Respiratory Virus Prevalence Across Pre-, During-, and Post-SARS-CoV-2 Pandemic Periods
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Multiplex Real-Time PCR Assays for the Diagnosis of vARIs
3. Results
3.1. Demographic Characteristics of Patient Samples for vARI Diagnosis
3.2. The Prevalence of Respiratory Pathogens in the Pre-, During-, and Post-COVID-19 Era
3.3. Age-Related Stratification of Respiratory Pathogens in the Pre-, During-, and Post-COVID-19 Era
3.4. Viral Co-Infection Patterns During Pre-, During-, and Post-COVID-19 Pandemic Periods
3.5. Impact of COVID-19 on the Seasonal Dynamics and Detection Rates of Major Respiratory Viruses (2017–2024)
4. Discussion
4.1. Study Overview and Diagnostic Approach
4.2. Impact of the COVID-19 Pandemic on Respiratory Virus Epidemiology
4.3. Gender and Age-Related Differences in Viral Prevalence
4.4. Impact of COVID-19 on the Seasonality of Respiratory Viruses
4.5. Implications of Reduced Population Immunity and Environmental Factors
4.6. Dynamics of Viral Coinfections During and After the Pandemic
4.7. Performance and Limitations of Multiplex PCR Diagnostic Tools and Clinical Interpretation Challenges
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Respiratory Infectious Diseases on the Rise Across WHO European Region. Available online: https://www.who.int/europe/news/item/15-12-2023-respiratory-infectious-diseases-on-the-rise-across-who-european-region (accessed on 1 April 2025).
- Trifonova, I.; Christova, I.; Madzharova, I.; Angelova, S.; Voleva, S.; Yordanova, R.; Tcherveniakova, T.; Krumova, S.; Korsun, N. Clinical Significance and Role of Coinfections with Respiratory Pathogens among Individuals with Confirmed Severe Acute Respiratory Syndrome Coronavirus-2 Infection. Front. Public Health 2022, 10, 959319. [Google Scholar] [CrossRef] [PubMed]
- Pavia, G.; Scarpa, F.; Ciccozzi, A.; Romano, C.; Branda, F.; Quirino, A.; Marascio, N.; Matera, G.; Sanna, D.; Ciccozzi, M. Changing and Evolution of Influenza Virus: Is It a Trivial Flu? Chemotherapy 2024, 69, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Pavia, G.; Quirino, A.; Marascio, N.; Veneziano, C.; Longhini, F.; Bruni, A.; Garofalo, E.; Pantanella, M.; Manno, M.; Gigliotti, S.; et al. Persistence of SARS-CoV-2 Infection and Viral Intra- and Inter- host Evolution in COVID-19 Hospitalized Patients. J. Med. Virol. 2024, 96, e29708. [Google Scholar] [CrossRef] [PubMed]
- Branda, F.; Pavia, G.; Ciccozzi, A.; Quirino, A.; Marascio, N.; Matera, G.; Romano, C.; Locci, C.; Azzena, I.; Pascale, N.; et al. Zoonotic Paramyxoviruses: Evolution, Ecology, and Public Health Strategies in a Changing World. Viruses 2024, 16, 1688. [Google Scholar] [CrossRef] [PubMed]
- De Marco, C.; Veneziano, C.; Massacci, A.; Pallocca, M.; Marascio, N.; Quirino, A.; Barreca, G.S.; Giancotti, A.; Gallo, L.; Lamberti, A.G.; et al. Dynamics of Viral Infection and Evolution of SARS-CoV-2 Variants in the Calabria Area of Southern Italy. Front. Microbiol. 2022, 13, 934993. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Timbrook, T.T.; Polacek, C.; Heins, Z.; Rosenthal, N.A. Disease Burden and High-Risk Populations for Complications in Patients with Acute Respiratory Infections: A Scoping Review. Front. Med. 2024, 11, 1325236. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhang, Y.; Wang, J.; Li, Y.; Wang, Y.; Gao, Y.; Zhao, M.; Zhao, M.; Tan, H.; Tie, Y.; et al. Epidemiology of Respiratory Pathogens in Patients with Acute Respiratory Infections during the COVID-19 Pandemic and after Easing of COVID-19 Restrictions. Microbiol. Spectr. 2024, 12, e01161-24. [Google Scholar] [CrossRef] [PubMed]
