Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,981)

Search Parameters:
Keywords = variety screening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2283 KiB  
Article
A Remote Strawberry Health Monitoring System Performed with Multiple Sensors Approach
by Xiao Du, Jun Steed Huang, Qian Shi, Tongge Li, Yanfei Wang, Haodong Liu, Zhaoyuan Zhang, Ni Yu and Ning Yang
Agriculture 2025, 15(15), 1690; https://doi.org/10.3390/agriculture15151690 - 5 Aug 2025
Abstract
Temperature is a key physiological indicator of plant health, influenced by factors including water status, disease and developmental stage. Monitoring changes in multiple factors is helpful for early diagnosis of plant growth. However, there are a variety of complex light interference phenomena in [...] Read more.
Temperature is a key physiological indicator of plant health, influenced by factors including water status, disease and developmental stage. Monitoring changes in multiple factors is helpful for early diagnosis of plant growth. However, there are a variety of complex light interference phenomena in the greenhouse, so traditional detection methods cannot meet effective online monitoring of strawberry health status without manual intervention. Therefore, this paper proposes a leaf soft-sensing method based on a thermal infrared imaging sensor and adaptive image screening Internet of Things system, with additional sensors to realize indirect and rapid monitoring of the health status of a large range of strawberries. Firstly, a fuzzy comprehensive evaluation model is established by analyzing the environmental interference terms from the other sensors. Secondly, through the relationship between plant physiological metabolism and canopy temperature, a growth model is established to predict the growth period of strawberries based on canopy temperature. Finally, by deploying environmental sensors and solar height sensors, the image acquisition node is activated when the environmental interference is less than the specified value and the acquisition is completed. The results showed that the accuracy of this multiple sensors system was 86.9%, which is 30% higher than the traditional model and 4.28% higher than the latest advanced model. It makes it possible to quickly and accurately assess the health status of plants by a single factor without in-person manual intervention, and provides an important indication of the early, undetectable state of strawberry disease, based on remote operation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

19 pages, 1239 KiB  
Article
Effect of Nudge Interventions in Real-World Kiosks on Consumer Beverage Choices to Promote Non-Sugar-Sweetened Beverage Consumption
by Suah Moon, Seo-jin Chung and Jieun Oh
Nutrients 2025, 17(15), 2524; https://doi.org/10.3390/nu17152524 - 31 Jul 2025
Viewed by 269
Abstract
Background/Objectives: Excessive sugar intake through sugar-sweetened beverages (SSBs) has raised global concerns due to its association with various health risks. This study evaluates the effectiveness of nudges—in the form of order placement, variety expansion, and a combination of both—in promoting non-SSB purchases [...] Read more.
Background/Objectives: Excessive sugar intake through sugar-sweetened beverages (SSBs) has raised global concerns due to its association with various health risks. This study evaluates the effectiveness of nudges—in the form of order placement, variety expansion, and a combination of both—in promoting non-SSB purchases at self-service kiosks, a key environment for SSB consumption. Methods: This study was conducted using a real-world kiosk at food and beverage outlets in South Korea from 28 May to 12 July, 2024. A total of 183 consumers aged 19 to 29 participated in this study. A single kiosk device was used with four screen layouts, each reflecting a different nudge strategy. Participants were unaware of these manipulations when making their purchases. After their purchases, participants completed a survey. All data were analyzed using IBM SPSS Statistics for Windows, Version 29.0. Results: Females reported significantly higher positive attitudes, preferences, and perceived necessity regarding nudges compared to males. In particular, both the single (variety) and combination (order and variety) nudges received positive responses from females (p < 0.001). The combination nudge significantly increased non-SSB purchases compared to the control (p < 0.05) and single (order) nudge groups (p < 0.01), which suggests that combination nudge is effective in promoting healthier beverage choices. Females were also more likely to purchase non-SSBs than males (p < 0.05). Conclusions: The findings suggest that the combination nudge strategy effectively promotes healthier beverage choices in real kiosk settings. Notably, females demonstrate significantly higher positive attitudes, preferences, and perceived necessity regarding nudges compared to males, and are also more likely to purchase non-SSBs. These findings offer valuable insights for real-world applications aimed at encouraging healthier consumption behaviors. Full article
(This article belongs to the Special Issue Policies of Promoting Healthy Eating)
Show Figures

