Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = vermicompost leachate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1923 KB  
Article
Improvement and Maturation of Liquid Biofertilizers in Series-Connected Biodigesters: Comparative Analysis of Guinea Pig Manure and Vermicompost Leachate
by Juan Pablo Gómez-Montoya, Yoisdel Castillo-Alvarez, Luis Felipe Ortiz-Dongo, Richard Solórzano, Alisson Dahian Patiño-Agudelo, Mario Luna-delRisco and Carlos E. Arrieta-Gonzalez
Sci 2025, 7(4), 161; https://doi.org/10.3390/sci7040161 - 5 Nov 2025
Viewed by 522
Abstract
The recovery of livestock waste through multistage anaerobic digestion represents a key strategy for producing high-efficiency liquid biofertilizers within circular economy frameworks. This study compared two underexplored substrates—guinea pig manure and vermicompost leachate (VL)—processed in series biodigesters to evaluate their nutrient composition and [...] Read more.
The recovery of livestock waste through multistage anaerobic digestion represents a key strategy for producing high-efficiency liquid biofertilizers within circular economy frameworks. This study compared two underexplored substrates—guinea pig manure and vermicompost leachate (VL)—processed in series biodigesters to evaluate their nutrient composition and agronomic performance. The guinea pig manure biol exhibited higher macronutrient concentrations (N = 1.09–3.74 g L−1; P = 0.06–0.64 g L−1; K = 1.85–3.20 g L−1) and electrical conductivity (14.1–26.5 mS cm−1), while VL presented a more balanced nutrient profile (N = 0.65–0.71 g L−1; P = 0.04–0.09 g L−1; K = 2.46–3.76 g L−1) and slightly lower salinity (15.0–17.2 mS cm−1). Micronutrient levels (Fe, Mn, Zn, B) exceeded the reference thresholds established by EU Regulation 2019/1009 for liquid fertilizers, suggesting the need for dilution prior to field application. In maize field trials, VL diluted 1:7 increased above-ground biomass by 28%, and guinea pig biol diluted 1:10 achieved a 22% increase compared to the control, confirming their biostimulant potential. However, the high sodium content (848–1024 mg L−1) may limit application on saline or poorly drained soils, requiring adaptive agronomic management. These findings demonstrate that multistage anaerobic digestion effectively transforms unconventional organic waste into nutrient-rich biofertilizers, expanding the scientific foundation for alternative substrates and reinforcing their potential to enhance Andean smallholder agriculture, nutrient recycling, and food security within a sustainability-oriented bioeconomy. Full article
(This article belongs to the Section Environmental and Earth Science)
Show Figures

Figure 1

16 pages, 1665 KB  
Article
Challenges of Organic Amendments: Impact of Vermicompost Leachate and Biochar on Popcorn Maize in Saline Soil
by Brenda Rivas-Aratoma, Wendy E. Pérez, Luis Felipe Ortiz-Dongo, Yuri Arévalo-Aranda and Richard Solórzano-Acosta
Appl. Sci. 2025, 15(14), 8041; https://doi.org/10.3390/app15148041 - 19 Jul 2025
Viewed by 1503
Abstract
Organic amendments provide a sustainable strategy to enhance soil quality in degraded environments while also helping to reduce greenhouse gas emissions, for example, by improving soil structure, minimizing the use of synthetic fertilizers, and promoting a green economy. This study assessed the comparative [...] Read more.
Organic amendments provide a sustainable strategy to enhance soil quality in degraded environments while also helping to reduce greenhouse gas emissions, for example, by improving soil structure, minimizing the use of synthetic fertilizers, and promoting a green economy. This study assessed the comparative effects of two organic amendments—vermicompost leachate and biochar—on the performance of popcorn maize (Zea mays L. var. everta) cultivated in saline soil conditions. Four treatments were evaluated: T0 (Control), T1 (Vermicompost leachate), T2 (Biochar), and T3 (Vermicompost leachate + Biochar), each with 10 replicates arranged in a Completely Randomized Design (CRD). Although various soil physicochemical, microbiological, and agronomic parameters displayed no significant differences compared to the control, the application of biochar resulted in considerable improvements in soil total organic carbon, the microbial community (mesophilic aerobic bacteria, molds, and yeasts), and increased seed length and diameter. In contrast, vermicompost leachate alone negatively impacted plant growth, leading to decreases in leaf area, stem thickness, and grain yield. Specifically, grain yield declined by 46% with leachate alone and by 31% when combined with biochar, compared to the control. These findings emphasize the superior effectiveness of biochar over vermicompost leachate as a soil amendment under saline conditions and highlight the potential risks of widely applying compost teas in stressed soils. It is recommended to conduct site-specific assessments and screenings for phytotoxins and phytopathogens prior to use. Additionally, the combined application of leachate and biochar may not be advisable given the tested soil characteristics. Full article
Show Figures

