Potential Application of Plant By-Products in Biomedicine: From Current Knowledge to Future Opportunities
Abstract
1. Introduction
2. Materials and Methods
3. Development Drivers of the Field
4. The Possible Use of Plant By-Products in Biomedicine
4.1. Antimicrobial Agents
4.1.1. Antibacterial Activity
4.1.2. Antifungal Activity
4.1.3. Antiparasitic Activity
Plant | By-Product | Parasite Specie | Type of Extractant | Disease | Reference |
---|---|---|---|---|---|
Olive (Olea europaea) | Olive pomace | C. parvum | Deionized water, 70% aqueous ethanol or heptane | Criptosporidiosis | [81] |
Pomegranate (P. granatum) | Peel powder | Aqueous | [80] | ||
Cherry tomato (S. lycopersicum var. cerasiforme) | Peel powder | Trichomonas spp. | Dimethyl sulfoxide/water (1:1) | Trichomoniasis | [83] |
Orange (C. sinensis) | Leaves | Promastigote forms of L. amazonensis | Hexane, ethyl acetate, dichloromethane/ethanol (1:1) or ethanol/water (7:3) | Leishmaniasis | [84] |
4.2. Antitumoral Activity
4.3. Dermocosmetic Applications
4.3.1. Photoprotection
4.3.2. Antiageing
4.3.3. Commercial Insights
4.4. Other Applications
4.4.1. Human Microbiota and Probiotics
4.4.2. Sugar Replacement for Diabetics
4.4.3. Tissue Engineering
4.4.4. Drug Delivery Systems
5. Economic and Technical Impact
6. Opportunities and Remaining Challenges
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baiano, A. Recovery of Biomolecules from Food Wastes—A Review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef] [PubMed]
- Dey, D.; Richter, J.K.; Ek, P.; Gu, B.-J.; Ganjyal, G.M. Utilization of Food Processing by-Products in Extrusion Processing: A Review. Front. Sustain. Food Syst. 2021, 4, 603751. [Google Scholar] [CrossRef]
- Pereira, J.A.M.; Berenguer, C.V.; Andrade, C.F.P.; Câmara, J.S. Unveiling the Bioactive Potential of Fresh Fruit and Vegetable Waste in Human Health from a Consumer Perspective. Appl. Sci. 2022, 12, 2747. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. Exploitation of Food Industry Waste for High-Value Products. Trends Biotechnol. 2016, 34, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.; Delerue-Matos, C.; Grosso, C. Unveiling the Potential of Agrifood by-Products: A Comprehensive Review of Phytochemicals, Bioactivities and Industrial Applications. Waste Biomass Valor. 2024, 16, 2715–2748. [Google Scholar] [CrossRef]
- Aqilah, N.M.N.; Rovina, K.; Felicia, W.X.L.; Vonnie, J.M. A Review on the Potential Bioactive Components in Fruits and Vegetable Wastes as Value-Added Products in the Food Industry. Molecules 2023, 28, 2631. [Google Scholar] [CrossRef]
- Ghosal, K.; Ghosh, S. Biodegradable Polymers from Lignocellulosic Biomass and Synthetic Plastic Waste: An Emerging Alternative for Biomedical Applications. Mater. Sci. Eng. R Rep. 2023, 156, 100761. [Google Scholar] [CrossRef]
- Huang, L.; Huang, X.-H.; Yang, X.; Hu, J.-Q.; Zhu, Y.-Z.; Yan, P.-Y.; Xie, Y. Novel Nano-Drug Delivery System for Natural Products and Their Application. Pharmacol. Res. 2024, 201, 107100. [Google Scholar] [CrossRef]
- Anaya-Esparza, L.M.; Mora, Z.V.; Vázquez-Paulino, O.; Ascencio, F.; Villarruel-López, A. Bell Peppers (Capsicum annum L.) Losses and Wastes: Source for Food and Pharmaceutical Applications. Molecules 2021, 26, 5341. [Google Scholar] [CrossRef]
- Chiocchio, I.; Mandrone, M.; Tomasi, P.; Marincich, L.; Poli, F. Plant Secondary Metabolites: An Opportunity for Circular Economy. Molecules 2021, 26, 495. [Google Scholar] [CrossRef] [PubMed]
- Osorio, L.; Flórez-López, E.; Grande-Tovar, C.D. The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef]
- Population|United Nations. Available online: https://www.un.org/en/global-issues/population (accessed on 5 October 2024).
- European Commission. Food Waste and Food Waste Prevention by Nace Rev. 2 Activity-Tonnes of Fresh Mass; European Union: Brussels, Belgium, 2024. [Google Scholar]
- United Nations Environment Programme (UNEP). Food Waste Index Report 2024. Think Eat Save: Tracking Progress to Halve Global Food Waste; UNEP & WRAP: Nairobi, Kenya, 2024; Available online: https://www.unep.org/resources/publication/food-waste-index-report-2024 (accessed on 30 July 2025).
- Varjani, S.; Vyas, S.; Su, J.; Siddiqui, M.A.; Qin, Z.H.; Miao, Y.; Liu, Z.; Ethiraj, S.; Mou, J.H.; Lin, C.S.K. Nexus of Food Waste and Climate Change Framework: Unravelling the Links between Impacts, Projections, and Emissions. Environ. Pollut. 2024, 344, 123387. [Google Scholar] [CrossRef]
- Krah, C.Y.; Bahramian, M.; Hynds, P.; Priyadarshini, A. Household Food Waste Generation in High-Income Countries: A Scoping Review and Pooled Analysis between 2010 and 2022. J. Clean. Prod. 2024, 471, 143375. [Google Scholar] [CrossRef]
- Linder, M.; Williander, M. Circular Business Model Innovation: Inherent Uncertainties. Bus. Strategy Environ. 2015, 26, 182–196. [Google Scholar] [CrossRef]
- Ahmed, Z.; Mahmud, S.; Acet, D.H. Circular Economy Model for Developing Countries: Evidence from Bangladesh. Heliyon 2022, 8, e09530. [Google Scholar] [CrossRef]
- Blomsma, F.; Brennan, G. The Emergence of Circular Economy: A New Framing around Prolonging Resource Productivity. J. Ind. Ecol. 2017, 21, 603–614. [Google Scholar] [CrossRef]
- Tlais, A.Z.A.; Fiorino, G.M.; Polo, A.; Filannino, P.; Di Cagno, R. High-Value Compounds in Fruit, Vegetable and Cereal Byproducts: An Overview of Potential Sustainable Reuse and Exploitation. Molecules 2020, 25, 2987. [Google Scholar] [CrossRef]
- Jaouhari, Y.; Travaglia, F.; Giovannelli, L.; Picco, A.; Oz, E.; Oz, F.; Bordiga, M. From Industrial Food Waste to Bioactive Ingredients: A Review on the Sustainable Management and Transformation of Plant-Derived Food Waste. Foods 2023, 12, 2183. [Google Scholar] [CrossRef] [PubMed]
- Skendi, A.; Zinoviadou, K.G.; Papageorgiou, M.; Rocha, J.M. Advances on the Valorisation and Functionalization of by-Products and Wastes from Cereal-Based Processing Industry. Foods 2020, 9, 1243. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Burgos, E.C.; Burgos-Hernandez, A.; Noguera-Artiaga, L.; Kacaniova, M.; Hernandez-Garcia, F.; Cardenas-Lopez, J.L.; Carbonell-Barrachina, A.A. Antimicrobial Activity of Pomegranate Peel Extracts as Affected by Cultivar. J. Sci. Food Agric. 2017, 97, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Sharma, H.; Safdar, M.; Lee, J.; Kim, W.; Park, S.; Jeong, H.E.; Kim, J. Micro/Nanoengineered Agricultural by-Products for Biomedical and Environmental Applications. Environ. Res. 2024, 250, 118490. [Google Scholar] [CrossRef]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as Active Ingredients for Cosmetic Products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef]
- Ng, S.-L.; Wong, F.-M. Recent Developments in Research on Food Waste and the Circular Economy. Biomass 2024, 4, 472–489. [Google Scholar] [CrossRef]
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M.; et al. Application of Agri-Food by-Products in the Food Industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Attiq, S.; Chau, K.Y.; Bashir, S.; Habib, M.D.; Azam, R.I.; Wong, W.K. Sustainability of Household Food Waste Reduction: A Fresh Insight on Youth’s Emotional and Cognitive Behaviors. Int. J. Environ. Res. Public Health 2021, 18, 7013. [Google Scholar] [CrossRef]
- Calculli, C.; D’Uggento, A.M.; Labarile, A.; Ribecco, N. Evaluating People’s Awareness About Climate Changes and Environmental Issues: A Case Study. J. Clean. Prod. 2021, 324, 129244. [Google Scholar] [CrossRef]
- Esparza, I.; Jiménez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L.M. Fruit and Vegetable Waste Management: Conventional and Emerging Approaches. J. Environ. Manag. 2020, 265, 110510. [Google Scholar] [CrossRef]
- Kumar Gupta, R.; Ae Ali, E.; Abd El Gawad, F.; Mecheal Daood, V.; Sabry, H.; Karunanithi, S.; Prakash Srivastav, P. Valorization of Fruits and Vegetables Waste Byproducts for Development of Sustainable Food Packaging Applications. Waste Manag. Bull. 2024, 2, 21–40. [Google Scholar] [CrossRef]
- Zhu, Y.; Luan, Y.; Zhao, Y.; Liu, J.; Duan, Z.; Ruan, R. Current Technologies and Uses for Fruit and Vegetable Wastes in a Sustainable System: A Review. Foods 2023, 12, 1949. [Google Scholar] [CrossRef]
- Yadav, N.; Patel, P.; Kashyap, P.; Tamboli, R.; Chandel, S.; Santosh, R. Kirtane Conventional Extraction Methods Versus Novel Extraction Methods of Bioactive Compounds from Some Medicinal Plants. Int. J. Green Pharm. 2024, 16, 1–6. [Google Scholar]
- Meili, R.; Stucki, T. Money Matters: The Role of Money as a Regional and Corporate Financial Resource for Circular Economy Transition at Firm-Level. Res. Policy 2023, 52, 104884. [Google Scholar] [CrossRef]
- Financing the Circular Economy. Available online: https://circulareconomy.europa.eu/platform/en/financing-circular-economy (accessed on 9 October 2024).
- Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 5 November 2024).
- Mukherjee, P.K.; Das, B.; Bhardwaj, P.K.; Tampha, S.; Singh, H.K.; Chanu, L.D.; Sharma, N.; Devi, S.I. Socio-Economic Sustainability with Circular Economy—An Alternative Approach. Sci. Total Environ. 2023, 904, 166630. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Bai, H.; Osman, A.I.; Eltohamy, K.M.; Chen, Z.; Younis, H.A.; Al-Fatesh, A.; Rooney, D.W.; Yap, P.-S. Recycling Food and Agriculture by-Products to Mitigate Climate Change: A Review. Environ. Chem. Lett. 2023, 21, 3351–3375. [Google Scholar] [CrossRef]
- Socas-Rodríguez, B.; Álvarez-Rivera, G.; Valdés, A.; Ibáñez, E.; Cifuentes, A. Food by-Products and Food Wastes: Are They Safe Enough for Their Valorization? Trends Food Sci. Technol. 2021, 114, 133–147. [Google Scholar] [CrossRef]
- Zarbà, C.; Chinnici, G.; La Via, G.; Bracco, S.; Pecorino, B.; D’Amico, M. Regulatory Elements on the Circular Economy: Driving into the Agri-Food System. Sustainability 2021, 13, 8350. [Google Scholar] [CrossRef]
- Knežević, N.; Ranilović, J.; Cvetković, T.; Grbavac, S.; Palfi, M. Vegetable by-Products in the European Food Legislative Framework. Croat. J. Food Technol. Biotechnol. Nutr. 2021, 16, 115–122. [Google Scholar] [CrossRef]
- Domingo-Fernández, D.; Gadiya, Y.; Preto, A.J.; Krettler, C.A.; Mubeen, S.; Allen, A.; Healey, D.; Colluru, V. Natural Products Have Increased Rates of Clinical Trial Success Throughout the Drug Development Process. J. Nat. Prod. 2024, 87, 1844–1851. [Google Scholar] [CrossRef] [PubMed]
- Okeke, I.N.; de Kraker, M.E.A.; Van Boeckel, T.P.; Kumar, C.K.; Schmitt, H.; Gales, A.C.; Bertagnolio, S.; Sharland, M.; Laxminarayan, R. The Scope of the Antimicrobial Resistance Challenge. Lancet 2024, 403, 2426–2438. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Arip, M.; Selvaraja, M.; Mogana, R.; Tan, L.F.; Leong, M.Y.; Tan, P.L.; Yap, V.L.; Chinnapan, S.; Tat, N.C.; Abdullah, M.; et al. Review on Plant-Based Management in Combating Antimicrobial Resistance-Mechanistic Perspective. Front. Pharmacol. 2022, 13, 879495. [Google Scholar] [CrossRef]
- Al-Mqbali, L.R.A.; Hossain, M.A. Cytotoxic and Antimicrobial Potential of Different Varieties of Ripe Banana Used Traditionally to Treat Ulcers. Toxicol. Rep. 2019, 6, 1086–1090. [Google Scholar] [CrossRef]
- Naqvi, S.A.; Irfan, A.; Zahoor, A.F.; Zafar, M.; Maria, A.; Chand, A.; Ashfaq, S. Determination of Antimicrobial and Antioxidant Potential of Agro-Waste Peels. An. Acad. Bras. Cienc. 2020, 92, e20181103. [Google Scholar] [CrossRef]
- Harith, S.S.; Yasim, N.H.M.; Harun, A.; Wan Omar, W.S.A.; Musa, M.S. Phytochemical Screening, Antifungal and Antibacterial Activities of Musa acuminata Plant. Malays. J. Anal. Sci. 2018, 22, 452–457. [Google Scholar] [CrossRef]
- Szabo, K.; Dulf, F.V.; Diaconeasa, Z.; Vodnar, D.C. Antimicrobial and Antioxidant Properties of Tomato Processing Byproducts and Their Correlation with the Biochemical Composition. LWT 2019, 116, 108558. [Google Scholar] [CrossRef]
- Saleem, M.; Saeed, M.T. Potential Application of Waste Fruit Peels (Orange, Yellow Lemon and Banana) as Wide Range Natural Antimicrobial Agent. J. King Saud Univ. Sci. 2020, 32, 805–810. [Google Scholar] [CrossRef]
- Evbuomwan, L.; Jacob, I.B.; Onodje, G.O.; Patrick, C. Evaluating the Antibacterial Activity of Musa acuminata (Banana) Fruit Peels against Multidrug Resistant Bacterial Isolates. Int. J. Novel Res. Life Sci. 2018, 5, 26–31. [Google Scholar]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and Virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- Lee, D.S.; Lee, S.J.; Choe, H.S. Community-Acquired Urinary Tract Infection by Escherichia coli in the Era of Antibiotic Resistance. Biomed Res. Int. 2018, 2018, 14. [Google Scholar] [CrossRef]
- Badger-Emeka, L.I.; Emeka, P.M.; Ibrahim, H.I.M. A Molecular Insight into the Synergistic Mechanism of Nigella sativa (Black cumin) With β-Lactam Antibiotics against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus. Appl. Sci. 2021, 11, 3206. [Google Scholar] [CrossRef]
- Chaves-Ulate, C.; Rodríguez-Sánchez, C.; Arias-Echandi, M.L.; Esquivel, P. Antimicrobial Activities of Phenolic Extracts of Coffee Mucilage. NFS J. 2023, 31, 50–56. [Google Scholar] [CrossRef]
- Chen, X.; Lan, W.; Xie, J. Natural Phenolic Compounds: Antimicrobial Properties, Antimicrobial Mechanisms, and Potential Utilization in the Preservation of Aquatic Products. Food Chem. 2024, 440, 138198. [Google Scholar] [CrossRef]
- Berida, T.I.; Adekunle, Y.A.; Dada-Adegbola, H.; Kdimy, A.; Roy, S.; Sarker, S.D. Plant Antibacterials: The Challenges and Opportunities. Heliyon 2024, 10, e31145. [Google Scholar] [CrossRef]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef]
- Haq, A.; Siddiqi, M.; Batool, S.Z.; Islam, A.; Khan, A.; Khan, D.; Khan, S.; Khan, H.; Shah, A.A.; Hasan, F.; et al. Comprehensive Investigation on the Synergistic Antibacterial Activities of Jatropha curcas Pressed Cake and Seed Oil in Combination with Antibiotics. AMB Express 2019, 9, 67. [Google Scholar] [CrossRef]
- Lass-Flörl, C.; Steixner, S. The Changing Epidemiology of Fungal Infections. Mol. Asp. Med. 2023, 94, 101215. [Google Scholar] [CrossRef]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- Revie, N.M.; Iyer, K.R.; Robbins, N.; Cowen, L.E. Antifungal Drug Resistance: Evolution, Mechanisms and Impact. Curr. Opin. Microbiol. 2018, 45, 70–76. [Google Scholar] [CrossRef]
- Osset-Trénor, P.; Pascual-Ahuir, A.; Proft, M. Fungal Drug Response and Antimicrobial Resistance. J. Fungi 2023, 9, 565. [Google Scholar] [CrossRef]
- Xu, J. Assessing Global Fungal Threats to Humans. mLife 2022, 1, 223–240. [Google Scholar] [CrossRef]
- Maiza, M. Antifungal Activity of Organic Residues of Plant Origin; University of Navarra: Pamplona, Spain, 2022; (Unpublished Results). [Google Scholar]
- Romero, A. Antifungal Activity of Domestic Vegetable Waste; University of Navarra: Pamplona, Spain, 2023; (Unpublished Results). [Google Scholar]
