Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,252)

Search Parameters:
Keywords = vegetable wastes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1159 KiB  
Article
Determining the Effect of Different Concentrations of Spent Coffee Grounds on the Metabolomic Profile of Swiss Chard
by Thabiso Motseo and Lufuno Ethel Nemadodzi
Int. J. Plant Biol. 2025, 16(3), 88; https://doi.org/10.3390/ijpb16030088 (registering DOI) - 7 Aug 2025
Abstract
In the coming decades, the agricultural system will predictably rely on organic material to produce crops and maintain food security. Currently, the use of inorganic fertilizers to grow crops and vegetables, such as Swiss chard, spinach, and lettuce, is on the rise and [...] Read more.
In the coming decades, the agricultural system will predictably rely on organic material to produce crops and maintain food security. Currently, the use of inorganic fertilizers to grow crops and vegetables, such as Swiss chard, spinach, and lettuce, is on the rise and has been proven to be detrimental to the soil in the long run. Hence, there is a growing need to use organic waste material, such as spent coffee grounds (SCGs), to grow crops. Spent coffee grounds are made of depleted coffee beans that contain important soluble compounds. This study aimed to determine the influence of different levels (0.32 g, 0.63 g, 0.92 g, and 1.20 g) of spent coffee grounds on the metabolomic profile of Swiss chard. The 1H-nuclear magnetic resonance (NMR) results showed that Swiss chard grown with different levels of SCGs contains a total of 10 metabolites, which included growth-promoting metabolites (trehalose; betaine), defense mechanism metabolites (alanine; cartinine), energy-reserve metabolites (sucrose; 1,6 Anhydro-β-D-glucose), root metabolites (thymine), stress-related metabolites (2-deoxyadenosine), caffeine metabo-lites (1,3 Dimethylurate), and body-odor metabolites (trimethylamine). Interestingly, caprate, with the abovementioned metabolites, was detected in Swiss chard grown without the application of SCGs. The findings of the current study suggest that SCGs are an ideal organic material for growing Swiss chard for its healthy metabolites. Full article
19 pages, 1835 KiB  
Article
Methods for Enhancing Energy and Resource Efficiency in Sunflower Oil Production: A Case Study from Bulgaria
by Penka Zlateva, Angel Terziev, Nikolay Kolev, Martin Ivanov, Mariana Murzova and Momchil Vasilev
Eng 2025, 6(8), 195; https://doi.org/10.3390/eng6080195 - 6 Aug 2025
Abstract
The rising demand for energy resources and industrial goods presents significant challenges to sustainable development. Sunflower oil, commonly utilized in the food sector, biofuels, and various industrial applications, is notably affected by this demand. In Bulgaria, it serves as a primary source of [...] Read more.
The rising demand for energy resources and industrial goods presents significant challenges to sustainable development. Sunflower oil, commonly utilized in the food sector, biofuels, and various industrial applications, is notably affected by this demand. In Bulgaria, it serves as a primary source of vegetable fats, ranking second to butter in daily consumption. The aim of this study is to evaluate and propose methods to improve energy and resource efficiency in sunflower oil production in Bulgaria. The analysis is based on data from an energy audit conducted in 2023 at an industrial sunflower oil production facility. Reconstruction and modernization initiatives, which included the installation of high-performance, energy-efficient equipment, led to a 34% increase in energy efficiency. The findings highlight the importance of adjusting the technological parameters such as temperature, pressure, grinding level, and pressing time to reduce energy use and operational costs. Additionally, resource efficiency is improved through more effective raw material utilization and waste reduction. These strategies not only enhance the economic and environmental performance of sunflower oil production but also support sustainable development and competitiveness within the industry. The improvement reduces hexane use by approximately 2%, resulting in energy savings of 12–15 kWh/t of processed seeds and a reduction in CO2 emissions by 3–4 kg/t, thereby improving the environmental profile of sunflower oil production. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