Figure 1

17 pages, 2601 KiB  
Article
Tree Selection of Vernicia montana in a Representative Orchard Cluster Within Southern Hunan Province, China: A Comprehensive Evaluation Approach
by Juntao Liu, Zhexiu Yu, Xihui Li, Ling Zhou, Ruihui Wang and Weihua Zhang
Plants 2025, 14(15), 2351; https://doi.org/10.3390/plants14152351 - 30 Jul 2025
Viewed by 318
Abstract
With the objective of identifying superior Vernicia montana trees grounded in phenotypic and agronomic traits, this study sought to develop and implement a comprehensive evaluation method which would provide a practical foundation for future clonal breeding initiatives. Using the Vernicia montana propagated from [...] Read more.
With the objective of identifying superior Vernicia montana trees grounded in phenotypic and agronomic traits, this study sought to develop and implement a comprehensive evaluation method which would provide a practical foundation for future clonal breeding initiatives. Using the Vernicia montana propagated from seedling forests grown in the Suxian District of Chenzhou City in southern Hunan Province, we conducted pre-selection, primary selection, and re-selection of Vernicia montana forest stands and took the nine trait indices of single-plant fruiting quantity, single-plant fruit yield, disease and pest resistance, fruit ripening consistency, fruit aggregation, fresh fruit single-fruit weight, fresh fruit seed rate, dry seed kernel rate, and seed kernel oil content rate as the optimal evaluation indexes and carried out cluster analysis and a comprehensive evaluation in order to establish a comprehensive evaluation system for superior Vernicia montana trees. The results demonstrated that a three-stage selection process—consisting of pre-selection, primary selection, and re-selection—was conducted using a comprehensive analytical approach. The pre-selection phase relied primarily on sensory evaluation criteria, including fruit count per plant, tree size, tree morphology, and fruit clustering characteristics. Through this rigorous screening process, 60 elite plants were selected. The primary selection was based on phenotypic traits, including single-plant fruit yield, pest and disease resistance, and uniformity of fruit ripening. From this stage, 36 plants were selected. Twenty plants were then selected for re-selection based on key performance indicators, such as fresh fruit weight, fresh fruit seed yield, dry seed kernel yield, and oil content of the seed kernel. Then the re-selected optimal trees were clustered and analyzed into three classes, with 10 plants in class I, 7 plants in class II, and 3 plants in class III. In class I, the top three superior plants exhibited outstanding performance across key traits: their fresh fruit weight per fruit, fresh fruit seed yield, dry seed yield, and seed kernel oil content reached 41.61 g, 42.80%, 62.42%, and 57.72%, respectively. Compared with other groups, these figures showed significant advantages: 1.17, 1.09, 1.12, and 1.02 times the average values of the 20 reselected superior trees; 1.22, 1.19, 1.20, and 1.08 times those of the 36 primary-selected superior trees; and 1.24, 1.25, 1.26, and 1.19 times those of the 60 pre-selected trees. Fruits counts per plant and the number of fruits produced per plant of the best three plants in class I were 885 and 23.38 kg, respectively, which were 1.13 and 1.18 times higher than the average of 20 re-selected superior trees, 1.25 and 1.30 times higher than the average of 36 first-selected superior trees, and 1.51 and 1.58 times higher than the average of 60 pre-selected superior trees. Class I superior trees, especially the top three genotypes, are suitable for use as mother trees for scion collection in grafting. The findings of this study provide a crucial foundation for developing superior clonal varieties of Vernicia montana through selective breeding. Full article
Show Figures

