Molecular and Biological Virus-Plant-Insect Vector Interactions

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Viruses of Plants, Fungi and Protozoa".

Deadline for manuscript submissions: 31 May 2026 | Viewed by 2036

Special Issue Editor


E-Mail Website
Guest Editor
State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
Interests: plant virus

Special Issue Information

Dear Colleagues,

Plant virus transmission requires action from all three participants—the virus, the vector, and the plant. Plants are important mediators of interactions between their associated viruses and insect vectors, and through modifications of the host plant, plant viruses can influence vector characteristics to increase their transmission. The understanding of complex interactions between viruses, plants, and insect vectors is crucial for the development of effective strategies to control viral diseases in plants and improve agricultural productivity. In this Special Issue, we call for papers on a wide range of articles, including original research and review articles that focus on the molecular, ecological, and biological mechanisms behind virus–plant interactions, virus–vector interactions, or virus–vector–plant interactions, thereby providing comprehensive insights into the mechanisms underpinning these complex relationships. Topics of interest can include but are not limited to the following: molecular mechanisms of plant–virus interactions, virus transmission dynamics and epidemiological viral manipulation of plant–insect vector interactions, advances in molecular diagnostics and the detection of plant viruses, plant defense responses to viral infections and insect vectors, insect vector biology and host specificity, and novel strategies to control viral diseases in plants and manage insect vectors.

Dr. Yong Liu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant virus transmission
  • virus–plant interactions
  • virus–vector interactions
  • virus–vector–plant interactions
  • epidemiology of virus transmission
  • molecular mechanisms
  • viral manipulation
  • diagnostic techniques

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

27 pages, 2190 KB  
Article
Heat Stress Induces Partial Resistance to Tomato Bushy Stunt Virus in Nicotiana benthamiana Via Combined Stress Pathways
by Nurgul Iksat, Almas Madirov, Dana Artykbayeva, Oleksiy Shevchenko, Kuralay Zhanassova, Zhaksat Baikarayev and Zhaksylyk Masalimov
Viruses 2025, 17(9), 1250; https://doi.org/10.3390/v17091250 - 16 Sep 2025
Viewed by 483
Abstract
Global climate change is the impact of combined abiotic and biotic stresses negatively affecting plant health and productivity. This study investigated the molecular and cellular responses of Nicotiana benthamiana L. plants to wild-type tomato bushy stunt virus (wtTBSV) infection under conditions of pre-existing [...] Read more.
Global climate change is the impact of combined abiotic and biotic stresses negatively affecting plant health and productivity. This study investigated the molecular and cellular responses of Nicotiana benthamiana L. plants to wild-type tomato bushy stunt virus (wtTBSV) infection under conditions of pre-existing heat stress. The experiments were conducted under controlled temperature regimes of 30 °C and 37 °C in combination with virus challenge. Morphological and biochemical analyses in plants under the influence of combined stress showed the alleviation of disease symptoms, reduction in virus content and reduced expression levels of viral proteins P19 and P33. Under conditions of combined stress, accumulation of hydrogen peroxide and malondialdehyde, as well as activation of the antioxidant enzyme catalase, especially in root tissues, were observed. Notably, at 37 °C, virus infection was suppressed despite high levels of oxidative stress, whereas at 30 °C, a marked decrease in the expression of host factors was observed. The results indicate that thermal stress modulates virus–host interactions and activates defense mechanisms, including antioxidant and RNA interference pathways. Therefore, temperature adaptation can be considered as a promising strategy for enhancing plant resistance to viral pathogens under climate changes. Full article
(This article belongs to the Special Issue Molecular and Biological Virus-Plant-Insect Vector Interactions)
Show Figures

Figure 1

16 pages, 2780 KB  
Article
Impact of Wheat Resistance Genes on Wheat Curl Mite Fitness and Wheat Streak Mosaic Dynamics Under Single and Mixed Infections
by Saurabh Gautam and Kiran R. Gadhave
Viruses 2025, 17(7), 1010; https://doi.org/10.3390/v17071010 - 18 Jul 2025
Viewed by 967
Abstract
The wheat curl mite (WCM, Aceria tosichella Keifer), a complex of eriophyid mite species, transmits wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV), which in single or mixed infections cause wheat streak mosaic (WSM) disease—a major threat to wheat production across [...] Read more.
The wheat curl mite (WCM, Aceria tosichella Keifer), a complex of eriophyid mite species, transmits wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV), which in single or mixed infections cause wheat streak mosaic (WSM) disease—a major threat to wheat production across the U.S. Great Plains. Resistant wheat cultivars bearing Cmc3 and Cmc4 (targeting WCM), Wsm1 and Wsm2 (targeting WSMV), and Wsm1 (targeting TriMV) are widely used to manage this pest–pathogen complex. However, comprehensive studies investigating how these resistance mechanisms influence both vector biology and virus transmission remain scarce. To address this gap, we evaluated disease development and WCM fitness across nine wheat cultivars with differential resistance profiles under single and mixed infections of WSMV and TriMV. We found strong viral synergy in co-infected plants, with TriMV accumulation markedly enhanced during mixed infections, irrespective of host genotype. Symptom severity and virus titers (both WSMV and TriMV) were highest in the cultivars carrying Wsm2, suggesting a potential trade-off in resistance effectiveness under mixed infection pressure. While mite development time (egg to adult) was unaffected by host genotype or infection status, mite fecundity was significantly reduced on infected plants carrying Wsm1 or Wsm2, but not on those with Cmc3 and Cmc4. Notably, virus accumulation in mites was reduced on the cultivars with Cmc3 and Cmc4, correlating with virus titers in the host tissues. Our findings highlight the complex interplay between host resistance, virus dynamics, and vector performance. Cultivars harboring Cmc3 and Cmc4 may offer robust field-level protection by simultaneously suppressing mite reproduction and limiting virus accumulation in both plant and vector. Full article
(This article belongs to the Special Issue Molecular and Biological Virus-Plant-Insect Vector Interactions)
Show Figures

Figure 1

Back to TopTop