- Herkert, P.F.; Al-Hatmi, A.M.S.; de Oliveira Salvador, G.L.; Muro, M.D.; Pinheiro, R.L.; Nucci, M.; Queiroz-Telles, F.; de Hoog, G.S.; Meis, J.F. Molecular Characterization and Antifungal Susceptibility of Clinical Fusarium Species from Brazil. Front. Microbiol. 2019, 10, 737. [Google Scholar] [CrossRef]
- Xi, K.-Y.; Xiong, S.-J.; Li, G.; Guo, C.-Q.; Zhou, J.; Ma, J.-W.; Yin, J.-L.; Liu, Y.-Q.; Zhu, Y.-X. Antifungal Activity of Ginger Rhizome Extract against Fusarium solani. Horticulturae 2022, 8, 983. [Google Scholar] [CrossRef]
- Rashed, H.H.; Al-Hussaini, I.M.; Al-Marzoqi, A.H. Evaluation of the Inhibitory Effect of Gingerol on Bacteria and Fungi Isolated from the Vagina. Med. J. Babylon. 2024, 21, 85–93. [Google Scholar] [CrossRef]
- Leontiev, R.; Hohaus, N.; Jacob, C.; Gruhlke, M.C.H.; Slusarenko, A.J. A Comparison of the Antibacterial and Antifungal Activities of Thiosulfinate Analogues of Allicin. Sci. Rep. 2018, 8, 6763. [Google Scholar] [CrossRef]
- Yang, X.; Bai, S.; Wu, J.; Fan, Y.; Zou, Y.; Xia, Z.; Ao, J.; Chen, T.; Zhang, M.; Yang, R. Antifungal Activity and Potential Action Mechanism of Allicin against Trichosporon asahii. Microbiol. Spectr. 2023, 11, e0090723. [Google Scholar] [CrossRef]
- Hashem, A.H.; Saied, E.; Ali, O.M.; Selim, S.; Al Jaouni, S.K.; Elkady, F.M.; El-Sayyad, G.S. Pomegranate Peel Extract Stabilized Selenium Nanoparticles Synthesis: Promising Antimicrobial Potential, Antioxidant Activity, Biocompatibility, and Hemocompatibility. Appl. Biochem. Biotechnol. 2023, 195, 5753–5776. [Google Scholar] [CrossRef] [PubMed]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic Acid Derivatives and Their Biological Efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.; Sánchez-Hernández, E.; Noversa, J.; Cunha, A.; Cortez, I.; Marques, G.; Martín-Ramos, P.; Oliveira, R. Antifungal Activity of Plant Waste Extracts against Phytopathogenic Fungi: Allium sativum Peels Extract as a Promising Product Targeting the Fungal Plasma Membrane and Cell Wall. Horticulturae 2023, 9, 136. [Google Scholar] [CrossRef]
- Wu, T.; Cheng, D.; He, M.; Pan, S.; Yao, X.; Xu, X. Antifungal Action and Inhibitory Mechanism of Polymethoxylated Flavones from Citrus reticulata Blanco Peel against Aspergillus niger. Food Control 2014, 35, 354–359. [Google Scholar] [CrossRef]
- Steverding, D. The Spreading of Parasites by Human Migratory Activities. Virulence 2020, 11, 1177–1191. [Google Scholar] [CrossRef]
- Koger-Pease, C.; Perera, D.J.; Ndao, M. Recent Advances in the Development of Adenovirus-Vectored Vaccines for Parasitic Infections. Pharmaceuticals 2023, 16, 334. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Karanis, P. Cryptosporidium and Cryptosporidiosis: The Perspective from the Gulf Countries. Int. J. Environ. Res. Public Health 2020, 17, 6824. [Google Scholar] [CrossRef]
- Marie, C.; Petri, W. Cryptosporidiosis. Available online: https://www.msdmanuals.com/professional/infectious-diseases/intestinal-protozoa-and-microsporidia/cryptosporidiosis (accessed on 5 October 2024).
- Al-Mathal, E.M.; Alsalem, A.M. Pomegranate (Punica granatum) Peel Is Effective in a Murine Model of Experimental Cryptosporidium parvum. Exp. Parasitol. 2012, 131, 350–357. [Google Scholar] [CrossRef]
- Teichmann, K.; Kuliberda, M.; Schatzmayr, G.; Pacher, T.; Zitterl-Eglseer, K.; Joachim, A.; Hadacek, F. In Vitro Inhibitory Effects of Plant-Derived by-Products against Cryptosporidium parvum. Parasite 2016, 23, 41. [Google Scholar] [CrossRef]
- Vilela, R.C.; Benchimol, M. Trichomonas vaginalis and Tritrichomonas foetus: Interaction with Fibroblasts and Muscle Cells-New Insights into Parasite-Mediated Host Cell Cytotoxicity. Mem. Inst. Oswaldo Cruz 2012, 107, 720–727. [Google Scholar] [CrossRef]
- Friedman, M.; Tam, C.C.; Kim, J.H.; Escobar, S.; Gong, S.; Liu, M.; Mao, X.Y.; Do, C.; Kuang, I.; Boateng, K.; et al. Anti-Parasitic Activity of Cherry Tomato Peel Powders. Foods 2021, 10, 230. [Google Scholar] [CrossRef]
- Garcia, A.R.; Amaral, A.C.F.; Azevedo, M.M.B.; Corte-Real, S.; Lopes, R.C.; Alviano, C.S.; Pinheiro, A.S.; Vermelho, A.B.; Rodrigues, I.A. Cytotoxicity and Anti-Leishmania amazonensis Activity of Citrus sinensis Leaf Extracts. Pharm. Biol. 2017, 55, 1780–1786. [Google Scholar] [CrossRef] [PubMed]
- Scorza, B.M.; Carvalho, E.M.; Wilson, M.E. Cutaneous Manifestations of Human and Murine Leishmaniasis. Int. J. Mol. Sci. 2017, 18, 1296. [Google Scholar] [CrossRef]
- Silveira, F.T.; Lainson, R.; De Castro Gomes, C.M.; Laurenti, M.D.; Corbett, C.E.P. Immunopathogenic Competences of Leishmania (V.) braziliensis and L. (L.) amazonensis in American Cutaneous Leishmaniasis. Parasite Immunol. 2009, 31, 423–431. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer Statistics for the Year 2020: An Overview. Int. J. Cancer. 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, H.; Tan, L.; Siu, K.T.H.; Guan, X.-Y. Exploring Treatment Options in Cancer: Tumor Treatment Strategies. Signal Transduct. Target. Ther. 2024, 9, 175. [Google Scholar] [CrossRef]
- Mukhtar, E.; Adhami, V.M.; Mukhtar, H. Targeting Microtubules by Natural Agents for Cancer Therapy. Mol. Cancer Ther. 2014, 13, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Danciu, C. Natural Bioactive Compounds, Vegetal Extracts and Modern Pharmaceutical Formulations: New Insights into the Anti-Cancer Mechanism of Action. Anti-Cancer Agents Med. Chem. 2020, 20, 1754–1755. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.K.; El-Kalaawy, A.M.; Abd El-Twab, S.M.; Alblihed, M.A.; Ahmed, O.M. Hesperetin and Capecitabine Abate 1,2 Dimethylhydrazine-Induced Colon Carcinogenesis in Wistar Rats Via Suppressing Oxidative Stress and Enhancing Antioxidant, Anti-Inflammatory and Apoptotic Actions. Life 2023, 13, 984. [Google Scholar] [CrossRef]
- Colone, M.; Maggi, F.; Rakotosaona, R.; Stringaro, A. Vepris macrophylla Essential Oil Produces Notable Antiproliferative Activity and Morphological Alterations in Human Breast Adenocarcinoma Cells. Appl. Sci. 2021, 11, 4369. [Google Scholar] [CrossRef]