- Alimi, Y.; Lim, W.S.; Lansbury, L.; Leonardi-Bee, J.; Nguyen-Van-Tam, J.S. Systematic Review of Respiratory Viral Pathogens Identified in Adults with Community-Acquired Pneumonia in Europe. J. Clin. Virol. 2017, 95, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Msemburi, W.; Karlinsky, A.; Knutson, V.; Aleshin-Guendel, S.; Chatterji, S.; Wakefield, J. The WHO Estimates of Excess Mortality Associated with the COVID-19 Pandemic. Nature 2023, 613, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Jester, B.; Uyeki, T.M.; Jernigan, D.B.; Tumpey, T.M. Historical and Clinical Aspects of the 1918 H1N1 Pandemic in the United States. Virology 2019, 527, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Denouel, A.; Tietjen, A.K.; Campbell, I.; Moran, E.; Li, X.; Campbell, H.; Demont, C.; Nyawanda, B.O.; Chu, H.Y.; et al. Global Disease Burden Estimates of Respiratory Syncytial Virus-Associated Acute Respiratory Infection in Older Adults in 2015: A Systematic Review and Meta-Analysis. J. Infect. Dis. 2020, 222, S577–S583. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Blau, D.M.; Caballero, M.T.; Feikin, D.R.; Gill, C.J.; Madhi, S.A.; Omer, S.B.; Simões, E.A.F.; Campbell, H.; et al. Global, Regional, and National Disease Burden Estimates of Acute Lower Respiratory Infections Due to Respiratory Syncytial Virus in Children Younger than 5 Years in 2019: A Systematic Analysis. Lancet Lond. Engl. 2022, 399, 2047–2064. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.-Y.; Buda, S.; Biere, B.; Reiche, J.; Schlosser, F.; Duwe, S.; Wedde, M.; von Kleist, M.; Mielke, M.; Wolff, T.; et al. Trends in Respiratory Virus Circulation Following COVID-19-Targeted Nonpharmaceutical Interventions in Germany, January–September 2020: Analysis of National Surveillance Data. Lancet Reg. Health Eur. 2021, 6, 100112. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chen, Q.; Ren, S.; Zhang, Y.; Yi, L.; Qian, C.; Shen, J.; Liu, X.; Jiang, M.; Wang, B.; et al. Impact of COVID-19 Nonpharmaceutical Interventions on Respiratory Syncytial Virus Infections in Hospitalized Children. Influenza Other Respir. Viruses 2024, 18, e13291. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.; Ashman, M.; Taha, M.-K.; Varon, E.; Angoulvant, F.; Levy, C.; Rybak, A.; Ouldali, N.; Guiso, N.; Grimprel, E. Pediatric Infectious Disease Group (GPIP) Position Paper on the Immune Debt of the COVID-19 Pandemic in Childhood, How Can We Fill the Immunity Gap? Infect. Dis. Now 2021, 51, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.E.; Park, S.W.; Yang, W.; Vecchi, G.A.; Metcalf, C.J.E.; Grenfell, B.T. The Impact of COVID-19 Nonpharmaceutical Interventions on the Future Dynamics of Endemic Infections. Proc. Natl. Acad. Sci. USA 2020, 117, 30547–30553. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ge, Y.; Wu, T.; Zhao, K.; Chen, Y.; Wu, B.; Zhu, F.; Zhu, B.; Cui, L. Co-Infection with Respiratory Pathogens among COVID-2019 Cases. Virus Res. 2020, 285, 198005. [Google Scholar] [CrossRef] [PubMed]
- Carstens, G.; Kozanli, E.; Bulsink, K.; McDonald, S.; Elahi, M.; de Bakker, J.; Schipper, M.; van Gageldonk-Lafeber, R.; van den Hof, S.; Jan van Hoek, A.; et al. Co-Infection Dynamics of SARS-CoV-2 and Respiratory Viruses in the 2022/2023 Respiratory Season in the Netherlands. J. Infect. 2025, 90, 106474. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Li, K.; Lei, Z.; Luo, J.; Wang, Q.; Wei, S. Prevalence and Associated Outcomes of Coinfection between SARS-CoV-2 and Influenza: A Systematic Review and Meta-Analysis. Int. J. Infect. Dis. 2023, 136, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Barrero Guevara, L.A.; Goult, E.; Briga, M.; Kramer, S.C.; Kovacevic, A.; Opatowski, L.; Domenech de Cellès, M. The Interactions of SARS-CoV-2 with Cocirculating Pathogens: Epidemiological Implications and Current Knowledge Gaps. PLoS Pathog. 2023, 19, e1011167. [Google Scholar] [CrossRef] [PubMed]
- Clark, T.W.; Lindsley, K.; Wigmosta, T.B.; Bhagat, A.; Hemmert, R.B.; Uyei, J.; Timbrook, T.T. Rapid Multiplex PCR for Respiratory Viruses Reduces Time to Result and Improves Clinical Care: Results of a Systematic Review and Meta-Analysis. J. Infect. 2023, 86, 462–475. [Google Scholar] [CrossRef] [PubMed]
- The BioFire® FilmArray® Respiratory Panels (RP & RP2). Available online: https://www.biofiredx.com/products/the-filmarray-panels/rp-2-1-plus-panel/ (accessed on 29 April 2025).