Figure 1

17 pages, 2364 KB  
Article
Earthworm (Eisenia andrei)-Mediated Degradation of Commercial Compostable Bags and Potential Toxic Effects
by Luís André Mendes, Ricardo Beiras and Jorge Domínguez
Microplastics 2024, 3(2), 322-338; https://doi.org/10.3390/microplastics3020020 - 8 Jun 2024
Cited by 5 | Viewed by 4560
Abstract
The availability of compostable plastic bags has increased greatly in the past few years, as it is perceived that this type of bags will be degraded after disposal. However, there are some knowledge gaps regarding the potential effects on the soil ecosystems. We [...] Read more.
The availability of compostable plastic bags has increased greatly in the past few years, as it is perceived that this type of bags will be degraded after disposal. However, there are some knowledge gaps regarding the potential effects on the soil ecosystems. We assessed the rate of degradation of samples of four different types of commercial compostable bags in vermicomposting systems with the earthworm species Eisenia andrei. We also evaluated the biological response of E. andrei (survival and reproduction) to microplastics (MPs) from fragments of the plastic bags (<2000 µm) and assessed seedling emergence in common garden cress (Lepidium sativum L.) exposed to micronized plastic (<250 µm) and the respective leachate, following OECD and ISO guidelines, respectively. The rate of degradation differed significantly depending on the type of plastic rather than the substrate in the vermicomposting system. This finding suggests that the degradation process is more dependent on the microbial community colonizing the different plastic types than on earthworm activity. Regarding the biological response of the soil system, L. sativum seedling emergence was not significantly affected; however, earthworm reproduction was affected, suggesting that although compostable, some of the formulations may potentially be toxic to soil fauna. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Figure 1

9 pages, 391 KB  
Communication
Effects of Glomus fasciculatum, Azotobacter chroococcum and Vermicompost Leachate on the Production and Quality of Tomato Fruit
by Alejandro Alarcón-Zayas, Luis Guillermo Hernández-Montiel, Diana Medina-Hernández, Edgar Omar Rueda-Puente, Wilson Geobel Ceiro-Catasú and Ramón Jaime Holguín-Peña
Microbiol. Res. 2024, 15(1), 187-195; https://doi.org/10.3390/microbiolres15010013 - 11 Jan 2024
Cited by 6 | Viewed by 2095
Abstract
Arbuscular mycorrhizal fungi, plant-growth-promoting bacteria (PGPB) and vermicompost constitute important environmental and economic resources for improving the production and quality of tomato fruits. The present research aims to determine the single and combined effect of Glomus fasciculatum (Gf) fungus, Azotobacter chroococcum (Azot), PGPB [...] Read more.
Arbuscular mycorrhizal fungi, plant-growth-promoting bacteria (PGPB) and vermicompost constitute important environmental and economic resources for improving the production and quality of tomato fruits. The present research aims to determine the single and combined effect of Glomus fasciculatum (Gf) fungus, Azotobacter chroococcum (Azot), PGPB and vermicompost leachate (VL) organic fertilizer on the yield and quality of tomato fruit. Thus, an open-field experiment was established with seven treatments, a control and three replicates. Total soluble solids, vitamin C, acidity, fruit mass and fruit diameter were evaluated as fruit quality variables; the yield was recorded and estimated in tons per hectare−1. The results showed that Gf, Azot and VL were effective in promoting tomato yield and fruit quality. As a trend, the triple combination (Gf + Azot + VL) evidently obtained the highest values of total soluble solids, vitamin C and fruit acidity. The range of improvement concerning the fruit size was 66.6% (single treatment) compared to 78.5% (triple combination). The maximum yield of 54.5 t/ha−1 was recorded for the Gf + Azot + VL combination. Therefore, G. fasciculatum, A. chroococcum and VL are considered useful as organic alternatives for open-field tomato biofertilization programs in tropical countries. Full article
Show Figures