- Ballesteros-Vivas, D.; Álvarez-Rivera, G.; Morantes, S.J.; Sánchez-Camargo, A.d.P.; Ibáñez, E.; Parada-Alfonso, F.; Cifuentes, A. An Integrated Approach for the Valorization of Mango Seed Kernel: Efficient Extraction Solvent Selection, Phytochemical Profiling and Antiproliferative Activity Assessment. Food Res. Int. 2019, 126, 108616. [Google Scholar] [CrossRef]
- Nair, S.A.; Sr, R.K.; Nair, A.S.; Baby, S. Citrus Peels Prevent Cancer. Phytomedicine 2018, 50, 231–237. [Google Scholar] [CrossRef]
- Torres, N.; Plano, D.; Antolín, M.C.; Sanmartín, C.; Domínguez-Fernández, M.; De Peña, M.-P.; Encío, I.; Goicoechea, N. Potential Biomedical Reuse of Vegetative Residuals from Mycorrhized Grapevines Subjected to Warming. Arch. Agron. Soil Sci. 2019, 65, 1341–1353. [Google Scholar] [CrossRef]
- Pérez-Ortiz, J.M.; Alguacil, L.F.; Salas, E.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S.; González-Martín, C. Antiproliferative and Cytotoxic Effects of Grape Pomace and Grape Seed Extracts on Colorectal Cancer Cell Lines. Food Sci. Nutr. 2019, 7, 2948–2957. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Ramachandran, S.; Waypa, G.B.; Yin, J.J.; Li, C.Q.; Han, M.; Huang, H.H.; Sillard, W.W.; Vanden Hoek, T.L.; et al. Grape Seed Proanthocyanidins Ameliorate Doxorubicin-Induced Cardiotoxicity. Am. J. Chin. Med. 2010, 38, 569–584. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, Q.; Lu, W.; Shen, J.; Zhou, D.; Wang, Y.; Gao, S.; Wang, Z. Grape Seed Procyanidin B2 Promotes the Autophagy and Apoptosis in Colorectal Cancer Cells Via Regulating Pi3k/Akt Signaling Pathway. Onco Targets Ther. 2019, 12, 4109–4118. [Google Scholar] [CrossRef]
- Fazio, A.; Iacopetta, D.; La Torre, C.; Ceramella, J.; Muià, N.; Catalano, A.; Carocci, A.; Sinicropi, M.S. Finding Solutions for Agricultural Wastes: Antioxidant and Antitumor Properties of Pomegranate Akko Peel Extracts and β-Glucan Recovery. Food Funct. 2018, 9, 6618–6631. [Google Scholar] [CrossRef]
- Abdelrahman, K.N.; Abdel Ghany, A.G.A.; Saber, R.A.; Osman, A.; Sitohy, B.; Sitohy, M. Anthocyanins from Pomegranate Peel (Punica granatum), Chili Pepper Fruit (Capsicum annuum), and Bougainvillea Flowers (Bougainvillea spectabilis) with Multiple Biofunctions: Antibacterial, Antioxidant, and Anticancer. Heliyon 2024, 10, e32222. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, H.; Yang, X.; Zhu, Y.; Zhang, M. Evaluation of Antioxidative and Antitumor Activities of Extracted Flavonoids from Pink Lady Apples in Human Colon and Breast Cancer Cell Lines. Food Funct. 2015, 6, 3789–3798. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Chen, B.H. A Comparative Study on Inhibition of Breast Cancer Cells and Tumors in Mice by Carotenoid Extract and Nanoemulsion Prepared from Sweet Potato (Ipomoea batatas L.) Peel. Pharmaceutics 2022, 14, 980. [Google Scholar] [CrossRef]
- Abubakar, A.N.F.; Achmadi, S.S.; Suparto, I.H. Triterpenoid of Avocado (Persea americana) Seed and Its Cytotoxic Activity toward Breast MCF-7 and Liver HepG2 Cancer Cells. Asian Pac. J. Trop. Biomed. 2017, 7, 397–400. [Google Scholar] [CrossRef]
- Martinez, R.M.; Guimarães, D.d.A.B.; Berniz, C.R.; Abreu, J.P.d.; Rocha, A.P.M.d.; Moura, R.S.d.; Resende, A.C.; Teodoro, A.J. Açai (Euterpe oleracea Mart.) Seed Extract Induces Cell Cycle Arrest and Apoptosis in Human Lung Carcinoma Cells. Foods 2018, 7, 178. [Google Scholar] [CrossRef]
- Barros, L.; Calhelha, R.C.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Santos, E.A.; Regis, W.C.B.; Ferreira, I.C.F.R. The Powerful in Vitro Bioactivity of Euterpe oleracea Mart. Seeds and Related Phenolic Compounds. Ind. Crops Prod. 2015, 76, 318–322. [Google Scholar] [CrossRef]
- Carmo, M.A.V.D.; Fidelis, M.; Pressete, C.G.; Marques, M.J.; Castro-Gamero, A.M.; Myoda, T.; Granato, D.; Azevedo, L. Hydroalcoholic Myrciaria dubia (Camu-Camu) Seed Extracts Prevent Chromosome Damage and Act as Antioxidant and Cytotoxic Agents. Food Res. Int. 2019, 125, 108551. [Google Scholar] [CrossRef]
- Fidelis, M.; do Carmo, M.A.V.; da Cruz, T.M.; Azevedo, L.; Myoda, T.; Miranda Furtado, M.; Boscacci Marques, M.; Sant’Ana, A.S.; Inês Genovese, M.; Young Oh, W.; et al. Camu-Camu Seed (Myrciaria dubia)–from Side Stream to Anantioxidant, Antihyperglycemic, Antiproliferative, Antimicrobial, Antihemolytic, Anti-Inflammatory, and Antihypertensive Ingredient. Food Chem. 2020, 310, 125909. [Google Scholar] [CrossRef]
- Zivković, J.; Kumar, K.A.; Rushendran, R.; Ilango, K.; Fahmy, N.M.; El-Nashar, H.A.S.; El-Shazly, M.; Ezzat, S.M.; Melgar-Lalanne, G.; Romero-Montero, A.; et al. Pharmacological Properties of Mangiferin: Bioavailability, Mechanisms of Action and Clinical Perspectives. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 763–781. [Google Scholar] [CrossRef]
- Zahin, M.; Ahmad, I.; Gupta, R.C.; Aqil, F. Punicalagin and Ellagic Acid Demonstrate Antimutagenic Activity and Inhibition of Benzo[a]Pyrene Induced DNA Adducts. Biomed. Res. Int. 2014, 2014, 467465. [Google Scholar] [CrossRef]
- Subkorn, P.; Norkaew, C.; Deesrisak, K.; Tanyong, D. Punicalagin, a Pomegranate Compound, Induces Apoptosis and Autophagy in Acute Leukemia. PeerJ 2021, 9, e12303. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.R.; Akash, S.; Hossain, M.E.; Tumpa, A.A.; Abrar Ishtiaque, G.M.; Ahmed, L.; Rauf, A.; Khalil, A.A.; Al Abdulmonem, W.; et al. Pomegranate-Specific Natural Compounds as Onco-Preventive and Onco-Therapeutic Compounds: Comparison with Conventional Drugs Acting on the Same Molecular Mechanisms. Heliyon 2023, 9, e18090. [Google Scholar] [CrossRef]
- Aouey, B.; Samet, A.M.; Fetoui, H.; Simmonds, M.S.J.; Bouaziz, M. Anti-Oxidant, Anti-Inflammatory, Analgesic and Antipyretic Activities of Grapevine Leaf Extract (Vitis vinifera) in Mice and Identification of Its Active Constituents by Lc–Ms/Ms Analyses. Biomed. Pharmacother. 2016, 84, 1088–1098. [Google Scholar] [CrossRef]
- Abed, A.H.; Harb, J.; Khasib, S.; Saad, B. Invitro Assessment of Cytotoxic, Antioxidant and Antimicrobial Activities of Leaves from Two Grape Varieties Collected from Arid and Temperate Regions in Palestine. QScience Connect 2015, 4. [Google Scholar] [CrossRef]