Figure 1

16 pages, 3903 KiB  
Article
Identification of Salt Tolerance-Related NAC Genes in Wheat Roots Based on RNA-Seq and Association Analysis
by Lei Zhang, Aili Wei, Weiwei Wang, Xueqi Zhang, Zhiyong Zhao and Linyi Qiao
Plants 2025, 14(15), 2318; https://doi.org/10.3390/plants14152318 - 27 Jul 2025
Viewed by 335
Abstract
Excavating new salt tolerance genes and utilizing them to improve salt-tolerant wheat varieties is an effective way to utilize salinized soil. The NAC gene family plays an important role in plant response to salt stress. In this study, 446 NAC sequences were isolated [...] Read more.
Excavating new salt tolerance genes and utilizing them to improve salt-tolerant wheat varieties is an effective way to utilize salinized soil. The NAC gene family plays an important role in plant response to salt stress. In this study, 446 NAC sequences were isolated from the whole genome of common wheat and classified into 118 members based on subgenome homology, named TaNAC1 to TaNAC118. Transcriptome analysis of salt-tolerant wheat breeding line CH7034 roots revealed that 144 of the 446 TaNAC genes showed significant changes in expression levels at least two time points after NaCl treatment. These differentially expressed TaNACs were divided into four groups, and Group 4, containing the largest number of 78 genes, exhibited a successive upregulation trend after salt treatment. Single nucleotide polymorphisms (SNPs) of the TaNAC gene family in 114 wheat germplasms were retrieved from the public database and were subjected to further association analysis with the relative salt-injury rates (RSIRs) of six root phenotypes, and then 20 SNPs distributed on chromosomes 1B, 2B, 2D, 3B, 3D, 5B, 5D, and 7A were correlated with phenotypes involving salt tolerance (p < 0.0001). Combining the results of RT-qPCR and association analysis, we further selected three NAC genes from Group 4 as candidate genes that related to salt tolerance, including TaNAC26-D3.2, TaNAC33-B, and TaNAC40-B. Compared with the wild type, the roots of the tanac26-d3.2 mutant showed shorter length, less volume, and reduced biomass after being subjected to salt stress. Four SNPs of TaNAC26-D3.2 formed two haplotypes, Hap1 and Hap2, and germplasms with Hap2 exhibited better salt tolerance. Snp3, in exon 3 of TaNAC26-D3.2, causing a synonymous mutation, was developed into a Kompetitive Allele-Specific PCR marker, K3, to distinguish the two haplotypes, which can be further used for wheat germplasm screening or marker-assisted breeding. This study provides new genes and molecular markers for improvement of salt tolerance in wheat. Full article
Show Figures

Figure 1

27 pages, 1518 KiB  
Review
Application of Microbial Fermentation in Caffeine Degradation and Flavor Modulation of Coffee Beans
by Lu-Xia Ran, Xiang-Ying Wei, Er-Fang Ren, Jian-Feng Qin, Usman Rasheed and Gan-Lin Chen
Foods 2025, 14(15), 2606; https://doi.org/10.3390/foods14152606 - 24 Jul 2025
Viewed by 483
Abstract
Coffee is one of the most widely consumed beverages worldwide, primarily due to the stimulating effects attributed to its caffeine content. However, excessive intake of caffeine results in negative effects, including palpitations, anxiety, and insomnia. Therefore, low-caffeine coffee has captivated growing consumer interest, [...] Read more.
Coffee is one of the most widely consumed beverages worldwide, primarily due to the stimulating effects attributed to its caffeine content. However, excessive intake of caffeine results in negative effects, including palpitations, anxiety, and insomnia. Therefore, low-caffeine coffee has captivated growing consumer interest, highlighting its significant market potential. Traditional decaffeination methods often lead to non-selective extraction, resulting in a loss of desirable flavor compounds, thereby compromising coffee quality. In recent years, microbial fermentation has emerged as a promising, targeted, and safe approach for reducing caffeine content during processing. Additionally, mixed-culture fermentation further enhances coffee flavor and overcomes the drawbacks of monoculture fermentation, such as low efficiency and limited flavor profiles. Nonetheless, several challenges are yet to be resolved, including microbial tolerance to caffeine and related alkaloids, the safety of fermentation products, and elucidation of the underlying mechanisms behind microbial synergy in co-cultures. This review outlines the variety of microorganisms with the potential to degrade caffeine and the biochemical processes involved in this process. It explores how microbes tolerate caffeine, the safety of metabolites produced during fermentation, and the synergistic effects of mixed microbial cultures on the modulation of coffee flavor compounds, including esters and carbonyls. Future directions are discussed, including the screening of alkaloid-tolerant strains, constructing microbial consortia for simultaneous caffeine degradation for flavor enhancement, and developing high-quality low-caffeine coffee. Full article
Show Figures