- QIAstat-Dx SARS-CoV-2. Available online: https://www.qiagen.com/ca/products/diagnostics-and-clinical-research/infectious-disease/qiastat-dx-syndromic-testing/qiastat-dx-ca (accessed on 29 April 2025).
- Brunstein, J.D.; Cline, C.L.; McKinney, S.; Thomas, E. Evidence from Multiplex Molecular Assays for Complex Multipathogen Interactions in Acute Respiratory Infections. J. Clin. Microbiol. 2008, 46, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Zhao, D.; Liu, J.; Wang, X.; Yang, K.; Xicheng, H.; Li, Y.; Wang, F. Multipathogen Infections in Hospitalized Children with Acute Respiratory Infections. Virol. J. 2009, 6, 155. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.P.-L.; Chu, I.Y.-H.; Yeh, M.-L.; Chen, Y.-Y.; Lee, C.-L.; Lin, H.-H.; Chan, Y.-J.; Chen, H.-P. Differentiating Impacts of Non-Pharmaceutical Interventions on Non-Coronavirus Disease-2019 Respiratory Viral Infections: Hospital-Based Retrospective Observational Study in Taiwan. Influenza Other Respir. Viruses 2021, 15, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Ching, N.S.; Kotsanas, D.; Easton, M.L.; Francis, M.J.; Korman, T.M.; Buttery, J.P. Respiratory Virus Detection and Co-Infection in Children and Adults in a Large Australian Hospital in 2009-2015. J. Paediatr. Child Health 2018, 54, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.M.; Chan, Y.F.; Jamaluddin, M.F.H.; Hasan, M.S.; Pang, Y.K.; Ponnampalavanar, S.; Syed Omar, S.F.; Sam, I.-C. Rhinovirus/Enterovirus Was the Most Common Respiratory Virus Detected in Adults with Severe Acute Respiratory Infections Pre-COVID-19 in Kuala Lumpur, Malaysia. PLoS ONE 2022, 17, e0273697. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.Y.; Chen, Y.-C.; Hsu, W.-Y.; Chen, W.-Y.; Chou, Y.; Chow, J.C.; Lai, Y.-C.; Tang, H.-J.; Chen, C.-C.; Ho, C.-H.; et al. Circulating Pediatric Respiratory Pathogens in Taiwan during 2020: Dynamic Change under Low COVID-19 Incidence. J. Microbiol. Immunol. Infect. 2022, 55, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhu, Y.; Lou, J.; Chen, J.; Xie, X.; Mao, J. Rotavirus and Adenovirus Infections in Children during COVID-19 Outbreak in Hangzhou, China. Transl. Pediatr. 2021, 10, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Bardsley, M.; Morbey, R.A.; Hughes, H.E.; Beck, C.R.; Watson, C.H.; Zhao, H.; Ellis, J.; Smith, G.E.; Elliot, A.J. Epidemiology of Respiratory Syncytial Virus in Children Younger than 5 Years in England during the COVID-19 Pandemic, Measured by Laboratory, Clinical, and Syndromic Surveillance: A Retrospective Observational Study. Lancet Infect. Dis. 2023, 23, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Cong, B.; Deng, S.; Feikin, D.R.; Nair, H. Understanding the Potential Drivers for Respiratory Syncytial Virus Rebound During the Coronavirus Disease 2019 Pandemic. J. Infect. Dis. 2022, 225, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Hernández, J.P.; Montoya-Martínez, J.J.; Pacheco-Gallego, M.C.; Céspedes-Roncancio, M.; Porras-Hurtado, G.L. SARS-CoV-2 and Rhinovirus/Enterovirus Co-Infection in a Critically Ill Young Adult Patient in Colombia. Biomedica 2020, 40, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Le Glass, E.; Hoang, V.T.; Boschi, C.; Ninove, L.; Zandotti, C.; Boutin, A.; Bremond, V.; Dubourg, G.; Ranque, S.; Lagier, J.