- Esfahanian, Z.; Behbahani, M.; Shanehsaz, M.; Hessami, M.J.; Nejatian, M.A. Evaluation of Anticancer Activity of Fruit and Leave Extracts from Virus Infected and Healthy Cultivars of Vitis vinifera. Cell J. 2013, 15, 116–123. [Google Scholar]
- Handoussa, H.; Hanafi, R.; Eddiasty, I.; El-Gendy, M.; El Khatib, A.; Linscheid, M.; Mahran, L.; Ayoub, N. Anti-Inflammatory and Cytotoxic Activities of Dietary Phenolics Isolated from Corchorus olitorius and Vitis vinifera. J. Funct. Foods. 2013, 5, 1204–1216. [Google Scholar] [CrossRef]
- Machado, A.P.d.F.; Alves, M.d.R.; Nascimento, R.d.P.d.; Reguengo, L.M.; Marostica Junior, M.R. Antiproliferative Effects and Main Molecular Mechanisms of Brazilian Native Fruits and Their by-Products on Lung Cancer. Food Res. Int. 2022, 162, 111953. [Google Scholar] [CrossRef]
- Nichols, J.A.; Katiyar, S.K. Skin Photoprotection by Natural Polyphenols: Anti-Inflammatory, Antioxidant and DNA Repair Mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [Google Scholar] [CrossRef]
- da Silva, A.C.P.; Paiva, J.P.; Diniz, R.R.; dos Anjos, V.M.; Silva, A.B.S.M.; Pinto, A.V.; dos Santos, E.P.; Leitão, A.C.; Cabral, L.M.; Rodrigues, C.R.; et al. Photoprotection Assessment of Olive (Olea europaea L.) Leaves Extract Standardized to Oleuropein: In Vitro and in Silico Approach for Improved Sunscreens. J. Photochem. Photobiol. B Biol. 2019, 193, 162–171. [Google Scholar] [CrossRef]
- Baumann, L.; Bernstein, E.F.; Weiss, A.S.; Bates, D.; Humphrey, S.; Silberberg, M.; Daniels, R. Clinical Relevance of Elastin in the Structure and Function of Skin. Aesthet. Surg. J. Open Forum 2021, 3, ojab019. [Google Scholar] [CrossRef]
- Hassan, M.; Shahzadi, S.; Kloczkowski, A. Tyrosinase Inhibitors Naturally Present in Plants and Synthetic Modifications of These Natural Products as Anti-Melanogenic Agents: A Review. Molecules 2023, 28, 378. [Google Scholar] [CrossRef]
- Leal, C.; Gouvinhas, I.; Santos, R.A.; Rosa, E.; Silva, A.M.; Saavedra, M.J.; Barros, A.I.R.N.A. Potential Application of Grape (Vitis vinifera L.) Stem Extracts in the Cosmetic and Pharmaceutical Industries: Valorization of a by-Product. Ind. Crops Prod. 2020, 154, 112675. [Google Scholar] [CrossRef]
- Taghouti, M.; Martins-Gomes, C.; Schäfer, J.; Félix, L.M.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Thymus pulegioides L. As a Rich Source of Antioxidant, Anti-Proliferative and Neuroprotective Phenolic Compounds. Food Funct. 2018, 9, 3617–3629. [Google Scholar] [CrossRef]
- Vieira, D.; Duarte, J.; Vieira, P.; Gonçalves, M.B.S.; Figueiras, A.; Lohani, A.; Veiga, F.; Mascarenhas-Melo, F. Regulation and Safety of Cosmetics: Pre- and Post-Market Considerations for Adverse Events and Environmental Impacts. Cosmetics 2024, 11, 184. [Google Scholar] [CrossRef]
- Yarovaya, L.; Waranuch, N.; Wisuitiprot, W.; Khunkitti, W. Clinical Study of Asian Skin Changes after Application of a Sunscreen Formulation Containing Grape Seed Extract. J. Cosmet. Dermatol. 2022, 21, 4523–4535. [Google Scholar] [CrossRef] [PubMed]
- Mansour, S.; Viretto, A.; Thevenon, M.-F.; Brancheriau, L. Sustainable Biocomposites from Renewable Resources in West Africa: A Review. J. Renew. Mater. 2025, 2164–6341. [Google Scholar] [CrossRef]
- Bio4Africa Antcare. Available online: https://www.bio4africa.eu/technologies/technology-catalogue/antcare/ (accessed on 11 June 2025).
- Shan, C. Combined Plant Extract for Getting Rid of Mites and Acne and Preparation Method and Use Thereof. US 2022/0110997 A1, 3 May 2021. [Google Scholar]
- Atabay, Ş. Anti-Inflammatory, Anti-Allergic, Anti-Bacterial, Anti-Aging and Anti-Oxidant Effective Multifunctional and Nanotechnological Gel Content and Production Method for the Facial Contour. WO 2022/235238 A2, 26 April 2022. [Google Scholar]
- Gomez-Molina, M.; Albaladejo-Marico, L.; Yepes-Molina, L.; Nicolas-Espinosa, J.; Navarro-León, E.; Garcia-Ibañez, P.; Carvajal, M. Exploring Phenolic Compounds in Crop by-Products for Cosmetic Efficacy. Int. J. Mol. Sci. 2024, 25, 5884. [Google Scholar] [CrossRef]
- Ariyanta, H.A.; Sholeha, N.A.; Fatriasari, W. Current and Future Outlook of Research on Renewable Cosmetics Derived from Biomass. Chem. Biodivers. 2025, 22, e202402249. [Google Scholar] [CrossRef]
- Kasprzak-Drozd, K.; Oniszczuk, T.; Stasiak, M.; Oniszczuk, A. Beneficial Effects of Phenolic Compounds on Gut Microbiota and Metabolic Syndrome. Int. J. Mol. Sci. 2021, 22, 3715. [Google Scholar] [CrossRef]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the Normal Gut Microbiota. World J. Gastroenterol. 2015, 21, 8787–8803. [Google Scholar] [CrossRef]
- Singh, R.K.; Chang, H.-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of Diet on the Gut Microbiome and Implications for Human Health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, W.; Zhang, L.; Wang, M.; Chang, W. The Interaction of Polyphenols and the Gut Microbiota in Neurodegenerative Diseases. Nutrients 2022, 14, 5373. [Google Scholar] [CrossRef]
- Loo, Y.T.; Howell, K.; Chan, M.; Zhang, P.; Ng, K. Modulation of the Human Gut Microbiota by Phenolics and Phenolic Fiber-Rich Foods. Compreh. Rev. Food Sci. Food Saf. 2020, 19, 1268–1298. [Google Scholar] [CrossRef]
- Birbizi, A. Project of Innovative Best Practices for the Reuse of Whey and Underutilized Agro-Industrial Waste. Available online: https://www.birbizi.com/ (accessed on 9 July 2025).
- do Espírito Santo, A.P.; Cartolano, N.S.; Silva, T.F.; Soares, F.A.S.M.; Gioielli, L.A.; Perego, P.; Converti, A.; Oliveira, M.N. Fibers from Fruit by-Products Enhance Probiotic Viability and Fatty Acid Profile and Increase Cla Content in Yoghurts. Int. J. Food Microbiol. 2012, 154, 135–144. [Google Scholar] [CrossRef]
- Hao, C.L.; Esah, E.M.; Tajarudin, H.A.; Akter, B.; Salleh, R.M. Effect of Potential Prebiotics from Selected Fruits Peel on the Growth of Probiotics. J. Food Process. Preserv. 2021, 45, e15581. [Google Scholar] [CrossRef]
- Federation, I.D. Diabetes Facts & Figures. Available online: https://idf.org/about-diabetes/diabetes-facts-figures/ (accessed on 9 July 2025).
