Effects of Glomus fasciculatum, Azotobacter chroococcum and Vermicompost Leachate on the Production and Quality of Tomato Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Soil Conditions
2.2. Biological Material
2.3. Seed and Treatment Description
2.4. Yield and Quality of Tomato Fruit
2.5. Experimental Design and Statistical Analyses
3. Results
3.1. Fruit Size and Quality Standards
3.2. Impact on Agricultural Yield
3.3. Vitamin C
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casanovas Cosío, E.; Suárez del Villar Labastida, A.; Álvarez Sánchez, A.; Avilleira Cruz, I. Valoración de la seguridad alimentaria cubana a partir de la superficie agrícola explotada y los rendimientos agrícolas. Rev. Univ. Soc. 2022, 14, 304–314. [Google Scholar]
- SIAP. Servicio de Información Agroalimentaria y Pesquera. Panorama Agroalimentario. Secretaria de Agricultura y Desarrollo Rural, México. 2020, p. 200. Available online: https://www.inforural.com.mx/wp-content/uploads/2020/11/Atlas-Agroalimentario-2020.pdf (accessed on 11 December 2023).
- Krivdáné Dorogi, D.A. Evaluation of the competitiveness of fresh tomato. Int. J. Hort. Sci. 2022, 28, 73–77. [Google Scholar] [CrossRef]
- González, I.A.; Cidoncha, C.M.; Ruiz, S.C. Tomate de Industria: Campaña 2021. Nav. Agrar. 2022, 250, 25–32. [Google Scholar]
- Rivero, A.G.; Keutgen, A.J.; Pawelzik, E. Antioxidant Properties of Tomato Fruit (Lycopersicon esculentum Mill.) as Affected by Cultivar and Processing Method. Horticulturae 2022, 8, 547. [Google Scholar] [CrossRef]
- Carrillo-Sosa, Y.; Terry-Alfonso, E.; Ruiz-Padrón, J.; Delgado-Arrieta, G. Efecto de la coinoculación de microorganismos eficientes-HMA en el rendimiento del cultivo del tomate (Solanum lycopersicum L.). Cult. Trop. 2023, 43, 3. [Google Scholar]
- Fan, H.; Zhang, Y.; Li, J.; Jiang, J.; Waheed, A.; Wang, S.; Rasheed, S.M.; Zhang, L.; Zhang, R. Effects of Organic Fertilizer Supply on Soil Properties, Tomato Yield, and Fruit Quality: A Global Meta-Analysis. Sustainability 2023, 15, 2556. [Google Scholar] [CrossRef]
- Colak, N.G.; Eken, N.T.; Ülger, M.; Frary, A.; Doğanlar, S. Mapping of quantitative trait loci for antioxidant molecules in tomato fruit: Carotenoids, vitamins C and E, glutathione and phenolic acids. Plant Sci. 2020, 292, 110393. [Google Scholar] [CrossRef]
- Sabin, F.; Tehmina, A.; Riaz, H.; Basharat, A. PGPR Mediated Bio-Fortification of Tomato Fruit Metabolites with Nutritional and Pharmacological Importance. Pak. J. Biotechnol. 2017, 14, 17–21. [Google Scholar]
- Liu, L.; Wang, S.; Guo, X.; Wang, H. Comparison of the effects of different maturity composts on soil nutrient, plant growth and heavy metal mobility in the contaminated soil. J. Environ. Manag. 2019, 250, 109525. [Google Scholar] [CrossRef]
- Chehade, L.; Al Chami, Z.; De Pascali, S.A.; Cavoski, I.; Fanizzi, F.P. Biostimulants from food processing by-products: Agronomic, quality and metabolic impacts on organic tomato (Solanum lycopersicum L.). J. Sci. Food. Agric. 2018, 98, 1426–1436. [Google Scholar] [CrossRef]
- Adedayo, A.A.; Babalola, O.O.; Prigent-Combaret, C.; Cruz, C.; Stefan, M.; Kutu, F.; Glick, B.R. The application of plant growth-promoting rhizobacteria in Solanum lycopersicum production in the agricultural system: A review. PeerJ 2022, 10, e13405. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Gu, M.; Yu, P.; Zhou, C.; Liu, X. Biochar and vermicompost amendments affect substrate properties and plant growth of basil and tomato. Agronomy 2020, 10, 224. [Google Scholar] [CrossRef]