32 pages, 1104 KiB  
Review
Vegetable By-Products from Industrial Processing: From Waste to Functional Ingredient Through Fermentation
by Andrea Marcelli, Andrea Osimani and Lucia Aquilanti
Foods 2025, 14(15), 2704; https://doi.org/10.3390/foods14152704 - 31 Jul 2025
Viewed by 284
Abstract
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this [...] Read more.
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this category can reach up to 60%. Vegetable waste includes edible parts discarded during processing, packaging, distribution, and consumption, often comprising by-products rich in bioactive compounds such as polyphenols, carotenoids, dietary fibers, vitamins, and enzymes. The underutilization of these resources constitutes both an economic drawback and an environmental and ethical concern. Current recovery practices, including their use in animal feed or bioenergy production, contribute to a circular economy but are often limited by high operational costs. In this context, fermentation has emerged as a promising, sustainable approach for converting vegetable by-products into value-added food ingredients. This process improves digestibility, reduces undesirable compounds, and introduces probiotics beneficial to human health. The present review examines how fermentation can improve the nutritional, sensory, and functional properties of plant-based foods. By presenting several case studies, it illustrates how fermentation can effectively valorize vegetable processing by-products, supporting the development of novel, health-promoting food products with improved technological qualities. Full article
(This article belongs to the Special Issue Feature Reviews on Food Microbiology)
Show Figures

Figure 1

40 pages, 1885 KiB  
Review
Potential Application of Plant By-Products in Biomedicine: From Current Knowledge to Future Opportunities
by Silvia Estarriaga-Navarro, Teresa Valls, Daniel Plano, Carmen Sanmartín and Nieves Goicoechea
Antioxidants 2025, 14(8), 942; https://doi.org/10.3390/antiox14080942 - 31 Jul 2025
Viewed by 315
Abstract
Plant by-products have gained significant attention due to their rich content in bioactive compounds, which exhibit promising antioxidant, antimicrobial, and antitumor properties. In European countries, vegetable waste generation ranged from 35 to 78 kg per capita in 2022, highlighting both the scale of [...] Read more.
Plant by-products have gained significant attention due to their rich content in bioactive compounds, which exhibit promising antioxidant, antimicrobial, and antitumor properties. In European countries, vegetable waste generation ranged from 35 to 78 kg per capita in 2022, highlighting both the scale of the challenge and the potential for valorization. This review provides an overview of key studies investigating the potential of plant residues in biomedicine, highlighting their possible contents of antioxidant compounds, their antimicrobial and antitumor properties, as well as their applications in dermocosmetics and nutraceuticals. However, despite their potential, several challenges must be addressed, such as the standardization of extraction protocols, as bioactive compound profiles can vary with plant source, processing conditions, and storage methods. Effective segregation and storage protocols for household organic waste also require optimization to ensure the quality and usability of plant by-products in biomedicine. Emerging 4.0 technologies could help to identify suitable plant by-products for biomedicine, streamlining their selection process for high-value applications. Additionally, the transition from in vitro studies to clinical trials is hindered by gaps in the understanding of Absorption, Distribution, Metabolism, and Excretion (ADME) properties, as well as interaction and toxicity profiles. Nonetheless, environmental education and societal participation are crucial to enabling circular bioeconomy strategies and sustainable biomedical innovation. Full article
Show Figures