Figure 1

13 pages, 980 KiB  
Article
Determination of Rice Accession Status Using Infochemical and Visual Cues Emitted to Sustainably Control Diopsis apicalis Dalman
by Roland Bocco, Esther Pegalepo, Abou Togola, Francis Nwilene, Christophe Bernard Gandonou, Yedomon Ange Bovys Zoclanclounon, Marie Noelle Ndjiondjop, Mounirou Sow, Jeong Jun Kim and Manuele Tamò
Insects 2025, 16(8), 752; https://doi.org/10.3390/insects16080752 - 23 Jul 2025
Viewed by 285
Abstract
This study assessed the host plant selection behavior of female stalk-eyed flies (SEFs) or Diopsis apicalis, where a Y-tube olfactometer was used to compare SEF attraction to the odor of leaves from four rice varieties (ITA306, WAB56-104, CG14, and RAM55). Another step [...] Read more.
This study assessed the host plant selection behavior of female stalk-eyed flies (SEFs) or Diopsis apicalis, where a Y-tube olfactometer was used to compare SEF attraction to the odor of leaves from four rice varieties (ITA306, WAB56-104, CG14, and RAM55). Another step of the evaluation consisted of pairing leaf odors from two rice varieties. Also, potted plants of the tested varieties were displayed in a screened cage and submitted to female SEF selection. The results indicated that the odor produced by leaves from rice varieties CG14, WAB56-104, and ITA306 significantly attracted SEFs, at rates of 81%, 70%, and 97%, respectively, while SEF females were rarely attracted by the odor of leaves from the resistant rice variety RAM55, at a rate of 35%. The results suggested that the use of a Y-tube olfactometer was similar to the use of a screened cage. The resistance exhibited by rice variety CG14 against SEFs is related to an antibiosis interaction acting as bait, while that in RAM55 is an antixenosis one. Farmers can plant the traditional CG14 variety on the edge of rice fields to draw SEFs and poison their larvae. However, RAM55 can be inserted in an intercropping system to repel SEFs from laying eggs. The authors recommend CG14 and RAM55 as candidates for breeding to create resistant lines against SEF. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

19 pages, 3772 KiB  
Article
Phenotypic Diversity Analysis and Integrative Evaluation of Camellia oleifera Germplasm Resources in Ya’an, Sichuan Province
by Shiheng Zheng, Qingbo Kong, Hanrui Yan, Junjie Liu, Renke Tang, Lijun Zhou, Hongyu Yang, Xiaoyu Jiang, Shiling Feng, Chunbang Ding and Tao Chen
Plants 2025, 14(14), 2249; https://doi.org/10.3390/plants14142249 - 21 Jul 2025
Viewed by 378
Abstract
As a unique woody oil crop in China, Camellia oleifera Abel. germplasm resources show significant genetic diversity in Ya’an City. This study measured 60 phenotypic traits (32 quantitative, 28 qualitative) of 302 accessions to analyze phenotypic variation, establish a classification system, and screen [...] Read more.
As a unique woody oil crop in China, Camellia oleifera Abel. germplasm resources show significant genetic diversity in Ya’an City. This study measured 60 phenotypic traits (32 quantitative, 28 qualitative) of 302 accessions to analyze phenotypic variation, establish a classification system, and screen high-yield, high-oil germplasms. The phenotypic diversity index for fruit (H’ = 1.36–1.44) was significantly higher than for leaf (H’ = 1.31) and flower (H’ < 1), indicating genetic diversity concentrated in reproductive traits, suggesting potential genetic variability in these traits. Fruit quantitative traits (e.g., single fruit weight CV = 35.37%, fresh seed weight CV = 38.93%) showed high genetic dispersion. Principal component analysis confirmed the fruit factor and economic factor as main phenotypic differentiation drivers. Quantitative traits were classified morphologically, and correlation analysis integrated them into 13 key indicators classified using LSD and range methods. Finally, TOPSIS evaluation selected 10 excellent germplasms like TQ122 and TQ49, with fruit weight, fresh seed yield, and kernel oil content significantly exceeding the population average. This study provides data for C. oleifera DUS test guidelines and proposes a multi-trait breeding strategy, supporting high-yield variety selection and germplasm resource protection. Full article
(This article belongs to the Special Issue Genetic Diversity and Germplasm Innovation in Woody Oil Crops)
Show Figures