Figure 1

6 pages, 605 KB  
Proceeding Paper
Effects of Vermicompost Application on Plant Growth Stimulation in Technogenic Soils
by Marketa Dreslova
Eng. Proc. 2023, 57(1), 42; https://doi.org/10.3390/engproc2023057042 - 18 Dec 2023
Viewed by 1943
Abstract
The aim of this study was to support the use of waste materials formed from a mixture of technogenic soils for growing plants through adding vermicompost leachates. The effect on the growth of underground and above-ground biomass was evaluated on plants of the [...] Read more.
The aim of this study was to support the use of waste materials formed from a mixture of technogenic soils for growing plants through adding vermicompost leachates. The effect on the growth of underground and above-ground biomass was evaluated on plants of the bush variety of tomato (Solanum lycopersicum). Three different types of biodegradable waste (apple pomace, matolin, and horse manure) were used in the experiments, from which individual vermicomposts were subsequently produced. The effect of the addition of vermicompost leachates to the soil was manifested in all the statistically evaluated parameters of the bush tomato plants. It was found that the highest values were achieved for the root weight (+2.91 g; p < 0.01) and for the stem (+1.92 g, p < 0.01). The lowest values were observed in the control plants without application of the vermicompost leachates. Full article
Show Figures

Figure 1

14 pages, 2572 KB  
Article
Utilization of Vermicompost Sludge Instead of Peat in Olive Tree Nurseries in the Frame of Circular Economy and Sustainable Development
by Vasiliki Kinigopoulou, Evangelos Hatzigiannakis, Stefanos Stefanou, Athanasios Guitonas and Efstathios K. Oikonomou
AgriEngineering 2023, 5(3), 1630-1643; https://doi.org/10.3390/agriengineering5030101 - 19 Sep 2023
Cited by 2 | Viewed by 2553
Abstract
The survival of newly planted seedlings and their successful development after transplantation, including faster plant growth, improved plant quality, larger production, and the absence of dependence on arable land, is one of the primary goals of horticultural nurseries. Although peat is the most [...] Read more.
The survival of newly planted seedlings and their successful development after transplantation, including faster plant growth, improved plant quality, larger production, and the absence of dependence on arable land, is one of the primary goals of horticultural nurseries. Although peat is the most frequently used amendment in commercial potting substrates, exploiting it degrades essential ecosystems like peatlands and uses slowly renewable resources. This study evaluated the growth and nutrition of olive-rooted cuttings when peat was partially or completely replaced with vermicompost, searching for more sustainable methods and recovering urban wastewater treatment sludge sequentially. The progress of the plants’ growth was compared to that of corresponding plants in which commercial peat had been used as substrate. Leachates from every procedure were also examined, and the results revealed that trace element and heavy metal contents were much lower than those deemed hazardous for aquifers and soil. The outcomes indicated that peat might be effectively replaced with vermicompost sludge, promoting plant growth without further fertilizer. Comparatively to olive cuttings grown in peat-based substrates, those grown in compost-based substrates experienced improved nutrition and development. Further, it was found that irrigation doses were significantly reduced in treatments with a significant amount of vermicompost as the water drained more slowly. A technical-economic analysis was being conducted in the meantime, illustrating the financial benefits for a nursery when peat is replaced with vermicomposted sludge. Full article
Show Figures