- Kiyasudeen, K.; Ibrahim, M.H.; Quaik, S.; Ismail, S.A. Prospects of organic waste management and the significance of earthworms. In Applied Environmental Science and Engineering for A Sustainable Future; Springer International Publishing: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Fusco, G.M.; Nicastro, R.; Rouphael, Y.; Carillo, P. The Effects of the Microbial Biostimulants Approved by EU Regulation 2019/1009 on Yield and Quality of Vegetable Crops. Foods 2022, 11, 2656. [Google Scholar] [CrossRef] [PubMed]
- Hindersah, R.; Kamaluddin, N.N.; Samanta, S.; Banerjee, S.; Sarkar, S. Role and perspective of Azotobacter in crops production. Sains Tanah J. Soil Sci. Agroclimatol. 2020, 17, 170–179. [Google Scholar] [CrossRef]
- Devi, N.O.; Tombisana Devi, R.K.; Debbarma, M. Effect of endophytic Bacillus and arbuscular mycorrhiza fungi (AMF) against Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. Egypt. J. Biol. Pest. Control 2022, 32, 1. [Google Scholar] [CrossRef]
- Banerjee, A.; Bareh, D.A.; Joshi, S.R. Native microorganisms as potent bioinoculants for plant growth promotion in shifting agriculture (Jhum) systems. J. Soil Sci. Plant Nutr. 2017, 17, 127–140. [Google Scholar] [CrossRef]
- Le, T.A.; Pék, Z.; Takács, S.; Neményi, A.; Daood, H.G.; Helyes, L. The effect of plant growth promoting rhizobacteria on the water-yield relationship and carotenoid production of processing tomatoes. HortScience 2018, 53, 816–822. [Google Scholar] [CrossRef]
- Na, L.; Abail, Z.; Whalen, J.K.; Liang, B.; Hu, C.; Hu, R.; Wu, Y. Earthworms increase nitrogen uptake by lettuce and change short-term soil nitrogen dynamics. Appl. Soil Ecol. 2022, 176, 104488. [Google Scholar] [CrossRef]
- Aishwarya, M.; Dhanya, M.K.; Johnson, J.M.; Murugan, M.; Beena, R.; Paul, A. Individual and combined effects of beneficial fungal root endophytes Piriformospora indica and Glomus fasciculatum on growth, nutrient uptake and IAA production in small cardamom. J. Plant. Crops 2022, 50, 35–41. [Google Scholar] [CrossRef]
- Toscano, S.; Romano, D.; Massa, D.; Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulant applications in low input horticultural cultivation systems. Italus Hortus 2018, 25, 27–36. [Google Scholar] [CrossRef]
- Hernández Jiménez, A.; Pérez Jiménez, J.M.; Bosch Infante, D.; Castro Speck, N. Clasificación de los Suelos de Cuba; Ediciones INCA: La Habana, Cuba, 2015. [Google Scholar]
- Kipper, T.G.J.; da Silva, L.P.; Bender, S.; Vinderola, C.G.; de Fariña, L.O. Cell counting and bacterial inoculum standardization by spectrophotometric method for Bifidobacterium animalis ssp. Lactis INL1. Braz. J. Dev. 2020, 6, 77634–77643. [Google Scholar] [CrossRef]
- López-Marín, G.L. Manual Técnico del Cultivo del Tomate. Innovación Para la Seguridad Alimentaria y Nutricional de Centroamérica y Panamá; Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria; IICA: Kingston, Jamaica, 2017; 121p, ISBN 978-9968-586-27-6. [Google Scholar]
- Veillet, S.; Busch, J.; Savage, G. Acceptability and antioxidant properties of a semi-dried and smoked tomato product. J. Food Agricult. Env. 2009, 7, 70–75. [Google Scholar]
- StatSoft, Inc. Statistica (Data Analysis Software System), version 6; Scientific Research: Tulsa, AZ, USA, 2001; pp. 91–94.