Graphical abstract

13 pages, 1480 KiB  
Article
Physicochemical Properties of Coconut and Waste Cooking Oils for Biofuel Production and Lubrication
by Ahissan Innocent Adou, Laura Brelle, Pedro Marote, Muriel Sylvestre, Gerardo Cebriàn-Torrejòn and Nadiège Nomede-Martyr
Fuels 2025, 6(3), 57; https://doi.org/10.3390/fuels6030057 - 30 Jul 2025
Viewed by 323
Abstract
Vegetable oils are an important alternative to the massive use of fuels and lubricants from non-renewable energy sources. In this study, the physicochemical properties of coconut oil and waste cooking oil are investigated for biofuels and biolubricant applications. A transesterification of both oils [...] Read more.
Vegetable oils are an important alternative to the massive use of fuels and lubricants from non-renewable energy sources. In this study, the physicochemical properties of coconut oil and waste cooking oil are investigated for biofuels and biolubricant applications. A transesterification of both oils was reached, and the transesterified oils were characterized by infrared analysis and gas chromatography. The lubricant performances of these oils have been evaluated using a ball-on-plane tribometer under an ambient atmosphere. Different formulations were developed using graphite particles as solid additive. Each initial and modified oil has been investigated as a base oil and as a liquid additive lubricant. The best friction reduction findings have been obtained for both initial oils as liquid additives, highlighting the key role of triglycerides in influencing tribological performances. Full article
(This article belongs to the Special Issue Biofuels and Bioenergy: New Advances and Challenges)
Show Figures

Figure 1

22 pages, 2743 KiB  
Article
Effects of the Application of Different Types of Vermicompost Produced from Wine Industry Waste on the Vegetative and Productive Development of Grapevine in Two Irrigation Conditions
by Fernando Sánchez-Suárez, María del Valle Palenzuela, Cristina Campos-Vazquez, Inés M. Santos-Dueñas, Víctor Manuel Ramos-Muñoz, Antonio Rosal and Rafael Andrés Peinado
Agriculture 2025, 15(15), 1604; https://doi.org/10.3390/agriculture15151604 - 25 Jul 2025
Viewed by 324
Abstract
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving [...] Read more.
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving initial thermophilic pre-composting, followed by vermicomposting using Eisenia fetida for 90 days. The conditions were optimized to ensure aerobic decomposition and maintain proper moisture levels (70–85%) and temperature control. This resulted in end products that met the legal standards required for agricultural use. However, population dynamics revealed significantly higher worm reproduction and biomass in the WIR treatment, suggesting superior substrate quality. When applied to grapevines, WIR vermicompost increased soil organic matter, nitrogen availability, and overall fertility. Under rainfed conditions, it improved vegetative growth, yield, and must quality, with increases in yeast assimilable nitrogen (YAN), sugar content, and amino acid levels comparable to those achieved using chemical fertilizers, as opposed to the no-fertilizer trial. Foliar analyses at veraison revealed stronger nutrient uptake, particularly of nitrogen and potassium, which was correlated with improved oenological parameters compared to the no-fertilizer trial. In contrast, WIR + SS compost was less favorable due to lower worm activity and elevated trace elements, despite remaining within legal limits. These results support the use of vermicompost derived solely from wine residues as a sustainable alternative to chemical fertilizers, in line with the goals of the circular economy in viticulture. Full article
(This article belongs to the Special Issue Vermicompost in Sustainable Crop Production—2nd Edition)
Show Figures