Figure 1

22 pages, 3974 KiB  
Article
Selection for Low-Nitrogen Tolerance Using Multi-Trait Genotype Ideotype Distance Index (MGIDI) in Poplar Varieties
by Jinhong Niu, Dongxu Jia, Zhenyuan Zhou, Mingrong Cao, Chenggong Liu, Qinjun Huang and Jinhua Li
Agronomy 2025, 15(7), 1754; https://doi.org/10.3390/agronomy15071754 - 21 Jul 2025
Viewed by 275
Abstract
The screening of poplar varieties that demonstrate tolerance to low nitrogen (N) represents a promising strategy for improving nitrogen-use efficiency in trees. Such an approach could reduce reliance on N fertilizers while mitigating environmental pollution associated with their cultivation. In this study, a [...] Read more.
The screening of poplar varieties that demonstrate tolerance to low nitrogen (N) represents a promising strategy for improving nitrogen-use efficiency in trees. Such an approach could reduce reliance on N fertilizers while mitigating environmental pollution associated with their cultivation. In this study, a total of 87 poplar varieties were evaluated in a controlled greenhouse pot experiment. Under both low-nitrogen (LN) and normal-nitrogen (NN) conditions, 18 traits spanning four categories—growth performance, leaf morphology, chlorophyll fluorescence, and N isotope parameters were measured. For 13 of these traits (growth, leaf morphology, chlorophyll fluorescence), genetic variation and parameters, including genotypic values, were analyzed using best linear unbiased prediction (BLUP) within a linear mixed model (LMM). LN tolerance of tested poplar varieties was comprehensively assessed with three MGIDI strategies by integrating means, BLUPs, and low-nitrogen tolerance coefficient (LNindex) to rank poplar varieties. The results exhibited highly significant differences across all traits between LN and NN experiments, as well as among varieties. LN stress markedly inhibited growth, altered leaf morphology, and reduced chlorophyll fluorescence parameters in young poplar plants. Among the selection strategies, the MGIDI_LNindex approach demonstrated the highest selection differential percent (SD% = 10.5–35.23%). Using a selection intensity (SI) of 20%, we systematically identified 17 superior genotypes across all three strategies. In a thorough, comprehensive MGIDI-based evaluation, these varieties exhibited exceptional adaptability and stability under LN stress. The selected genotypes represent valuable genetic resources for developing improved poplar cultivars with enhanced low-nitrogen tolerance. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

24 pages, 13745 KiB  
Article
Genetic Improvement and Functional Characterization of AAP1 Gene for Enhancing Nitrogen Use Efficiency in Maize
by Mo Zhu, Ziyu Wang, Shijie Li and Siping Han
Plants 2025, 14(14), 2242; https://doi.org/10.3390/plants14142242 - 21 Jul 2025
Viewed by 364
Abstract
Nitrogen use efficiency remains the primary bottleneck for sustainable maize production. This study elucidates the functional mechanisms of the amino acid transporter ZmAAP1 in nitrogen absorption and stress resilience. Through systematic evolutionary analysis of 55 maize inbred lines, we discovered that the ZmAAP1 [...] Read more.
Nitrogen use efficiency remains the primary bottleneck for sustainable maize production. This study elucidates the functional mechanisms of the amino acid transporter ZmAAP1 in nitrogen absorption and stress resilience. Through systematic evolutionary analysis of 55 maize inbred lines, we discovered that the ZmAAP1 gene family exhibits distinct chromosomal localization (Chr7 and Chr9) and functional domain diversification (e.g., group 10-specific motifs 11/12), indicating species-specific adaptive evolution. Integrative analysis of promoter cis-elements and multi-omics data confirmed the root-preferential expression of ZmAAP1 under drought stress, mediated via the ABA-DRE signaling pathway. To validate its biological role, we generated transgenic maize lines expressing Arabidopsis thaliana AtAAP1 via Agrobacterium-mediated transformation. Three generations of genetic stability screening confirmed the stable genomic integration and root-specific accumulation of the AtAAP1 protein (Southern blot/Western blot). Field trials demonstrated that low-N conditions enhanced the following transgenic traits: the chlorophyll content increased by 13.5%, and the aboveground biomass improved by 7.2%. Under high-N regimes, the gene-pyramided hybrid ZD958 (AAP1 + AAP1) achieved a 12.3% yield advantage over conventional varieties. Our findings reveal ZmAAP1’s dual role in root development and long-distance nitrogen transport, establishing it as a pivotal target for molecular breeding. This study provides actionable genetic resources for enhancing NUE in maize production systems. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition and Novel Fertilizers—Second Edition)
Show Figures