- Romero-Rodríguez, A.; Luna-Zendejas, H.S.; Solis-Oba, A.; Castro-Rivera, R.; Armenta-Bojórquez, A.D.; Solís-Oba, M.M. Evaluación de la calidad de tomate fertilizado con extracto de sargazo del Caribe mexicano y micorrizas. Mex. J. Biotechnol. 2022, 7, 15–31. [Google Scholar] [CrossRef]
- Chai, L.; Wang, H.; Yu, H.; Pang, E.; Lu, T.; Li, Y.; Li, Q. Girdling promotes tomato fruit enlargement by enhancing fruit sink strength and triggering cytokinin accumulation. Front. Plant Sci. 2023, 14, 1174403. [Google Scholar] [CrossRef] [PubMed]
- Veselova, S.V.; Sorokan, A.V.; Burkhanova, G.F.; Rumyantsev, S.D.; Cherepanova, E.A.; Alekseev, V.Y.; Maksimov, I.V. By modulating the hormonal balance and ribonuclease activity of tomato plants Bacillus subtilis induces defense response against potato virus X and potato virus Y. Biomolecules 2022, 12, 288. [Google Scholar] [CrossRef]
- Alarcón-Zayas, A.; Barreiro-Elorza, P.; Boicet-Fabré, T.; Ramos-Escalona, M.; Morales-León, J.Á. Influencia de ácidos húmicos en indicadores bioquímicos y físico-químicos de la calidad del tomate. Rev. Cubana Quím. 2018, 30, 243–255. [Google Scholar]
- Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Nasrulhaq Boyce, A. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules 2016, 21, 573. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Ahmad, I.; Basit, A.; Abd El-Lateef, H.M.; Yasir, M.; Tanveer Shah, S.; Zohaib Ikram, M. Effect of Azospirillum and Azotobacter species on the performance of cherry tomato under different salinity levels. Gesunde Pflanz 2022, 74, 487–499. [Google Scholar] [CrossRef]
- Zazueta-Avitia, A.; Burboa-Meza, C.Y.; Ramírez-Alvarado, D.; Flores-Martínez, H.; Segura-Castruita, M.Á.; Gómez-Leyva, J.F. Caracterización de frutos tomate (Solanum lycopersicum) en plantas colonizadas por el hongo micorrízico arbuscular Rhizopagus irregularis en condiciones de estrés salino. Acta Univ. 2021, 31, e3120. [Google Scholar] [CrossRef]
- Emmanuel, O.C.; Babalola, O.O. Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiol. Res. 2020, 239, 126569. [Google Scholar] [CrossRef]
- Scaglia, B.; Nunes, R.R.; Rezende, M.O.O.; Tambone, F.; Adani, F. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost. Sci. Total Environ. 2016, 562, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Math, S.; Arya, S.; Sonawane, H.; Patil, V.; Chaskar, M. Arbuscular mycorrhizal (Glomus fasciculatum) fungi as a plant immunity booster against fungal pathogen. Curr. Agricult. Res. J. 2019, 7, 99–107. [Google Scholar] [CrossRef]
- Katsenios, N.; Andreou, V.; Sparangis, P.; Djordjevic, N.; Giannoglou, M.; Chanioti, S.; Efthimiadou, A. Evaluation of plant growth promoting bacteria strains on growth, yield and quality of industrial tomato. Microorganisms 2021, 9, 2099. [Google Scholar] [CrossRef] [PubMed]
- Becagli, M.; Guglielminetti, L.; Cardelli, R. Effects of combined biochar and vermicompost solution on leachate characterization and nitrogen balance from a greenhouse tomato (Solanum lycopersicum) cultivation soil. Comm. Soil Sci. Plant Anal. 2021, 52, 1879–1893. [Google Scholar] [CrossRef]
- Yagmur, B.; Gunes, A. Evaluation of the Effects of Plant Growth Promoting Rhizobacteria (PGPR) on Yield and Quality Parameters of Tomato Plants in Organic Agriculture by Principal Component Analysis (PCA). Gesunde Pflanzen 2021, 73, 219–228. [Google Scholar] [CrossRef]