- El-Waseif, M.; Saed, B.; El-Behairy, S.; Ali, H.; Elkhadragy, M.; Yehia, H.; Farouk, A. The Valorization of Agro-Wastes and Stevia Leaves as a Sugar Replacer in Cupcake Formulas: Histological and in Vivo Studies on Diabetic Rats. Sustainability 2023, 15, 9126. [Google Scholar] [CrossRef]
- Schiano, E.; Piccolo, V.; Novellino, E.; Maisto, M.; Iannuzzo, F.; Summa, V.; Tenore, G.C. Thinned Nectarines, an Agro-Food Waste with Antidiabetic Potential: Hplc-Hesi-Ms/Ms Phenolic Characterization and in Vitro Evaluation of Their Beneficial Activities. Foods 2022, 11, 1010. [Google Scholar] [CrossRef]
- Büker, M.; Angın, P.; Nurman, N.; Rasouli Pirouzian, H.; Akdeniz, E.; Toker, O.S.; Sagdic, O.; Tamtürk, F. Effects of Apple Pomace as a Sucrose Substitute on the Quality Characteristics of Compound Chocolate and Spread. J. Food Process. Preserv. 2021, 45, e15773. [Google Scholar] [CrossRef]
- Alongi, M.; Melchior, S.; Anese, M. Reducing the Glycemic Index of Short Dough Biscuits by Using Apple Pomace as a Functional Ingredient. LWT 2019, 100, 300–305. [Google Scholar] [CrossRef]
- Behrooznia, Z.; Nourmohammadi, J. Polysaccharide-Based Materials as an Eco-Friendly Alternative in Biomedical, Environmental, and Food Packaging. Giant 2024, 19, 100301. [Google Scholar] [CrossRef]
- Ansari, M.M.; Heo, Y.; Do, K.; Ghosh, M.; Son, Y.-O. Nanocellulose Derived from Agricultural Biowaste by-Products–Sustainable Synthesis, Biocompatibility, Biomedical Applications, and Future Perspectives: A Review. Carbohydr. Polym. Technol. Appl. 2024, 8, 100529. [Google Scholar] [CrossRef]
- Hamed, R.; Magamseh, K.H.; Al-Shalabi, E.; Hammad, A.; Abu-Sini, M.; Abulebdah, D.H.; Tarawneh, O.; Sunoqrot, S. Green Hydrogels Prepared from Pectin Extracted from Orange Peels as a Potential Carrier for Dermal Delivery Systems. ACS Omega 2025, 10, 17182–17200. [Google Scholar] [CrossRef] [PubMed]
- Ezike, T.C.; Okpala, U.S.; Onoja, U.L.; Nwike, C.P.; Ezeako, E.C.; Okpara, O.J.; Okoroafor, C.C.; Eze, S.C.; Kalu, O.L.; Odoh, E.C.; et al. Advances in Drug Delivery Systems, Challenges and Future Directions. Heliyon 2023, 9, e17488. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.; Novoselov, K.S.; Liang, F.; Meng, J.; Ho, S.-H.; Zhao, T.; Zhou, H.; Ahmad, A.; Zhu, Y.; et al. Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine. Nano-Micro Lett. 2023, 15, 35. [Google Scholar] [CrossRef]
- Ganesh, K.S.; Sridhar, A.; Vishali, S. Utilization of Fruit and Vegetable Waste to Produce Value-Added Products: Conventional Utilization and Emerging Opportunities-a Review. Chemosphere 2022, 287, 132221. [Google Scholar] [CrossRef]
- Rao, M.; Bast, A.; de Boer, A. Valorized Food Processing by-Products in the Eu: Finding the Balance between Safety, Nutrition, and Sustainability. Sustainability 2021, 13, 4428. [Google Scholar] [CrossRef]
- Donner, M.; Verniquet, A.; Broeze, J.; Kayser, K.; De Vries, H. Critical Success and Risk Factors for Circular Business Models Valorising Agricultural Waste and by-Products. Resour. Conserv. Recycl. 2021, 165, 105236. [Google Scholar] [CrossRef]
- Seger, C.; Sturm, S. Nmr-Based Chromatography Readouts: Indispensable Tools to “Translate” Analytical Features into Molecular Structures. Cells 2022, 11, 3526. [Google Scholar] [CrossRef] [PubMed]
- Verrillo, M.; Pantina, V.D.; Venezia, V.; Modica, C.; Lo Iacono, M.; Bianca, P.; Bozzari, G.; Angeloro, F.; Cozzolino, V.; Stassi, G.; et al. Exploring the Antitumorigenic Properties of Agro-Food Byproducts: A Comprehensive Scientific Review. Pharmacol. Res. 2025, 216, 107740. [Google Scholar] [CrossRef] [PubMed]
- Rebollo-Hernanz, M.; Aguilera, Y.; Gil-Ramírez, A.; Benítez, V.; Cañas, S.; Braojos, C.; Martin-Cabrejas, M.A. Biorefinery and Stepwise Strategies for Valorizing Coffee by-Products as Bioactive Food Ingredients and Nutraceuticals. Appl. Sci. 2023, 13, 8326. [Google Scholar] [CrossRef]
- Liu, T.; He, M.; Shi, R.; Yin, H.; Luo, W. Biofuel–Pharmaceutical Co-Production in Integrated Biorefineries: Strategies, Challenges, and Sustainability. Fermentation 2025, 11, 312. [Google Scholar] [CrossRef]
- Barathi, A.; Dagwar, P.P.; Kundu, D.; Rajendran, K.; Jacob, S. Biorefineries and Waste Valorization in Integrated Biorefinery Concepts and Applications. In Biotechnological Applications in Industrial Waste Valorization; Kumar, V., Verma, P., Eds.; Springer Nature: Singapore, 2025; pp. 1–21. [Google Scholar]
- Samoraj, M.; Çalış, D.; Trzaska, K.; Mironiuk, M.; Chojnacka, K. Advancements in Algal Biorefineries for Sustainable Agriculture: Biofuels, High-Value Products, and Environmental Solutions. Biocatal. Agric. Biotechnol. 2024, 58, 103224. [Google Scholar] [CrossRef]
- Makepa, D.C.; Chihobo, C.H. Barriers to Commercial Deployment of Biorefineries: A Multi-Faceted Review of Obstacles across the Innovation Chain. Heliyon 2024, 10, e32649. [Google Scholar] [CrossRef]
- Parisi, C. Biorefineries Distribution in the Eu; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Holt, D.A.; Aldrich, C.G. Evaluation of Torula Yeast as a Protein Source in Extruded Feline Diets. J. Anim. Sci. 2022, 100, skac327. [Google Scholar] [CrossRef]
- Cravotto, G.; Mariatti, F.; Gunjevic, V.; Secondo, M.; Villa, M.; Parolin, J.; Cavaglià, G. Pilot Scale Cavitational Reactors and Other Enabling Technologies to Design the Industrial Recovery of Polyphenols from Agro-Food by-Products, a Technical and Economical Overview. Foods 2018, 7, 130. [Google Scholar] [CrossRef]
- Rothstein, S.; Akhtar, T.; Casaretto, J.; Bozzo, G.; Perrin, C.; Parry, C. Extracts Enriched with Polyphenolic Compounds and Related Methods. WO 2021/119826 A1, 18 December 2020. [Google Scholar]
- Ianiro Teodoro, T.; Fisher Laurel, A. Chardonnay Grape Seed Extract. US 10034910 B2, 29 May 2015. [Google Scholar]
- Vieira, S.F.; Reis, R.L.; Ferreira, H.; Neves, N.M. Plant-Derived Bioactive Compounds as Key Players in the Modulation of Immune-Related Conditions. Phytochem. Rev. 2025, 24, 343–460. [Google Scholar] [CrossRef]
- Chaachouay, N. Synergy, Additive Effects, and Antagonism of Drugs with Plant Bioactive Compounds. Drugs Drug Candidates 2025, 4, 4. [Google Scholar] [CrossRef]
- Zaky, A.A.; Akram, M.U.; Rybak, K.; Witrowa-Rajchert, D.; Nowacka, M. Bioactive Compounds from Plants and by-Products: Novel Extraction Methods, Applications, and Limitations. AIMS Mol. Sci. 2024, 11, 150–188. [Google Scholar] [CrossRef]
- Fernández-Ochoa, Á.; Cádiz-Gurrea, M.L.; Fernández-Moreno, P.; Rojas-García, A.; Arráez-Román, D.; Segura-Carretero, A. Recent Analytical Approaches for the Study of Bioavailability and Metabolism of Bioactive Phenolic Compounds. Molecules 2022, 27, 777. [Google Scholar] [CrossRef]
- Aït-Kaddour, A.; Hassoun, A.; Tarchi, I.; Loudiyi, M.; Boukria, O.; Cahyana, Y.; Ozogul, F.; Khwaldia, K. Transforming Plant-Based Waste and by-Products into Valuable Products Using Various “Food Industry 4.0” Enabling Technologies: A Literature Review. Sci. Total Environ. 2024, 955, 176872. [Google Scholar] [CrossRef]