Figure 1

23 pages, 15440 KiB  
Article
Diversity and Correlation Analysis of Differential Amino Acid Metabolites and Dominant Endophytic Bacteria in Lycium chinense Fruits at Different Stages
by Chongxin Yin, Huichun Xie, Xiaoli Yang, Lianyu Zhou, Guigong Geng and Feng Qiao
Genes 2025, 16(7), 836; https://doi.org/10.3390/genes16070836 - 18 Jul 2025
Viewed by 337
Abstract
Background: Lycium chinense has been acknowledged for its substantial nutritional benefits. The “Mengqi No.1” variety of L. chinense is known for its high yield and exceptional quality. Methods: We screened twenty dominant endophytic bacterial genera based on OTUs from L. [...] Read more.
Background: Lycium chinense has been acknowledged for its substantial nutritional benefits. The “Mengqi No.1” variety of L. chinense is known for its high yield and exceptional quality. Methods: We screened twenty dominant endophytic bacterial genera based on OTUs from L. chinense fruits during three developmental stages. Results: Forty-three differential amino acid metabolites were selected from L. chinense fruits. Five endophytic bacteria (Enterococcus, Escherichia-Shigella, Bacteroides, Pseudomonas, and Bacillus) were dominant genera in green fruit (GF, 16–19 days after flowering), color-changing fruit (CCF, 22–25 days after flowering), and red-ripe fruit (RRF, 31–34 days after flowering). Four endophytic bacterial genera (Enterococcus, Bacillus, Pseudomonas, and Rhodanobacter) showed positive correlation with twenty different amino acid metabolites and negative correlation with seven different amino acid metabolites. Conclusions: Five genes (AST1, ltaE1, TAT1, SHMT2, and SHMT3) indicated positive correlation with seventeen different amino acid metabolites and negative correlation with eight different amino acid metabolites. AST1 gene had a major role in regulating arginine biosynthesis (ko00220); ltaE1, SHMT2, and SHMT3 genes were major in regulating glycine, serine, and threonine metabolism (ko00260); and TAT1 gene had a major role in regulating tyrosine metabolism (ko00350). These findings offer insights into the relationship between amino acid synthesis and endophytic bacteria in L. chinense fruits. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

23 pages, 6199 KiB  
Article
PDAA: An End-to-End Polygon Dynamic Adjustment Algorithm for Building Footprint Extraction
by Longjie Luo, Jiangchen Cai, Bin Feng and Liufeng Tao
Remote Sens. 2025, 17(14), 2495; https://doi.org/10.3390/rs17142495 - 17 Jul 2025
Viewed by 229
Abstract
Buildings are a significant component of urban space and are essential to smart cities, catastrophe monitoring, and land use planning. However, precisely extracting building polygons from remote sensing images remains difficult because of the variety of building designs and intricate backgrounds. This paper [...] Read more.
Buildings are a significant component of urban space and are essential to smart cities, catastrophe monitoring, and land use planning. However, precisely extracting building polygons from remote sensing images remains difficult because of the variety of building designs and intricate backgrounds. This paper proposes an end-to-end polygon dynamic adjustment algorithm (PDAA) to improve the accuracy and geometric consistency of building contour extraction by dynamically generating and optimizing polygon vertices. The method first locates building instances through the region of interest (RoI) to generate initial polygons, and then uses four core modules for collaborative optimization: (1) the feature enhancement module captures local detail features to improve the robustness of vertex positioning; (2) the contour vertex tuning module fine-tunes vertex coordinates through displacement prediction to enhance geometric accuracy; (3) the learnable redundant vertex removal module screens key vertices based on a classification mechanism to eliminate redundancy; and (4) the missing vertex completion module iteratively restores missed vertices to ensure the integrity of complex contours. PDAA dynamically adjusts the number of vertices to adapt to the geometric characteristics of different buildings, while simplifying the prediction process and reducing computational complexity. Experiments on public datasets such as WHU, Vaihingen, and Inria show that PDAA significantly outperforms existing methods in terms of average precision (AP) and polygon similarity (PolySim). It is at least 2% higher than existing methods in terms of average precision (AP), and the generated polygonal contours are closer to the real building geometry. Values of 75.4% AP and 84.9% PolySim were achieved on the WHU dataset, effectively solving the problems of redundant vertices and contour smoothing, and providing high-precision building vector data support for scenarios such as smart cities and emergency response. Full article
Show Figures