Figure 1

20 pages, 2290 KiB  
Article
Use of Bacillus pretiosus and Pseudomonas agronomica for the Synthesis of a Valorized Water Waste Treatment Plant Waste as a Biofertilizer Intended for Quercus pyrenaica L. Fertigation
by Diana Penalba-Iglesias, Marina Robas-Mora, Daniel González-Reguero, Vanesa M. Fernández-Pastrana, Agustín Probanza and Pedro A. Jiménez-Gómez
Biology 2025, 14(7), 902; https://doi.org/10.3390/biology14070902 - 21 Jul 2025
Viewed by 284
Abstract
The loss of hectares of forest areas has become a global issue that has worsened over recent years due to unsustainable human activities. In a context of limited availability of productive land, it is urgent to adopt efficient strategies to recover the affected [...] Read more.
The loss of hectares of forest areas has become a global issue that has worsened over recent years due to unsustainable human activities. In a context of limited availability of productive land, it is urgent to adopt efficient strategies to recover the affected natural areas. Actions based on a circular economy, such as the use of organic chemical matrices recovered from water waste treatment plant waste, have proven to be effective. In this regard, the addition of plant growth-promoting bacteria (PGPB), such as Bacillus pretiosus and Pseudomonas agronomica, can contribute to the chemical treatment, favoring the recovery of soils, accelerating the recovery of vegetation cover, and inducing an increase in biodiversity. In this research, the effect of bio-fertigation under controlled laboratory conditions in Quercus pyrenaica is evaluated. After a thirty-six-week trial, the biometric and nutritional parameters of the plants were harvested and measured, and the diversity and composition of the metagenomes of their rhizospheres were evaluated. As well, the cenoantibiogram and the metabolic diversity were measured. The results showed that the use of these biofertilizers increased the variables related to plant production, quality of plant composition as an indirect means of their resilience, as well as an increase in rhizospheric microbial diversity and a reduction in their MIC resistance to the most widely used antibiotics. For all these reasons, the use of the biofertilizer result of the combination of WWTP waste, Bacillus pretiosus, and Pseudomonas agronomica is postulated as an environmentally friendly strategy that can contribute to the recovery of potential oak forest areas. Full article
(This article belongs to the Collection Plant Growth-Promoting Bacteria: Mechanisms and Applications)
Show Figures

Figure 1

18 pages, 1029 KiB  
Article
Processing Fruits and Vegetables as a Way to Prevent Their Waste
by Ksenia Juszczak-Szelągowska, Iwona Kowalczuk, Dawid Olewnicki, Małgorzata Kosicka-Gębska and Dagmara Stangierska-Mazurkiewicz
Sustainability 2025, 17(14), 6610; https://doi.org/10.3390/su17146610 - 19 Jul 2025
Viewed by 383
Abstract
The aim of the current study was to determine the scale and underlying causes for the waste of raw and processed fruits and vegetables in Polish households. A survey was conducted on a representative sample of 1100 respondents. The collected empirical data were [...] Read more.
The aim of the current study was to determine the scale and underlying causes for the waste of raw and processed fruits and vegetables in Polish households. A survey was conducted on a representative sample of 1100 respondents. The collected empirical data were analyzed using statistical tools such as non-parametric tests, multiple regression methods, and logistic regression. This study assessed the level and determinants of waste of raw and processed fruits and vegetables, identified the reasons for this waste and their impact on its extent, and analyzed the effect of waste prevention methods (including processing) on the scale of product losses. This study showed that the scale of waste of processed fruits and vegetables in Polish consumer households is significantly lower than that of raw products. The level of waste for both raw and processed products vary depending on place of residence, education, income, household size, and, in the case of processed fruits and vegetables, also the age of respondents. The main reason for fruit and vegetable losses in households is missing the product’s expiration date. Logistic regression analysis showed that the most effective strategies for reducing the waste of raw fruits and vegetables include purchasing the right quantities and freezing them. In contrast, practices such as donating food to others or composting were linked to a statistically significant decrease in the likelihood of reducing waste. Full article
(This article belongs to the Special Issue Future Trends in Food Processing and Food Preservation Techniques)
Show Figures