- Angeloni, C.; Malaguti, M.; Prata, C.; Freschi, M.; Barbalace, M.C.; Hrelia, S. Mechanisms Underlying Neurodegenerative Disorders and Potential Neuroprotective Activity of Agrifood by-Products. Antioxidants 2022, 12, 94. [Google Scholar] [CrossRef] [PubMed]
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Usman, M.; Nakagawa, M.; Cheng, S. Emerging Trends in Green Extraction Techniques for Bioactive Natural Products. Processes 2023, 11, 3444. [Google Scholar] [CrossRef]
- Rana, L.; Kumar, M.; Rajput, J.; Kumar, N.; Sow, S.; Kumar, S.; Kumar, A.; Singh, S.N.; Jha, C.K.; Singh, A.K.; et al. Nexus between Nanotechnology and Agricultural Production Systems: Challenges and Future Prospects. Discov. Appl. Sci. 2024, 6, 555. [Google Scholar] [CrossRef]
- Shilpa, V.S.; Shams, R.; Dash, K.K.; Pandey, V.K.; Dar, A.H.; Ayaz Mukarram, S.; Harsányi, E.; Kovács, B. Phytochemical Properties, Extraction, and Pharmacological Benefits of Naringin: A Review. Molecules 2023, 28, 5623. [Google Scholar] [CrossRef]
- Šeremet, D.; Durgo, K.; Komljenović, A.; Antolić, M.; Mandura Jarić, A.; Huđek Turković, A.; Komes, D.; Šantek, B. Red Beetroot and Banana Peels as Value-Added Ingredients: Assessment of Biological Activity and Preparation of Functional Edible Films. Polymers 2022, 14, 4724. [Google Scholar] [CrossRef] [PubMed]
- Cil, A.Y.; Abdurahman, D.; Cil, I. Internet of Things Enabled Real Time Cold Chain Monitoring in a Container Port. J. Shipp. Trade 2022, 7, 9. [Google Scholar] [CrossRef]
- Ruiz-Garcia, L.; Lunadei, L. Monitoring Cold Chain Logistics by Means of Rfid; InTech: Houston, TX, USA, 2010. [Google Scholar]
- Dlouhá, J.; Glavič, P.; Barton, A. Higher Education in Central European Countries–Critical Factors for Sustainability Transition. J. Clean. Prod. 2017, 151, 670–684. [Google Scholar] [CrossRef]
- Roy, P.; Mohanty, A.K.; Dick, P.; Misra, M. A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS Environ. Au 2023, 3, 58–75. [Google Scholar] [CrossRef]
- Ronie, M.E.; Abdul Aziz, A.H.; Kobun, R.; Pindi, W.; Roslan, J.; Putra, N.R.; Mamat, H. Unveiling the Potential Applications of Plant by-Products in Food–a Review. Waste Manag. Bull. 2024, 2, 183–203. [Google Scholar] [CrossRef]
- Ingrao, C.; Arcidiacono, C.; Bezama, A.; Ioppolo, G.; Winans, K.; Koutinas, A.; Gallego-Schmid, A. Sustainability Issues of by-Product and Waste Management Systems, to Produce Building Material Commodities: A Comprehensive Review of Findings from a Virtual Special Issue. Resour. Conserv. Recycl. 2019, 146, 358–365. [Google Scholar] [CrossRef]
- Chaudhary, N.; Dangi, P.; Chaudhary, V.; Dewan, A.; Sharma, S.P.; Poonia, A.; Kumar, M. A Review on Instant Controlled Pressure Drop Technology—A Strategic Tool for Extraction of Bioactive Compounds. Int. J. Food Sci. Technol. 2022, 57, e1–e11. [Google Scholar] [CrossRef]
- Dhiman, S.; Thakur, B.; Kaur, S.; Ahuja, M.; Gantayat, S.; Sarkar, S.; Singh, R.; Tripathi, M. Closing the Loop: Technological Innovations in Food Waste Valorisation for Global Sustainability. Discover Sustain. 2025, 6, 258. [Google Scholar] [CrossRef]
- Ferraz, L.P.; Silva, E.K. Pulsed Electric Field-Assisted Extraction Techniques for Obtaining Vegetable Oils and Essential Oils: Recent Progress and Opportunities for the Food Industry. Sep. Purif. Technol. 2025, 354, 128833. [Google Scholar] [CrossRef]
- Herzyk, F.; Piłakowska-Pietras, D.; Korzeniowska, M. Supercritical Extraction Techniques for Obtaining Biologically Active Substances from a Variety of Plant Byproducts. Foods 2024, 13, 1713. [Google Scholar] [CrossRef]
- Shawky, E.; Gibbons, S.; Selim, D.A. Bio-Sourcing from Byproducts: A Comprehensive Review of Bioactive Molecules in Agri-Food Waste (Afw) Streams for Valorization and Sustainable Applications. Bioresour. Technol. 2025, 431, 132640. [Google Scholar] [CrossRef] [PubMed]
- Vilas-Franquesa, A.; Montemurro, M.; Casertano, M.; Fogliano, V. The Food by-Products Bioprocess Wheel: A Guidance Tool for the Food Industry. Trends Food Sci. Technol. 2024, 152, 104652. [Google Scholar] [CrossRef]
- Savic, I.M.; Savic Gajic, I.M.; Milovanovic, M.G.; Zerajic, S.; Gajic, D.G. Optimization of Ultrasound-Assisted Extraction and Encapsulation of Antioxidants from Orange Peels in Alginate-Chitosan Microparticles. Antioxidants 2022, 11, 297. [Google Scholar] [CrossRef]
- Vargas-Serna, C.L.; Ochoa-Martínez, C.I.; Vélez-Pasos, C. Microwave-Assisted Extraction of Phenolic Compounds from Pineapple Peel Using Deep Eutectic Solvents. Horticulturae 2022, 8, 791. [Google Scholar] [CrossRef]
- Aresta, A.; De Vietro, N.; Cotugno, P.; Pierri, C.L.; Trisolini, L.; Zambonin, C. Supercritical Fluid Extraction of Bioactive Components from Apple Peels and Their Modulation of Complex I Activity in Isolated Mitochondria. Antioxidants 2024, 13, 307. [Google Scholar] [CrossRef]
- García, P.; Bustamante, A.; Echeverría, F.; Encina, C.; Palma, M.; Sanhueza, L.; Sambra, V.; Pando, M.E.; Jiménez, P. A Feasible Approach to Developing Fiber-Enriched Bread Using Pomegranate Peel Powder: Assessing Its Nutritional Composition and Glycemic Index. Foods 2023, 12, 2798. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhu, S.; Wan, W.; Yu, M.; Zeng, X.A.; Deng, Z. Pulsed Electric Field-Assisted Extraction of Hesperidin from Tangerine Peel and Its Technological Optimization through Response Surface Methodology. J. Sci. Food Agric. 2024, 104, 6687–6695. [Google Scholar] [CrossRef]
- Amulya, P.R.; Ul Islam, R. Optimization of Enzyme-Assisted Extraction of Anthocyanins from Eggplant (Solanum melongena L.) Peel. Food Chem. 2023, 18, 100643. [Google Scholar] [CrossRef]
- Cerda-Cejudo, N.D.; Buenrostro-Figueroa, J.J.; Sepúlveda, L.; Torres-Leon, C.; Chávez-González, M.L.; Ascacio-Valdés, J.A.; Aguilar, C.N. Recovery of Ellagic Acid from Mexican Rambutan Peel by Solid-State Fermentation-Assisted Extraction. Food Bioprod. Process. 2022, 134, 86–94. [Google Scholar] [CrossRef]
- Singh, P.P.; Saldaña, M.D.A. Subcritical Water Extraction of Phenolic Compounds from Potato Peel. Food Res. Int. 2011, 44, 2452–2458. [Google Scholar] [CrossRef]
- Ranjbar, N.; Eikani, M.H.; Javanmard, M.; Golmohammad, F. Impact of Instant Controlled Pressure Drop on Phenolic Compounds Extraction from Pomegranate Peel. Innov. Food Sci. Emerg. Technol. 2016, 37, 177–183. [Google Scholar] [CrossRef]
- Li, S.; Lambros, T.; Wang, Z.; Goodnow, R.; Ho, C.-T. Efficient and Scalable Method in Isolation of Polymethoxyflavones from Orange Peel Extract by Supercritical Fluid Chromatography. J. Chromatogr. B 2007, 846, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, H.; Kaya, M.; Berktas, S.; Basyigit, B.; Cam, M. Pressurised Hot Water Extraction of Phenolic Compounds with a Focus on Eriocitrin and Hesperidin from Lemon Peel. Int. J. Food Sci. Technol. 2023, 58, 2060–2066. [Google Scholar] [CrossRef]
- Gomez-Urios, C.; Siroli, L.; Grassi, S.; Patrignani, F.; Blesa, J.; Lanciotti, R.; Frígola, A.; Iametti, S.; Esteve, M.J.; Di Nunzio, M. Sustainable Valorization of Citrus by-Products: Natural Deep Eutectic Solvents for Bioactive Extraction and Biological Applications of Citrus Sinensis Peel. Eur. Food Res. Technol. 2025, 251, 1965–1980. [Google Scholar] [CrossRef]