- Mellidou, I.; Koukounaras, A.; Kostas, S.; Patelou, E.; Kanellis, A.K. Regulation of vitamin C accumulation for improved tomato fruit quality and alleviation of abiotic stress. Genes 2021, 12, 694. [Google Scholar] [CrossRef]
- Andrade-Sifuentes, A.; Fortis-Hernández, M.; Preciado-Rangel, P.; Orozco-Vidal, J.A.; Yescas-Coronado, P.; Rueda-Puente, E.O. Azospirillum brasilense and solarized manure on the production and phytochemical quality of tomato fruits (Solanum lycopersicum L.). Agronomy 2020, 10, 1956. [Google Scholar] [CrossRef]
- Zhou, Z.; Tran, P.Q.; Breister, A.M.; Liu, Y.; Kieft, K.; Cowley, E.S.; Anantharaman, K. Metabolic: High-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 2022, 10, 33. [Google Scholar] [CrossRef]
- Demir, Z. Effects of microbial bio-fertilizers on soil physicochemical properties under different soil water regimes in greenhouse grown eggplant (Solanum melongena L.). Commun. Soil Sci. Plant Anal. 2020, 51, 1888–1903. [Google Scholar] [CrossRef]
- Onwosi, C.O.; Ndukwe, J.K.; Aliyu, G.O.; Chukwu, K.O.; Ezugworie, F.N.; Igbokwe, V.C. Composting: An eco-friendly technology for sustainable agriculture. In Ecological and Practical Applications for Sustainable Agriculture; Springer: Singapore, 2020; pp. 179–206. [Google Scholar] [CrossRef]
- Chatterjee, R.; Debnath, A.; Mishra, S. Vermicompost and soil health. Soil Health 2020, 59, 69–88. [Google Scholar] [CrossRef]
Treatments | EDF (cm) | ADF (cm) |
---|---|---|
Control | 4.1 f | 3.1 d |
Glomus fasciculatum (Gf) | 4.5 ef | 4.2 c |
Azotobacter chroococcum (Azot) | 4.8 e | 4.1 c |
Vermicompost leachate (VL) | 5.2 d | 4.1 c |
Gf + Azot | 5.8 c | 4.5 b |
Gf + VL | 6.3 b | 4.5 b |
Azot + VL | 6.9 a | 4.5 b |
Gf + Azot + VL | 7.0 a | 4.9 a |
SE | 1.33 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alarcón-Zayas, A.; Hernández-Montiel, L.G.; Medina-Hernández, D.; Rueda-Puente, E.O.; Ceiro-Catasú, W.G.; Holguín-Peña, R.J. Effects of Glomus fasciculatum, Azotobacter chroococcum and Vermicompost Leachate on the Production and Quality of Tomato Fruit. Microbiol. Res. 2024, 15, 187-195. https://doi.org/10.3390/microbiolres15010013
Alarcón-Zayas A, Hernández-Montiel LG, Medina-Hernández D, Rueda-Puente EO, Ceiro-Catasú WG, Holguín-Peña RJ. Effects of Glomus fasciculatum, Azotobacter chroococcum and Vermicompost Leachate on the Production and Quality of Tomato Fruit. Microbiology Research. 2024; 15(1):187-195. https://doi.org/10.3390/microbiolres15010013
Chicago/Turabian StyleAlarcón-Zayas, Alejandro, Luis Guillermo Hernández-Montiel, Diana Medina-Hernández, Edgar Omar Rueda-Puente, Wilson Geobel Ceiro-Catasú, and Ramón Jaime Holguín-Peña. 2024. "Effects of Glomus fasciculatum, Azotobacter chroococcum and Vermicompost Leachate on the Production and Quality of Tomato Fruit" Microbiology Research 15, no. 1: 187-195. https://doi.org/10.3390/microbiolres15010013
APA StyleAlarcón-Zayas, A., Hernández-Montiel, L. G., Medina-Hernández, D., Rueda-Puente, E. O., Ceiro-Catasú, W. G., & Holguín-Peña, R. J. (2024). Effects of Glomus fasciculatum, Azotobacter chroococcum and Vermicompost Leachate on the Production and Quality of Tomato Fruit. Microbiology Research, 15(1), 187-195. https://doi.org/10.3390/microbiolres15010013