Figure 1

16 pages, 1513 KB  
Article
Ecotoxicological Assessment of Polluted Soils One Year after the Application of Different Soil Remediation Techniques
by Mario Paniagua-López, Antonio Aguilar-Garrido, José Contero-Hurtado, Inmaculada García-Romera, Manuel Sierra-Aragón and Ana Romero-Freire
Toxics 2023, 11(4), 298; https://doi.org/10.3390/toxics11040298 - 24 Mar 2023
Cited by 11 | Viewed by 2918
Abstract
The present work evaluated the influence of eight different soil remediation techniques, based on the use of residual materials (gypsum, marble, vermicompost) on the reduction in metal(loid)s toxicity (Cu, Zn, As, Pb and Cd) in a polluted natural area. Selected remediation treatments were [...] Read more.
The present work evaluated the influence of eight different soil remediation techniques, based on the use of residual materials (gypsum, marble, vermicompost) on the reduction in metal(loid)s toxicity (Cu, Zn, As, Pb and Cd) in a polluted natural area. Selected remediation treatments were applied in a field exposed to real conditions and they were evaluated one year after the application. More specifically, five ecotoxicological tests were carried out using different organisms on either the solid or the aqueous (leachate) fraction of the amended soils. Likewise, the main soil properties and the total, water-soluble and bioavailable metal fractions were determined to evaluate their influence on soil toxicity. According to the toxicity bioassays performed, the response of organisms to the treatments differed depending on whether the solid or the aqueous fraction was used. Our results highlighted that the use of a single bioassay may not be sufficient as an indicator of toxicity pathways to select soil remediation methods, so that the joint determination of metal availability and ecotoxicological response will be determinant for the correct establishment of any remediation technique carried out under natural conditions. Our results indicated that, of the different treatments used, the best technique for the remediation of metal(loid)s toxicity was the addition of marble sludge with vermicompost. Full article
(This article belongs to the Special Issue Phytotoxicity of Heavy Metals in Contaminated Soils)
Show Figures

Figure 1

12 pages, 1346 KB  
Article
Vermicompost and Vermicompost Leachate Application in Strawberry Production: Impact on Yield and Fruit Quality
by Ranko Čabilovski, Maja S. Manojlović, Boris M. Popović, Milivoj T. Radojčin, Nenad Magazin, Klara Petković, Dragan Kovačević and Milena D. Lakićević
Horticulturae 2023, 9(3), 337; https://doi.org/10.3390/horticulturae9030337 - 3 Mar 2023
Cited by 15 | Viewed by 4400
Abstract
Recycling organic waste is most important for preserving natural resources. The research objective was to quantify the effect of the application of vermicompost and vermicompost leachate on the yield and quality of strawberries and compare it with a standard fertilization program with mineral [...] Read more.
Recycling organic waste is most important for preserving natural resources. The research objective was to quantify the effect of the application of vermicompost and vermicompost leachate on the yield and quality of strawberries and compare it with a standard fertilization program with mineral fertilizers during a 3-year production cycle. Five fertilization treatments were studied: control—without fertilizer (Ø); vermicompost (V); vermicompost + foliar application of vermicompost leachate (VL); vermicompost leachate through fertigation and foliar application (L); and mineral NPK fertilizers (NPK). The application of V positively affected strawberry yield only in the first year. In all three years of fruiting, the highest yield was measured for NPK treatment. In the first year, fertilization had no effect on fruit quality, while in the second and third years, the application of leachate led to a significantly higher concentration of total soluble solids, total anthocyanins, antioxidant activity of the fruit, and a lower concentration of total acid. Strawberries are grown for a two- or three-year production cycle, so the application of V and VL cannot maintain the yield level as was with the application of mineral NPK fertilizers. The quality of strawberry fruit, however, can be improved significantly. Full article
(This article belongs to the Special Issue Berry Crops Production: Cultivation, Breeding and Health Benefits)
Show Figures

