c clades, in contrast to the PCV2-positive cases detected in domestic pigs in 2023 that were classified in the PCV2d genotype. Conversely, samples from wild boars belong to the PCV2d and PCV3a clades. These results reveal genotype differences between wild and domestic pigs and shifts from 2023 to 2024. Our findings provide some information about the circulation of these viruses and emphasize the importance of vaccination and continued monitoring for a deeper understanding of their epidemiology to mitigate potential risks to swine health and production. Full article
(This article belongs to the Special Issue Current Challenges in Veterinary Virology)
Show Figures

Figure 1

17 pages, 2146 KiB  
Article
Development of an Effective Single-Dose PCV2/CSFV Bivalent Subunit Vaccine Against Classical Swine Fever Virus and Porcine Circovirus Type 2
by Yu-Chieh Chen, Wen-Bin Chung, Hso-Chi Chaung, Yen-Li Huang, Chi-Chih Chen and Guan-Ming Ke
Vaccines 2025, 13(7), 736; https://doi.org/10.3390/vaccines13070736 - 8 Jul 2025
Viewed by 563
Abstract
Background/Objectives: Porcine Circovirus Type 2 (PCV2) impairs pigs’ immune systems and increases susceptibility to co-infections, including Classical Swine Fever (CSF), a highly contagious disease listed by the World Organisation for Animal Health (WOAH) as notifiable. Therefore, swine operations in CSF-endemic regions are [...] Read more.
Background/Objectives: Porcine Circovirus Type 2 (PCV2) impairs pigs’ immune systems and increases susceptibility to co-infections, including Classical Swine Fever (CSF), a highly contagious disease listed by the World Organisation for Animal Health (WOAH) as notifiable. Therefore, swine operations in CSF-endemic regions are encouraged to immunize piglets with both PCV2 and CSFV vaccinations. Currently, there is no commercially available bivalent vaccine for PCV2/CSFV. Methods: In this study, a total of twenty 4-week-old SPF pigs were administered our formulated PCV2/CSFV bivalent subunit vaccine, containing soluble CSFV-E2 (50 µg) and PCV2-ORF2 (100 µg) antigens with a porcine-specific CpG adjuvant. After 4 weeks of vaccination, all pigs were evaluated for efficacy against PCV2 and CSFV. Results: Pigs were only immunized once and showed significantly increased neutralizing or ELISA antibody titers against both viruses four weeks post-vaccination. After viral challenges, vaccinated pigs displayed no clinical signs or lesions and had markedly reduced CSFV and PCV2 viral loads in the serum and tissues compared to controls. Conclusions: These results demonstrate that a single dose of the PCV2/CSFV bivalent subunit vaccine is safe and effective in young pigs, induces strong antibody responses, and suppresses viral replication, making it a promising tool for swine disease control and cost-effective vaccination strategies. Full article
(This article belongs to the Special Issue Vaccination Against Major Respiratory Pathogens in Livestock Farming)
Show Figures

Figure 1

14 pages, 566 KiB  
Article
Impact of RSV Infection in Transplant and Immunocompromised Population: Incidence and Co-Infections: Retrospective Analysis of a Single Centre
by Paolo Solidoro, Antonio Curtoni, Sara Minuto, Nour Shbaklo, Francesco Giuseppe De Rosa, Alessandro Bondi, Francesca Sidoti, Filippo Patrucco, Elisa Zanotto, Silvia Corcione, Massimo Boffini, Matteo Marro, Cristina Costa and Rocco Francesco Rinaldo
J. Clin. Med. 2025, 14(13), 4803; https://doi.org/10.3390/jcm14134803 - 7 Jul 2025
Viewed by 468
Abstract
Respiratory syncytial virus (RSV) represents one of the main respiratory infections found among immunocompromised patients. Objective: The study analyzes the incidence of RSV infection in different populations of immunocompromised patients as organ transplant recipients (lung, other solid organs, hematopoietic stem cells) and [...] Read more.
Respiratory syncytial virus (RSV) represents one of the main respiratory infections found among immunocompromised patients. Objective: The study analyzes the incidence of RSV infection in different populations of immunocompromised patients as organ transplant recipients (lung, other solid organs, hematopoietic stem cells) and oncologic patients (solid organ malignancy and hematological malignancy) compared to a group of non-immunocompromised patients. We also assessed the prevalence of viral, bacterial, and mycotic coinfection. Moreover, we aimed at evaluating the efficacy of ribavirin treatment in terms of mortality reduction. Methods: We conducted a retrospective analysis on a total of 466 transplant patients undergoing bronchoscopy with bronchoalveolar lavage for suspected viral disease or surveillance between 2016 and 2023, compared to 460 controls. Results: The incidence of RSV was significantly higher in immunocompromised patients, particularly in those with lung and bone marrow transplants. Among RSV+ patients, a higher prevalence of viral (influenza virus), bacterial (S. pneumoniae, M. pneumoniae, Nocardia spp.), and fungal (Aspergillus spp.) coinfections were observed. The efficacy of ribavirin in reducing mortality did not show significant differences compared to supportive therapy alone. Conclusions: The results of our exploratory study suggest that immunocompromised patients are particularly vulnerable to RSV infection and coinfections. Our hypothesis-generating data warrant the need for future studies aimed at exploring preventive and therapeutic strategies for RSV infection in these high-risk patient groups. Full article
(This article belongs to the Special Issue Lung Transplantation: Current Strategies and Future Directions)
Show Figures

Figure 1

Back to TopTop