Plant | By-Product | Bioactive Compounds | Type of Extractant | Bacterial Species | Activity (MIC: mg By-Product mL−1 Extract) | Reference |
---|---|---|---|---|---|---|
Pomegranate (Punica granatum) | Peel | Polyphenols, carotenoids, and tannins | Methanol 70% | E. coli (CCM 3988) S. entérica (CCM 3807) E. faecalis (CCM 4224) S. aureus (CCM 2461) B. subtilis (CCM 1999) | PTO8 HIC 17.1 255 93 21.3 51.6 12.5 68.5 57.2 1.5 3.4 | [23] |
Orange (Citrus spp.) | Peel | Not specified | Methanol | K. pneumoniae E. coli Salmonella typhi Streptococcus pyogenes | MIC: μg mL−1 310 320 280 370 | [50] |
Distilled water | K. pneumoniae E. coli S. typhi S. pyogenes | 140 270 250 340 | ||||
Yellow lemon (Citrus medica limonum) | Peel | Methanol | K. pneumoniae E. coli S. typhi S. pyogenes | 130 220 210 210 | ||
Distilled water | K. pneumoniae E. coli S. typhi S. pyogenes | 310 140 280 250 | ||||
Ginger (Zingiber officinale) | Peel | Polyphenol | Methanol | E. coli Bacillus megaterium B. cereus S. aureus | Not determined | [47] |
Garlic (Allium sativum) | ||||||
Onion (Allium cepa) | ||||||
Potato (Solanum tuberosum) | ||||||
Tomato (Solanum lycopersicum) | Peel | Lycopene, β-carotene, lutein, and different phenolic compounds | Methanol 80% | S. aureus (ATCC 49444) B. subtilis (ATCC 11778) L. monocytogenes (ATCC 19114) K. pneumoniae (DSMZ 2026) | Tiny Tim 0.625 1.25 2.5 2.5 | [49] |
Banana (Musa acuminata) | Peel | Flavonoids, quinnones, and alkaloid | Ethanol/distilled water | P. aeruginosa E. coli B. subtilis | 3.125/3.125 3.125/3.125 3.125/3.125 | [51] |
Pulp | Not specified | Methanol | S. aureus Streptococcus pneunoniae E. coli Haemophilus influenza | Not determined | [47] | |
Leaves | Alkaloids, saponins, terpenoids, tannins, phenols, and flavonoids | Methanol and hexane | Staphylococcus epidermidis | Not determined | [48] | |
Black cumin (Nigella sativa) | Seed oil | p-cymene, linalool, thymoquinone, trans-anethole, and m-thymol | Not specified | MRSA # | 0.0001 | [54] |
Plant | Organ | Vegetal Residue | Fungal Species | Type of Extractant | Activity (Growth Inhibition) | Disease | References |
---|---|---|---|---|---|---|---|
Pomegranate (P. granatum) | Fruit | Peel | Aspergillus flavus | Methanol 70% | * •• | Pulmonar aspergillosis Hepatocellular carcinoma (aflatoxin B1, B2, M1, M2) | [23] |
Aspergillus parasiticus | • | Aspergillosis (aflatoxin) | |||||
Fusarium verticillioides | ••• | Keratitis | |||||
Ginger (Z. officinale) | Rhizome | Peel | F. verticillioides | Methanol | ••• | Keratitis | [47] |
Garlic (A. sativum) | Bulb | Peel | ••• | ||||
Onion (A. cepa) | Bulb | Peel | • | ||||
Potato (S. tuberosum) | Bulb | Peel | ••• | ||||
Banana (M. acuminata) | Leaf | Leaf | Trichophyton mentagrophytes | Hexane and methanol | ••• | Ringworm | [48] |
Banana (M. paradisiaca) | Fruit | Peel | A. flavus | Distilled water | •• | Pulmonar aspergillosis Hepatocellular carcinoma (aflatoxin B1, B2, M1, M2) | [65,66] |
Penicillium griseofulvum | •• | Alimentary intoxication (patulin) | |||||
A. tubingensis | • | Nefrotoxicity (ocratoxin A) | |||||
Mandarin (C. reticulata) | Fruit | Peel | A. flavus | •• | Pulmonar aspergillosis Hepatocellular carcinoma (aflatoxin B1, B2, M1, M2) | ||
A. tubingensis | • | Nefrotoxicity (ocratoxin A) | |||||
P. griseofulvum | ••• | Alimentary intoxication (patulin) |
Vegetal Residue | Bioactive Compounds | Type of Extractant | In Vitro Activity as Antitumorals | Reference | |
---|---|---|---|---|---|
Mango (Mangifera indica) | Mango seed kernels | Gallate derivatives and gallotannins, mangiferin | Lipidic fraction: n-heptane Polar fraction: ethanol/ethyl acetate | Colorectal cancer (HT-29) | [93] |
Orange, lemon, mandarin… (Citrus spp.) | Citrus peel oils | Limonene, hesperetin | Water | C. reticulata: Dalton’s Lymphoma Ascites (DLA) cells | [94] |
Grape (Vitis vinifera) | Grape leaves | Polyphenols | 98% (v/v) methanol | Breast, leukemia, and lung | [95] |
Grape seeds | Flavan-3-ols | Ethanol/water solution (50:50 v/v) | Colorectal cancer (Caco-2) | [96] | |
Proanthocyanidin (GSPE) | Water-alcohol | GSPE may be a promising adjuvant to prevent cardiotoxicity of doxorubicin | [97] | ||
Procyanidin B2 | Not specified | Colorectal cancer | [98] | ||
Pomegranate (P. granatum, Akko variety) | Pericarp (peel powder) | β-glucans | Acetone and methanol | Chemopreventive and adjuvant treatment | [99,100] |
Pink lady apple (Malus domestica) | Peel | Flavonoids | Ethyl alcohol | LoVo human colon cancer cells and MCF-7 human breast cancer cells | [101] |
Sweet potato (Ipomoea batatas) | Peel | Nanoemulsion of carotenoids | Hexane/ethanol/ acetone/toluene (10:6:7:7, v/v/v/v) | MCF-7 breast cancer | [102] |
Avocado (Persea americana) | Seed | Triterpenoids isolates | Ethanol | Liver cancer | [103] |
Açaí (Euterpe oleracea) | Seed | Phenols | Ethanol + water | A549 cell line (lung cancer) | [104] |
Catechins, procyanidins, phenols | Water | NCI-H460 cell line (lung cancer) | [105] | ||
Camu-camu (Myrciaria dubia) | Seed | Phenols, condensed tannins, non-tannin phenolics | Ethanol + water | A549 cell line (lung cancer) | [106] |
Phenols, condensed tannins | Water + ethanol + propanone (41:16:43) | [107] |
Vegetal Residue | By-Product | Type of Extractant | Activity | Reference |
---|---|---|---|---|
Yellow watermelon (Citrullus lanatus), honeydew (Cucumis melo), and papaya (Carica papaya Linn.) | Peel | Ethanol and distilled water | Prebiotics | [138] |
Orange (C. sinensis) | Peel | Not specified | Prebiotics | [136] |
Olive (O. europaea) | JAO | |||
Apple (M. domestica ‘Gala’), banana (M. acuminata Cavendish Subgroup), and passion fruit (Passiflora edulis) | Peel | Not specified | Prebiotics | [137] |
Internal Analysis | External Analysis |
---|---|
Weaknesses | Threats |
|
|
Strengths | Opportunities |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estarriaga-Navarro, S.; Valls, T.; Plano, D.; Sanmartín, C.; Goicoechea, N. Potential Application of Plant By-Products in Biomedicine: From Current Knowledge to Future Opportunities. Antioxidants 2025, 14, 942. https://doi.org/10.3390/antiox14080942
Estarriaga-Navarro S, Valls T, Plano D, Sanmartín C, Goicoechea N. Potential Application of Plant By-Products in Biomedicine: From Current Knowledge to Future Opportunities. Antioxidants. 2025; 14(8):942. https://doi.org/10.3390/antiox14080942
Chicago/Turabian StyleEstarriaga-Navarro, Silvia, Teresa Valls, Daniel Plano, Carmen Sanmartín, and Nieves Goicoechea. 2025. "Potential Application of Plant By-Products in Biomedicine: From Current Knowledge to Future Opportunities" Antioxidants 14, no. 8: 942. https://doi.org/10.3390/antiox14080942
APA StyleEstarriaga-Navarro, S., Valls, T., Plano, D., Sanmartín, C., & Goicoechea, N. (2025). Potential Application of Plant By-Products in Biomedicine: From Current Knowledge to Future Opportunities. Antioxidants, 14(8), 942. https://doi.org/10.3390/antiox14080942