Figure 1

22 pages, 3439 KiB  
Article
Metabolomics Analysis Reveals the Influence Mechanism of Different Growth Years on the Growth, Metabolism and Accumulation of Medicinal Components of Bupleurum scorzonerifolium Willd. (Apiaceae)
by Jialin Sun, Jianhao Wu, Weinan Li, Xiubo Liu and Wei Ma
Biology 2025, 14(7), 864; https://doi.org/10.3390/biology14070864 - 16 Jul 2025
Viewed by 225
Abstract
Bupleurum scorzonerifolium Willd. is a perennial herbaceous plant of the genus Bupleurum in the Apiaceae family. Also known as red Bupleurum, it is mainly distributed in Northeast China, North China and other regions and is a commonly used medicinal plant. It is [...] Read more.
Bupleurum scorzonerifolium Willd. is a perennial herbaceous plant of the genus Bupleurum in the Apiaceae family. Also known as red Bupleurum, it is mainly distributed in Northeast China, North China and other regions and is a commonly used medicinal plant. It is difficult for the wild plant resources of Bupleurum scorzonerifolium Willd. to meet the market demand. In artificial cultivation, there are problems such as a low yield per plant, low quality, weakened stress resistance and variety degradation. The contents of bioactive components and metabolites in traditional Chinese medicinal materials vary significantly across different growth years. The growth duration directly impacts their quality and clinical efficacy. Therefore, determining the optimal growth period is one of the crucial factors in ensuring the quality of traditional Chinese medicinal materials. In this study, Gas Chromatography–Mass Spectrometry (GC-MS) and High-performance liquid chromatography (HPLC) were comprehensively applied to analyze the metabolically differential substances in different parts of Bupleurum scorzonerifolium Willd. By comparing the compositions and content differences of chemical components in different growth years and different parts, the chemical components with significant differences were accurately screened out. In order to further explore the dynamic change characteristics and internal laws of metabolites, a metabolic network was constructed for a visual analysis and, finally, to see the optimal growth years of Bupleurum scorzonerifolium Willd. This result showed that with the accumulation of the growth cycle, the height, root width, fresh mass and saikosaponins content of Bupleurum scorzonerifolium Willd. increased year by year. Except for sodium and calcium elements in the main shoot, the other elements were significantly reduced. In addition, 59 primary metabolites were identified by GC-MS, with the accumulation of the growth cycle, the contents of organic acids, sugars, alcohols and amino acids gradually decreased, while the contents of alkyl, glycosides and other substances gradually increased. There were 53 positive correlations and 18 negative correlations in the triennial Bupleurum scorzonerifolium Willd. grid, all of which were positively correlated with saikosaponins. Therefore, the triennial Bupleurum scorzonerifolium Willd. was considered to be the suitable growth year. It not only provided a new idea and method for the quality evaluation of Bupleurum scorzonerifolium Willd., but also provided a scientific basis for the quality control of Chinese herbs. Full article
Show Figures

Figure 1

16 pages, 1162 KiB  
Article
Molecular Detection of Vector-Borne Pathogens and Their Association with Feline Immunodeficiency Virus and Feline Leukemia Virus in Cats from Northeastern Thailand
by Charinya So-In, Laksanachan Watayotha, Thikhamporn Sonsupee, Surasak Khankhum and Nuchsupha Sunthamala
Animals 2025, 15(14), 2065; https://doi.org/10.3390/ani15142065 - 12 Jul 2025
Viewed by 596
Abstract
In Thailand, domestic cats are frequently exposed to vectors that transmit a variety of pathogens. In this study, the prevalence of vector-borne pathogens (VBPs) and their association with feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) were investigated in 187 domestic cats [...] Read more.
In Thailand, domestic cats are frequently exposed to vectors that transmit a variety of pathogens. In this study, the prevalence of vector-borne pathogens (VBPs) and their association with feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) were investigated in 187 domestic cats from animal hospitals across five northeastern provinces. Twelve pathogens, including viruses, bacteria, and protozoa, were screened using PCR assays. FIV was identified in 2.67% of the cats, while FeLV exhibited a notably higher prevalence of 29.95%. Among the bacterial pathogens, Bartonella henselae was the most frequently detected (94.65%), followed by Rickettsia felis (34.22%). Protozoan infections such as Babesia canis (8.02%) and Cytauxzoon felis (3.21%) were less prevalent. Co-infections were common, with numerous cats hosting multiple pathogens. Correlation analysis revealed moderate associations between FIV and Babesia microti (r = 0.43), Babesia canis (r = 0.35), and Mycoplasma spp. (r = 0.33), indicating potential co-infection or predisposition. Although significant differences in the total white blood cell counts were not observed, leukopenia was more commonly found in FeLV/FIV-positive cats. These findings indicate that a high burden of infection and co-infection exists in the feline population, supporting the need for expanded pathogen screening and enhanced vector control strategies. Full article
(This article belongs to the Special Issue Vector-Borne and Zoonotic Diseases in Dogs and Cats: Second Edition)
Show Figures