Figure 1

23 pages, 6585 KB  
Article
Liquid Leachate Produced from Vermicompost Effects on Some Agronomic Attributes and Secondary Metabolites of Sweet Basil (Ocimum basilicum L.) Exposed to Severe Water Stress Conditions
by Hatice Kosem, Mehmet Zeki Kocak, Mustafa Guven Kaysim, Ferdi Celikcan and Muhittin Kulak
Horticulturae 2022, 8(12), 1190; https://doi.org/10.3390/horticulturae8121190 - 13 Dec 2022
Cited by 11 | Viewed by 2989
Abstract
Water stress is one of the most critical threats to the growth and productivity of plants and is one of the most studied topics in agricultural sciences. In order to enhance the tolerance of plants to water stress conditions, synthetic fertilizers have been [...] Read more.
Water stress is one of the most critical threats to the growth and productivity of plants and is one of the most studied topics in agricultural sciences. In order to enhance the tolerance of plants to water stress conditions, synthetic fertilizers have been widely used in the field. However, due to their toxic effects, recent reports have focused on organic options. In this study, the effects of liquid vermicompost applications (25, 50, 75, and 100%) on the agronomic attributes, phenolic compounds, and essential oil compounds of basil plants exposed to drought stress conditions were investigated. Accordingly, water stress critically reduced the factors of plant height, plant fresh weight, root fresh weight, leaf length, and leaf diameter. On the other hand, vermicompost applications significantly affected all of the parameters considered, except the leaf length of well-watered basil plants. However, a two-way ANOVA analysis revealed that the interactions of water stress and vermicompost were significant on root length and root fresh weight. Regarding the essential oil compounds, the contents of humulene, anethol, eucalyptol, estragole, bisabolene, germacrene, and caryophyllene were quantified. Estragole was determined as a major component by 85–90%. The results revealed that the highest estragole content was determined in the 25% vermicompost + water stress, water stress, and control groups. Of the major phenolic compounds, caffeic acid decreased as a result of water stress conditions but increased with vermicompost treatments. The rosmarinic acid content increased during water stress conditions, attaining the highest content at 25% via the vermicompost and water stress interaction. In general, the 25% and 50% vermicompost applications increased the content of phenolic compounds in plants under either well-watered or stress conditions. Full article
(This article belongs to the Special Issue Organic Fertilizers in Horticulture)
Show Figures

Figure 1

21 pages, 1980 KB  
Article
Remediating Garden Soils: EDTA-Soil Washing and Safe Vegetable Production in Raised Bed Gardens
by Christoph Noller, Wolfgang Friesl-Hanl, Rebecca Hood-Nowotny and Andrea Watzinger
Toxics 2022, 10(11), 652; https://doi.org/10.3390/toxics10110652 - 29 Oct 2022
Cited by 1 | Viewed by 4059
Abstract
Soil remediation is an important practice in the restoration of heavy metal-contaminated soils and reduce the heavy metal exposure of the local population. Here, we investigated the effect of an ex-situ soil washing technique, based on ethylenediaminetetraacetic acid (EDTA) as a chelating agent, [...] Read more.
Soil remediation is an important practice in the restoration of heavy metal-contaminated soils and reduce the heavy metal exposure of the local population. Here, we investigated the effect of an ex-situ soil washing technique, based on ethylenediaminetetraacetic acid (EDTA) as a chelating agent, on a contaminated Cambisol. Lead, Cd and Zn were investigated in different soil fractions, drainage water and four vegetables from August 2019 to March 2021. Three treatments consisting of (C) contaminated soil, (W) washed soil and (WA) washed soil amended with vermicompost and biochar were investigated in an outdoor raised bed set up. Our results showed that the total and bioavailable metal fractions were significantly reduced but failed to meet Austrian national guideline values. Initial concentrations in the soil leachate increased significantly, especially for Cd. Vegetables grown on the remediated soil took up significantly lower amounts of all heavy metals and were further reduced by the organic amendment, attaining acceptable values within EU guideline values for food safety. Only spinach exceeded the thresholds in all soil treatments. The increase in soil pH and nutrient availability led to significantly higher vegetable yields. Full article
(This article belongs to the Special Issue Environmental and Health Effects of Heavy Metal)
Show Figures