Figure 1

10 pages, 301 KiB  
Article
Revisiting Additional Outcomes in Food Waste Studies: Evidence from Low-Income Households in Chile
by María Isabel Sactic and Andres Silva
Nutrients 2025, 17(14), 2355; https://doi.org/10.3390/nu17142355 - 18 Jul 2025
Viewed by 288
Abstract
Background/Objective: Previous research has measured the impact of interventions on food purchases and food waste separately. Moreover, food waste studies have rarely included food insecurity measurements, which could help develop more comprehensive interventions. The aim of this article is to evaluate the effect [...] Read more.
Background/Objective: Previous research has measured the impact of interventions on food purchases and food waste separately. Moreover, food waste studies have rarely included food insecurity measurements, which could help develop more comprehensive interventions. The aim of this article is to evaluate the effect of educational videos on food and fruit and vegetable purchases, waste and food insecurity in low-income households. Methods: This study uses an experimental design involving low-income households in Chile to evaluate the effects of three educational videos: videos of (T0) recipes using regular fruits, (T1) refrigerator cleaning instructions, and (T2) recipes using overripe fruits. Results: The videos featuring fruit-based recipes (T0 and T2) increased fruit purchases and reduced fruit waste. In contrast, vegetable purchases and waste increased, especially under the recipe-based interventions. All interventions led to a decrease in food insecurity. Conclusions: An intervention that leads to a reduction in fruit waste can also hide an increase on vegetable waste, as well as changes on purchases and a decrease of prevalence of food insecurity. These findings highlight the importance of measuring fruit and vegetable purchases and food insecurity as complementary outcomes in food waste studies. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

26 pages, 5423 KiB  
Article
Using System Thinking to Identify Food Wastage (FW) Leverage Points in Four Different Food Chains
by Annelies Verspeek-van der Stelt, Frederike Praasterink, Evelot Westerink-Duijzer, Ayella Spaapen, Woody Maijers and Antien Zuidberg
Sustainability 2025, 17(14), 6523; https://doi.org/10.3390/su17146523 - 16 Jul 2025
Viewed by 310
Abstract
About one third of all food produced for human consumption is lost or wasted, leading to societal, economic and environmental challenges. This study identifies the most important food wastage (FW) leverage points and their interrelations with specific food chains. Semi-structured interviews were conducted [...] Read more.
About one third of all food produced for human consumption is lost or wasted, leading to societal, economic and environmental challenges. This study identifies the most important food wastage (FW) leverage points and their interrelations with specific food chains. Semi-structured interviews were conducted across four different food chains (milk, poultry, potatoes and greenhouse-grown fruit and vegetables) from primary production to food service. The outcomes of the interviews were summarized via a systems approach and validated during co-creation sessions. A total of twenty-two FW leverage points were identified across the food chains, consisting of four major hotspots, six patterns of behaviours, six structures and six mental models. Common transformative leverage points across all food chains were damaged products, oversupply, regulations and standards that limit product use and a lack of prioritization of FW reduction. Additionally, this study found that co-creation sessions with stakeholders from across the food chains could facilitate the formation of coalitions of willing companies, encouraging collaborative efforts to reduce FW. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

21 pages, 5735 KiB  
Article
Estimation of Tomato Quality During Storage by Means of Image Analysis, Instrumental Analytical Methods, and Statistical Approaches
by Paris Christodoulou, Eftichia Kritsi, Georgia Ladika, Panagiota Tsafou, Kostantinos Tsiantas, Thalia Tsiaka, Panagiotis Zoumpoulakis, Dionisis Cavouras and Vassilia J. Sinanoglou
Appl. Sci. 2025, 15(14), 7936; https://doi.org/10.3390/app15147936 - 16 Jul 2025
Viewed by 309
Abstract
The quality and freshness of fruits and vegetables are critical factors in consumer acceptance and are significantly affected during transport and storage. This study aimed to evaluate the quality of greenhouse-grown tomatoes stored for 24 days by combining non-destructive image analysis, spectrophotometric assays [...] Read more.
The quality and freshness of fruits and vegetables are critical factors in consumer acceptance and are significantly affected during transport and storage. This study aimed to evaluate the quality of greenhouse-grown tomatoes stored for 24 days by combining non-destructive image analysis, spectrophotometric assays (including total phenolic content and antioxidant and antiradical activity assessments), and attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy. Additionally, water activity, moisture content, total soluble solids, texture, and color were evaluated. Most physicochemical changes occurred between days 14 and 17, without major impact on overall fruit quality. A progressive transition in peel hue from orange to dark orange, and increased surface irregularity of their textural image were noted. Moreover, the combined use of instrumental and image analyses results via multivariate analysis allowed the clear discrimination of tomatoes according to storage days. In this sense, tomato samples were effectively classified by ATR-FTIR spectral bands, linked to carotenoids, phenolics, and polysaccharides. Machine learning (ML) models, including Random Forest and Gradient Boosting, were trained on image-derived features and accurately predicted shelf life and quality traits, achieving R2 values exceeding 0.9. The findings demonstrate the effectiveness of combining imaging, spectroscopy, and ML for non-invasive tomato quality monitoring and support the development of predictive tools to improve postharvest handling and reduce food waste. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