Figure 1

15 pages, 5527 KiB  
Article
Screen Printing Conductive Inks on Textiles: Impact of Plasma Treatment
by Julia Guérineau, Jollan Ton and Mariia Zhuldybina
Sensors 2025, 25(13), 4240; https://doi.org/10.3390/s25134240 - 7 Jul 2025
Viewed by 406
Abstract
Textile-based wearable devices are rapidly gaining traction in the Internet of Things paradigm and offer distinct advantages for data collection and analysis across a wide variety of applications. Seamlessly integrating electronics in textiles remains a technical challenge, especially when the textiles’ essential properties, [...] Read more.
Textile-based wearable devices are rapidly gaining traction in the Internet of Things paradigm and offer distinct advantages for data collection and analysis across a wide variety of applications. Seamlessly integrating electronics in textiles remains a technical challenge, especially when the textiles’ essential properties, such as comfort, breathability, and flexibility, are meant to be preserved. This article investigates screen printing as a textile post-processing technique for electronic integration, and highlights its versatility, cost-effectiveness, and adaptability in terms of design and customization. The study examines two silver-based inks screen-printed on an Oxford polyester textile substrate with a focus on substrate preparation and treatment. Before printing, the textile samples were cleaned with nitrogen gas and then subjected to low-pressure oxygen plasma treatment. For comparative analysis, two samples printed on polyethylene terephthalate (PET) serve as a reference. The findings highlight the importance of plasma treatment in optimizing the printability of textiles and demonstrate that it notably improves the electrical properties of conductive inks. Despite some remaining challenges, the study indicates that screen-printed electronics show promising potential for advancing the development of e-textiles and sensor-integrated wearables. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

19 pages, 591 KiB  
Article
Development of a Guava Jelly Drink with Potential Antioxidant, Anti-Inflammation, Neurotransmitter, and Gut Microbiota Benefits
by Hai-Ha Nguyen, Jintanaporn Wattanathorn, Wipawee Thukham-Mee, Supaporn Muchimapura and Pongsatorn Paholpak
Foods 2025, 14(13), 2401; https://doi.org/10.3390/foods14132401 - 7 Jul 2025
Viewed by 429
Abstract
Due to the roles of oxidative stress, inflammation, and neurotransmitter imbalances in cognitive and mental dysfunction, we aimed to develop a functional drink with antioxidant and anti-inflammatory properties as well as the potential to support neurotransmitter balance for improved cognition and mental health. [...] Read more.
Due to the roles of oxidative stress, inflammation, and neurotransmitter imbalances in cognitive and mental dysfunction, we aimed to develop a functional drink with antioxidant and anti-inflammatory properties as well as the potential to support neurotransmitter balance for improved cognition and mental health. The Teng Mo, Fen Hong Mee, and Hong Chon Su guava varieties were screened for their polyphenol and flavonoid contents, antioxidant and anti-inflammatory effects, and suppressive effects on acetylcholinesterase (AChE), monoamine oxidase (MAO), GABA transaminase (GABA-T), and glutamate decarboxylase (GAD). Juice from the cultivar with the highest potential was selected and mixed with mint and honey syrups, pomelo-derived dietary fiber, ascorbic acid, agar, water, and fruit puree (pear/apple/orange) to create three guava jelly drink formulations. The formulation with pear puree showed the highest biological potential and was selected as the final product. It is rich in vitamin C, gallic acid, and dietary fiber, and provides approximately 37 Kcal/100 g. It also promotes the growth of lactic acid-producing bacteria in the culture. Thus, our drink shows the potential to reduce oxidative stress and inflammation, improve neurotransmitter regulation, and stimulate the gut–brain axis, thereby promoting cognition and mental wellness. However, clinical research is essential to confirm these potential benefits. Full article
Show Figures

Figure 1

Back to TopTop