Graphical abstract

15 pages, 1455 KB  
Article
Effects of Vermicompost Leachate versus Inorganic Fertilizer on Morphology and Microbial Traits in the Early Development Growth Stage in Mint (Mentha spicata L.) And Rosemary (Rosmarinus officinalis L.) Plants under Closed Hydroponic System
by Abraham Loera-Muro, Enrique Troyo-Diéguez, Bernardo Murillo-Amador, Aarón Barraza, Goretty Caamal-Chan, Gregorio Lucero-Vega and Alejandra Nieto-Garibay
Horticulturae 2021, 7(5), 100; https://doi.org/10.3390/horticulturae7050100 - 6 May 2021
Cited by 17 | Viewed by 5645
Abstract
The objective of this study was to compare the morphology of M. spicata and R. officinalis plants, and the relative abundance quantification, colony-forming units, ribotypes, and biofilm former bacteria under an inorganic fertilizer and the use of vermicompost leachate in the rhizosphere under [...] Read more.
The objective of this study was to compare the morphology of M. spicata and R. officinalis plants, and the relative abundance quantification, colony-forming units, ribotypes, and biofilm former bacteria under an inorganic fertilizer and the use of vermicompost leachate in the rhizosphere under a closed hydroponic system. In mint (Mentha spicata) plants treated with the vermicompost leachate, growth increase was determined mainly in root length from an average of 38 cm in plants under inorganic fertilizer to 74 cm under vermicompost leachate. In rosemary (Rosmarinus officinalis), no changes were determined between the two treatments. There were differences in the compositions of microbial communities: For R. officinalis, eight ribotypes were identified, seven for inorganic fertilizer and four for vermicompost leachate. For M. spicata, eight ribotypes were identified, three of them exclusive to vermicompost leachate. However, no changes were observed in microbial communities between the two treatments. Otherwise, some changes were observed in the compositions of these communities over time. In both cases, the main found phylum was Firmicutes, with 60% for R. officinalis and 80% for M. spicata represented by the Bacillus genus. In conclusion, the use of vermicompost leachate under the hydroponic system is a viable alternative to achieve an increase in the production of M. spicata, and for both plants (mint and rosemary), the quality of the product and the microbial communities that inhabited them remained unaltered. Full article
Show Figures

Figure 1

25 pages, 1131 KB  
Review
Agronomic Efficiency of Animal-Derived Organic Fertilizers and Their Effects on Biology and Fertility of Soil: A Review
by Shantanu Bhunia, Ankita Bhowmik, Rambilash Mallick and Joydeep Mukherjee
Agronomy 2021, 11(5), 823; https://doi.org/10.3390/agronomy11050823 - 22 Apr 2021
Cited by 159 | Viewed by 23101
Abstract
Healthy soils are essential for progressive agronomic activities. Organic fertilization positively affects agro-ecosystems by stimulating plant growth, enhancing crop productivity and fruit quality and improving soil fertility. Soil health and food security are the key elements of Organic Agriculture 3.0. Landfilling and/or open-dumping [...] Read more.
Healthy soils are essential for progressive agronomic activities. Organic fertilization positively affects agro-ecosystems by stimulating plant growth, enhancing crop productivity and fruit quality and improving soil fertility. Soil health and food security are the key elements of Organic Agriculture 3.0. Landfilling and/or open-dumping of animal wastes produced from slaughtering cause environmental pollution by releasing toxic substances, leachate and greenhouse gases. Direct application of animal carcasses to agricultural fields can adversely affect soil microbiota. Effective waste management technologies such as thermal drying, composting, vermicomposting and anaerobic digestion transform animal wastes, making them suitable for soil application by supplying soil high in organic carbon and total nitrogen. Recent agronomic practices applied recycled animal wastes as organic fertilizer in crop production. However, plants may not survive at a high fertilization rate due to the presence of labile carbon fraction in animal wastes. Therefore, dose calculation and determination of fertilizer application frequency are crucial for agronomists. Long-term animal waste-derived organic supplementation promotes copiotrophic microbial abundance due to enhanced substrate affinity, provides micronutrients to soils and protects crops from soil-borne pathogens owing to formation of plant-beneficial microbial consortia. Animal waste-derived organically fertilized soils possess higher urease and acid phosphatase activities. Furthermore, waste to fertilizer conversion is a low-energy requiring process that promotes circular bio-economy. Thus, considering the promotion of soil fertility, microbial abundance, disease protection and economic considerations application of animal-waste-derived organic fertilizer should be the mainstay for sustainable agriculture. Full article
(This article belongs to the Special Issue Soil Healthy in Agro-ecosystems)
Show Figures