19 pages, 941 KiB  
Article
Residents’ Perceptions of Informal Green Spaces in High-Density Cities: Urban Land Governance Implications from Taipei
by Chen-Yi Sun, Tzu-Pei Chiang and Ya-Wen Wu
Land 2025, 14(7), 1466; https://doi.org/10.3390/land14071466 - 15 Jul 2025
Viewed by 391
Abstract
In high-density and land-scarce urban environments such as Taipei—a typical example of compact development in East Asia—informal green spaces (IGSs)—defined as unmanaged or unplanned vegetated urban areas such as vacant lots, street verges, and railway margins—play a growing role in urban environmental and [...] Read more.
In high-density and land-scarce urban environments such as Taipei—a typical example of compact development in East Asia—informal green spaces (IGSs)—defined as unmanaged or unplanned vegetated urban areas such as vacant lots, street verges, and railway margins—play a growing role in urban environmental and social dynamics. This study explores residents’ perceptions of IGSs and examines how these spaces contribute to urban sustainability and land governance. Using a mixed-methods approach that combines the literature review, field observations, and a structured public opinion survey in Taipei’s Wenshan District, the study identifies key perceived benefits and drawbacks of IGSs. Findings show that residents highly value IGSs for enhancing urban greenery, offering recreational opportunities, and promoting physical and mental health. However, concerns persist regarding safety, sanitation, and maintenance—particularly fears of waste accumulation, mosquito breeding, and risks to children. The results highlight the dual nature of IGSs as both vital ecological assets and potential sources of urban disorder. These insights underscore the need for inclusive, community-based governance models that can transform IGSs into legitimate components of green infrastructure. The study contributes to emerging discussions on adaptive urban land governance by proposing that informal spaces be strategically integrated into urban planning frameworks to enhance environmental equity, resilience, and citizen well-being. Full article
(This article belongs to the Special Issue Planning for Sustainable Urban and Land Development, Second Edition)
Show Figures

Figure 1

12 pages, 492 KiB  
Article
Protective Effect of Tomato By-Product in Refined Sunflower Oil with Different Lipid Profiles
by Idoya Fernández-Pan, Sandra Horvitz, Francisco C. Ibañez, Paloma Vírseda and María José Beriain
Molecules 2025, 30(14), 2968; https://doi.org/10.3390/molecules30142968 - 15 Jul 2025
Viewed by 310
Abstract
The recovery of carotenoids, particularly lycopene, from industrial tomato by-products is contingent upon the composition of the raw material, the harvesting season, and the specifics of the extraction process. Industrial tomato by-product from three harvest seasons (S1, S2, and S3) was revalorized and [...] Read more.
The recovery of carotenoids, particularly lycopene, from industrial tomato by-products is contingent upon the composition of the raw material, the harvesting season, and the specifics of the extraction process. Industrial tomato by-product from three harvest seasons (S1, S2, and S3) was revalorized and used as a lycopene natural source. Pressurization-assisted extraction of lycopene was carried out using two types of refined sunflower oil (high oleic, HO, and low oleic, LO). The carotenoid and tocopherol content, as well as the fatty acid profile, were analyzed in the resulting HO and LO oil samples, and thermooxidation stability was evaluated. Lycopene recovery was found to be higher in the LO oil than in the HO oil using the by-product from the S3 harvest. Conversely, the tocopherol content declined in both oil types following the incorporation of the S3 by-products. The addition of by-products did not affect the thermooxidation stability of the HO oil. Conversely, the thermooxidation stability of the LO oil increased by about 3.2 ± 0.6 h, irrespective of the season. The findings of this study demonstrate that the addition of tomato by-product, regardless of its lycopene content, provides a protective effect against the thermooxidation of conventional sunflower oil. Full article
Show Figures