-C.; et al. Incidence and Outcome of Coinfections with SARS-CoV-2 and Rhinovirus. Viruses 2021, 13, 2528. [Google Scholar] [CrossRef] [PubMed]
- Lade, H.; Kim, J.-M.; Chung, Y.; Han, M.; Mo, E.-K.; Kim, J.-S. Comparative Evaluation of Allplex Respiratory Panels 1, 2, 3, and BioFire FilmArray Respiratory Panel for the Detection of Respiratory Infections. Diagnostics 2021, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, R.; Lin, H.; Brendish, N.J.; Poole, S.; Tanner, A.R.; Borca, F.; Smith, T.; Stammers, M.; Clark, T.W. Routine Molecular Point-of-Care Testing for SARS-CoV-2 Reduces Hospital-Acquired COVID-19. J. Infect. 2022, 84, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ma, J.; Wang, H.; Wang, X.; Hu, Z.; Li, H.; Zhang, H.; Liu, X. Co-Infection of Influenza A Virus and SARS-CoV-2: A Retrospective Cohort Study. J. Med. Virol. 2021, 93, 2947–2954. [Google Scholar] [CrossRef] [PubMed]
- Halfmann, P.J.; Nakajima, N.; Sato, Y.; Takahashi, K.; Accola, M.; Chiba, S.; Fan, S.; Neumann, G.; Rehrauer, W.; Suzuki, T.; et al. SARS-CoV-2 Interference of Influenza Virus Replication in Syrian Hamsters. J. Infect. Dis. 2022, 225, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Oishi, K.; Horiuchi, S.; Minkoff, J.M.; tenOever, B.R. The Host Response to Influenza A Virus Interferes with SARS-CoV-2 Replication during Coinfection. J. Virol. 2022, 96, e0076522. [Google Scholar] [CrossRef] [PubMed]
- Dee, K.; Schultz, V.; Haney, J.; Bissett, L.A.; Magill, C.; Murcia, P.R. Influenza A and Respiratory Syncytial Virus Trigger a Cellular Response That Blocks Severe Acute Respiratory Syndrome Virus 2 Infection in the Respiratory Tract. J. Infect. Dis. 2023, 227, 1396–1406. [Google Scholar] [CrossRef] [PubMed]
- Berry, G.J.; Zhen, W.; Smith, E.; Manji, R.; Silbert, S.; Lima, A.; Harington, A.; McKinley, K.; Kensinger, B.; Neff, C.; et al. Multicenter Evaluation of the BioFire Respiratory Panel 2.1 (RP2.1) for Detection of SARS-CoV-2 in Nasopharyngeal Swab Samples. J. Clin. Microbiol. 2022, 60, e0006622. [Google Scholar] [CrossRef] [PubMed]
Pre-COVID-19 (N = 369) | During-COVID-19 (N = 3115) | Post-COVID-19 (N = 446) | |
---|---|---|---|
NPS positive samples for period% (n/N) | 26.8 (99/369) | 14.3 (447/3115) | 54.7 (244/446) |
NPS samples by age group% (n/N) | |||
age 5–17 years | 2 (2/99) | 2.7 (12/447) | 2.8 (7/244) |
age 18–64 years | 46.4 (46/99) | 47.8 (214/447) | 51.2 (125/244) |
age 65–98 years | 51.5 (51/99) | 49.4 (221/447) | 45.9 (112/244) |
Number of samples positive for season% (n/N) | |||
Fall (September–November) | 5 (5/99) | 19.4 (87/447) | 14.7 (36/244) |