Figure 1

15 pages, 3248 KB  
Article
Germination of Salicornia bigelovii (Torr.) under Shrimp Culture Effluents and the Application of Vermicompost Leachate for Mitigating Salt Stress
by Emilio García-Galindo, Alejandra Nieto-Garibay, Enrique Troyo-Diéguez, Gregorio Lucero-Vega, Bernardo Murillo-Amador, Francisco Higinio Ruiz-Espinoza and Héctor Cirilo Fraga-Palomino
Agronomy 2021, 11(3), 424; https://doi.org/10.3390/agronomy11030424 - 26 Feb 2021
Cited by 11 | Viewed by 4080
Abstract
Attenuators of salt-stress favor the use of effluents, being a low-cost organic product. The present study aimed to evaluate the effect of vermicompost leachate (VL) added to shrimp-culture effluent on seeds and seedlings of Salicornia bigelovii (Torr.) under salt-stress, evaluating germination, water relations [...] Read more.
Attenuators of salt-stress favor the use of effluents, being a low-cost organic product. The present study aimed to evaluate the effect of vermicompost leachate (VL) added to shrimp-culture effluent on seeds and seedlings of Salicornia bigelovii (Torr.) under salt-stress, evaluating germination, water relations variables, and biomass. Seeds were irrigated with distilled water (DW) (CE: 0.0027 dS m−1), freshwater (FW) (CE: 1.36 dS m−1), seawater (SW) (CE: 55.83 dS m−1), shrimp residual water (SRW) (CE: 59.85 dS m−1), and with the same water sources but adding VL in 1:20 v/v. The means for the index of germination rate (IGR), germination energy (GE), and germination time (MGT) were higher with DW, DWVL, FW, and FWVL, decreasing with the others (p ≤ 0.05). In seedlings, the lowest water potential (Ψw) and osmotic potential (Ψs) were observed with SW, SWVL, SRW, and SRWVL (p ≤ 0.05), evidencing higher stress but the highest relative water content (RWC). The fresh and dry biomass increased and showed significant differences with SRW, and adding VL (DWVL, FWVL, SWVL, and SRWVL) acted as an effective attenuator of salt-stress. The response of water relations variables suggested an osmotic adjustment for mitigating the salt-stress in seedlings, lowering the Ψw and Ψs but increasing the RWC. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