Graphical abstract

25 pages, 1049 KiB  
Review
The Occurrence and Removal of Microplastics from Stormwater Using Green Infrastructure
by Anna Kwarciak-Kozłowska and Magdalena Madeła
Water 2025, 17(14), 2089; https://doi.org/10.3390/w17142089 - 13 Jul 2025
Viewed by 719
Abstract
Microplastics (MPs) are becoming an increasingly common pollutant in the aquatic environment, including stormwater. This is a serious problem, as stormwater is becoming an essential transport route for MPs from urban areas to surface waters. Rainwater flowing from roofs, roads, and other impermeable [...] Read more.
Microplastics (MPs) are becoming an increasingly common pollutant in the aquatic environment, including stormwater. This is a serious problem, as stormwater is becoming an essential transport route for MPs from urban areas to surface waters. Rainwater flowing from roofs, roads, and other impermeable surfaces contains a variety of plastic particles originating from tire abrasion or waste disposal. This article presents an overview of current research on the occurrence of MPs in stormwater. The potential of selected green infrastructure solutions—particularly bioretention systems, constructed wetlands, and permeable pavements—for their reduction is assessed. Individual solutions present how the change in filter material, selection of vegetation, or the method of conducting the process (e.g., direction of stormwater flow in constructed wetlands) affects their effectiveness. The potential of green infrastructure is also compared with the traditional gray solution of sewage management in cities. This article emphasizes the importance of integrating such solutions in spatial planning as an effective tool to combat climate change and limit the spread of microplastics in the environment. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

24 pages, 3485 KiB  
Article
Effect of Natural Edible Oil Coatings and Storage Conditions on the Postharvest Quality of Bananas
by Laila Al-Yahyai, Rashid Al-Yahyai, Rhonda Janke, Mai Al-Dairi and Pankaj B. Pathare
AgriEngineering 2025, 7(7), 234; https://doi.org/10.3390/agriengineering7070234 - 12 Jul 2025
Viewed by 723
Abstract
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible [...] Read more.
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible coating on perishable commodities is a common technique used by the food industry during the postharvest supply chain. The objective of this research was to study the effect of edible oil to minimize the loss of postharvest physio-chemical and nutritional attributes of bananas. The study selected two banana cultivars (Musa, ‘Cavendish’ and ‘Milk’) to conduct this experiment, and two edible oils (olive oil (Olea europaea) and moringa oil (Moringa peregrina)) were applied as an edible coating under two different storage conditions (15 and 25 °C). The fruit’s physio-chemical properties including weight loss, firmness, color, total soluble solids (TSS), pH, titratable acidity (TA), TSS: TA ratio, and mineral content were assessed. The experiment lasted for 12 days. The physicochemical properties of the banana coated with olive and moringa oils were more controlled than the non-coated (control) banana under both storage temperatures (15 °C and 25 °C). Coated bananas with olive and moringa oils stored at 15 °C resulted in further inhibition in the ripening process. There was a decrease in weight loss, retained color, and firmness, and the changes in chemical parameters were slower in banana fruits during storage in the olive and moringa oil-coated bananas. Minerals were highly retained in coated Cavendish bananas. Overall, the coated samples visually maintained acceptable quality until the final day of storage. Our results indicated that olive and moringa oils in this study have the potential to extend the shelf-life and improve the physico-chemical quality of banana fruits. Full article
(This article belongs to the Special Issue Latest Research on Post-Harvest Technology to Reduce Food Loss)
Show Figures

Figure 1

Back to TopTop