Spring (March–May) | 36.4 (36/99) | 36.6 (164/447) | 13.5 (33/244) |
Summer (June–August) | 5 (5/99) | 9.17 (41/447) | 26.2 (64/244) |
Winter (December–February) | 53 (53/99) | 34.67 (155/447) | 45.4 (111/244) |
Ward of viral isolation% (n/N) | |||
IDU | 10.1 (10/99) | 58.2 (260/447) | 32.3 (79/244) |
Other hospital wards * | 27.3 (27/99) | 17.4 (78/447) | 37.3 (91/244) |
ICU | 52.6 (52/99) | 8.3 (37/447) | 24.6 (60/244) |
Triage | 1.0 (1/99) | 15.2 (68/447) | 5.3 (13/244) |
Outpatient | 8.0 (8/99) | 0.9 (4/447) | 1.2 (3/244) |
Coinfection | Pre-COVID-19 N (%) | During-COVID-19 N (%) | Post-COVID-19 N (%) |
---|---|---|---|
HMPV + Influenza B | 1 (16,6) | 0 | 0 |
Influenza A + Influenza B | 1 (16,6) | 0 | 0 |
EV/RV + RSV | 1 (16,6) | 1 (2,6) | 1 (10) |
EV/RV + AdV | 1 (16,6) | 3 (7,9) | 0 |
EV/RV + CoV 229E | 0 | 1 (2,6) | 0 |
EV/RV + CoV NL63 | 1 (16,6) | 0 | 0 |
Influenza A + AdV | 1 (16,6) | 0 | 0 |
EV/RV + SARS-CoV-2 | 0 | 13 (34,2) | 2 (20) |
RSV + SARS-CoV-2 | 0 | 4 (10,5) | 0 |
CoV NL63 + SARS-CoV-2 | 0 | 1 (2,6) | 0 |
CoV OC43 + SARS-CoV-2 | 0 | 2 (5,2) | 0 |
CoV 229E + SARS-CoV-2 | 0 | 4 (10,5) | 0 |
CoV HKU1 + SARS-CoV-2 | 0 | 1 (2,6) | 1 (10) |
AdV + SARS-CoV-2 | 0 | 2 (5,2) | 0 |
Parainfluenza 1 + Parainfluenza 2 | 0 | 1 (2,6) | 0 |
SARS-CoV-2 + RSV + Influenza B | 0 | 1 (2,6) | 0 |
Influenza A + SARS-CoV-2 | 0 | 2 (5,2) | 2 (20) |
HMPV + SARS-CoV-2 | 0 | 1 (2,6) | 0 |
HMPV + EV/RV | 0 | 1 (2,6) | 0 |
Influenza A + EV/RV + SARS-CoV-2 | 0 | 0 | 1 (10) |
Influenza A + CoV 229E | 0 | 0 | 1 (10) |
AdV + BoV | 0 | 0 | 1 (10) |
Parainfluenza 3 + EV/RV | 0 | 0 | 1 (10) |
Total | 6 | 38 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manno, M.; Pavia, G.; Gigliotti, S.; Pantanella, M.; Barreca, G.S.; Peronace, C.; Gallo, L.; Trimboli, F.; Colosimo, E.; Lamberti, A.G.; et al. Respiratory Virus Prevalence Across Pre-, During-, and Post-SARS-CoV-2 Pandemic Periods. Viruses 2025, 17, 1040. https://doi.org/10.3390/v17081040
Manno M, Pavia G, Gigliotti S, Pantanella M, Barreca GS, Peronace C, Gallo L, Trimboli F, Colosimo E, Lamberti AG, et al. Respiratory Virus Prevalence Across Pre-, During-, and Post-SARS-CoV-2 Pandemic Periods. Viruses. 2025; 17(8):1040. https://doi.org/10.3390/v17081040
Chicago/Turabian StyleManno, Michele, Grazia Pavia, Simona Gigliotti, Marta Pantanella, Giorgio Settimo Barreca, Cinzia Peronace, Luigia Gallo, Francesca Trimboli, Elena Colosimo, Angelo Giuseppe Lamberti, and et al. 2025. "Respiratory Virus Prevalence Across Pre-, During-, and Post-SARS-CoV-2 Pandemic Periods" Viruses 17, no. 8: 1040. https://doi.org/10.3390/v17081040
APA StyleManno, M., Pavia, G., Gigliotti, S., Pantanella, M., Barreca, G. S., Peronace, C., Gallo, L., Trimboli, F., Colosimo, E., Lamberti, A. G., Marascio, N., Matera, G., & Quirino, A. (2025). Respiratory Virus Prevalence Across Pre-, During-, and Post-SARS-CoV-2 Pandemic Periods. Viruses, 17(8), 1040. https://doi.org/10.3390/v17081040