30 pages, 412 KB  
Review
Food Waste Composting and Microbial Community Structure Profiling
by Kishneth Palaniveloo, Muhammad Azri Amran, Nur Azeyanti Norhashim, Nuradilla Mohamad-Fauzi, Fang Peng-Hui, Low Hui-Wen, Yap Kai-Lin, Looi Jiale, Melissa Goh Chian-Yee, Lai Jing-Yi, Baskaran Gunasekaran and Shariza Abdul Razak
Processes 2020, 8(6), 723; https://doi.org/10.3390/pr8060723 - 22 Jun 2020
Cited by 232 | Viewed by 35959
Abstract
Over the last decade, food waste has been one of the major issues globally as it brings a negative impact on the environment and health. Rotting discharges methane, causing greenhouse effect and adverse health effects due to pathogenic microorganisms or toxic leachates that [...] Read more.
Over the last decade, food waste has been one of the major issues globally as it brings a negative impact on the environment and health. Rotting discharges methane, causing greenhouse effect and adverse health effects due to pathogenic microorganisms or toxic leachates that reach agricultural land and water system. As a solution, composting is implemented to manage and reduce food waste in line with global sustainable development goals (SDGs). This review compiles input on the types of organic composting, its characteristics, physico-chemical properties involved, role of microbes and tools available in determining the microbial community structure. Composting types: vermi-composting, windrow composting, aerated static pile composting and in-vessel composting are discussed. The diversity of microorganisms in each of the three stages in composting is highlighted and the techniques used to determine the microbial community structure during composting such as biochemical identification, polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE), terminal restriction fragment length polymorphism (T-RFLP) and single strand-conformation polymorphism (SSCP), microarray analysis and next-generation sequencing (NGS) are discussed. Overall, a good compost, not only reduces waste issues, but also contributes substantially to the economic and social sectors of a nation. Full article
(This article belongs to the Special Issue Sustainable Development of Waste towards Green Growth)
Show Figures

Figure 1

12 pages, 1452 KB  
Article
Biochar and Vermicompost Amendments Affect Substrate Properties and Plant Growth of Basil and Tomato
by Lan Huang, Mengmeng Gu, Ping Yu, Chunling Zhou and Xiuli Liu
Agronomy 2020, 10(2), 224; https://doi.org/10.3390/agronomy10020224 - 4 Feb 2020
Cited by 29 | Viewed by 6101
Abstract
The suitability of biochar (BC) as a container substrate depends on the BC mix ratio and plant species. Mixes with mixed hardwood BC (20%, 40%, 60%, and 80%, by volume) and vermicompost (VC; 5%, 10%, 15%, and 20%, by volume) were evaluated as [...] Read more.
The suitability of biochar (BC) as a container substrate depends on the BC mix ratio and plant species. Mixes with mixed hardwood BC (20%, 40%, 60%, and 80%, by volume) and vermicompost (VC; 5%, 10%, 15%, and 20%, by volume) were evaluated as container substrates on basil (Ocimum basilicum L.) and tomato (Solanum lycopersicum L. ‘Roma’) plants compared to a commercial peat-based substrate (CS). The CS made up the rest of the volume when BC and VC did not add up to 100%. The total porosity of all mixes with BC, VC, and CS (BC:VC:CS mixes) was similar to the control. Mixes with 80% BC had lower container capacity than the control. At 9 weeks after transplanting, the leachate pH of all the BC:VC:CS mixes was higher than that of the control, except for mixes of 20%BC and 5%VC with the rest (75%) being CS (20BC:5VC:75CS) and 20BC:10VC:70CS with tomato plants. The soil plant analysis development (SPAD) readings in BC:VC:CS mixes were similar to or higher than the control except for tomato plants in 80BC:5VC:15CS, 80BC:15VC:5CS, and 80BC:20VC:0CS mixes. Plants in BC:VC:CS mixes had similar growth indexes and total dry weight with respect to those in 100% CS, with the root DW of basil plants in 60BC:15VC:25CS being the highest among all treatments. Therefore, the BC (20%, 40%, 60%, or 80%, by volume) and VC (5%, 10%, 15%, or 20%, by volume) mixes had the potential to replace CS for container-grown plants, with the estimate wholesale price for 80BC:5VC:15CS was only 61.6% that of the control. Full article
(This article belongs to the Special Issue Soilless Culture, Growing Media and Horticultural Plants)
Show Figures

Figure 1

Back to TopTop