Phenotypic Diversity Analysis and Integrative Evaluation of Camellia oleifera Germplasm Resources in Ya’an, Sichuan Province
Abstract
1. Introduction
2. Results
2.1. Diversity of Qualitative Traits
2.1.1. Plant and Branch Phenotypes
2.1.2. Leaf and Flower Phenotypes
2.1.3. Fruit Phenotypes
2.2. Diversity and Rating of Quantitative Traits
2.2.1. Analysis of Variance and Normality Test
2.2.2. Normality Test
2.2.3. Pearson Correlation Analysis
2.2.4. Principal Component Analysis (PCA)
2.2.5. Determination of Ratings
2.3. Comprehensive Evaluation of Economic Traits (Fruit Traits)
3. Discussion
4. Materials and Methods
4.1. Experimental Materials
4.2. Measurement of Phenotypic Traits
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, D.W.; Hodkinson, T.R.; Parnell, J.A.N. Phylogenetics of global Camellia (Theaceae) based on three nuclear regions and its implications for systematics and evolutionary history. J. Syst. Evol. 2023, 61, 356–368. [Google Scholar] [CrossRef]
- Quan, W.; Wang, A.; Gao, C.; Li, C. Applications of Chinese Camellia oleifera and its By-Products: A Review. Front. Chem. 2022, 10, 921246. [Google Scholar] [CrossRef]
- He, J.; Wu, X.; Yu, Z. Microwave pretreatment of camellia (Camellia oleifera Abel.) seeds: Effect on oil flavor. Food Chem. 2021, 364, 130388. [Google Scholar] [CrossRef]
- Luan, F.; Zeng, J.; Yang, Y.; He, X.; Wang, B.; Gao, Y.; Zeng, N. Recent advances in Camellia oleifera Abel: A review of nutritional constituents, biofunctional properties, and potential industrial applications. J. Funct. Foods 2020, 75, 104242. [Google Scholar] [CrossRef]
- Hu, Y.L. Discussion on influencing factors and reform scheme of Camellia oleifera industry supply side. South China For. Sci. 2019, 47, 41–45. [Google Scholar]
- Cheng, J.; Jiang, D.; Cheng, H.; Zhou, X.; Fang, Y.; Zhang, X.; Xiao, X.; Deng, X.; Li, L. Determination of Camellia oleifera Abel. germplasm resources of genetic diversity in China using ISSR Markers. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 501–508. [Google Scholar] [CrossRef]
- LY/T 2247-2014; Technical Regulations for Investigating and Catalogue of Genetic Resources on Camellia spp. The State Forestry Administration of the People’s Republic of China [SFA]: Beijing, China, 2023.
- Chen, L.; Zhou, J. Different physical properties of summer precipitation clouds over Qinghai-Xizang plateau and Sichuan Basin. Plateau Meteorol. 2015, 34, 621–632. [Google Scholar]
- He, Z.; Liu, C.; Wang, X.; Wang, R.; Chen, Y.; Tian, Y. Assessment of genetic diversity in Camellia oleifera Abel. accessions using morphological traits and simple sequence repeat (SSR) markers. Breed. Sci. 2020, 70, 586–593. [Google Scholar] [CrossRef]
- Zhu, Y.; Liang, D.; Song, Z.; Tan, Y.; Guo, X.; Wang, D. Genetic diversity analysis and core germplasm collection construction of Camellia oleifera based on fruit phenotype and SSR data. Genes 2022, 13, 2351. [Google Scholar] [CrossRef]
- Liu, N.; Lyu, X.; Zhang, X.; Zhang, G.; Zhang, Z.; Guan, X.; Chen, X.; Yang, X.; Feng, Z.; Gao, Q.; et al. Reference genome sequence and population genomic analysis of peas provide insights into the genetic basis of Mendelian and other agronomic traits. Nat. Genet. 2024, 56, 1964–1974. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.H.; Xu, W.; Smith, C.W.; Murray, S.C.; Zhang, H.B. Analysis of the genes controlling three quantitative traits in three diverse plant species reveals the molecular basis of quantitative traits. Sci. Rep. 2020, 10, 10074. [Google Scholar] [CrossRef]
- Verma, H.; Borah, J.L.; Sarma, R.N. Variability Assessment for Root and Drought Tolerance Traits and Genetic Diversity Analysis of Rice Germplasm using SSR Markers. Sci. Rep. 2019, 9, 16513. [Google Scholar] [CrossRef]
- UPOV. Union Internationale Pour la Protection des Obtentions Végétales; International Union for the Protection of New Varieties of Plants: Geneva, Switzerland, 1991. [Google Scholar]
- LY/T 2742-2016; Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability (DUS)-Oil-Tea Camellia (Camellia spp.). The State Forestry Administration of the People’s Republic of China [SFA]: Beijing, China, 2016.
- Liu, Y.F.; Zhang, J.H.; LÜ, B.; Yang, X.H.; Li, Y.G.; Wang, Y.; Wang, J.M.; Zhang, H.; Guan, J.J. Statistic analysis on quantitative characteristics for developing the DUS test guideline of Ranunculus asiaticus L. J. Integr. Agric. 2013, 12, 971–978. [Google Scholar] [CrossRef]
- Wu, Q.C.; Zhang, D.; Zhang, Q.; Zang, D.K. Development of DUS Test Guidelines for new varieties of Viburnum L. J. For. Res. 2019, 30, 2313–2320. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, G.P.; Liu, Z.S.; Zhang, J.; Ma, L.; Tian, T.; Wang, H.; Chen, T.; Chen, Q.; He, W.; et al. Phenotyping in flower and main fruit traits of Chinese cherry [Cerasus pseudocerasus (Lindl.) G. Don]. Sci. Hortic. 2022, 296, 110920. [Google Scholar] [CrossRef]
- Chen, T.L.; Chen, G.Q.; Lu, L.; Lan, H.Q.; Fan, Y.H.; Ling, P. Genetic Diversity Analysis of Phenotypic Traits in Seedling Camellia oleifera on Hainan Island. Chin. J. Trop. Crops 2025, 46, 866–874. [Google Scholar]
- Zhou, Y.L. Evaluation of Main Characters of Ya’an Wild Camellia oleifera and Screening of Excellent Trees. Master’s Thesis, Sichuan Agricultural University, Ya’an, China, 2022. [Google Scholar]
- Zhou, X.; Wang, Z.D.; Li, J.; Xu, H.; Peng, X.Y.; Zhu, J.M. Diversity analysis of phenotypic traits of wild Camellia oleifera in Shangcheng County. J. Xinyang Agric. For. Univ. 2024, 34, 84–91. [Google Scholar]
- Xu, J.J.; Zhu, Y.Y.; Wang, G. Comprehensive evaluation and Pphenotypic diversity analysis of Camellia meiocarpa in Guizhou. J. Zhejiang For. Sci. Technol. 2021, 41, 15–23. [Google Scholar]
- Wu, Y.; Zhang, L.; Zhang, Y.; Zhou, H.; Ma, L. Roles of antioxidant enzymes, secondary metabolites, and lipids in light adaption of tea-oil plant (Camellia oleifera Abel). J. Plant Growth Regul. 2024, 43, 2209–2223. [Google Scholar] [CrossRef]
- Elizabeth, F. Plant Systematics: A Phylogenetic Approach. Rhodora 2016, 118, 418–420. [Google Scholar] [CrossRef]
- Jules, S.; Marie-Laure, N.; Eric, G. Reproductive phenology as a dimension of the phenotypic space in 139 plant species from the mediterranean. New Phytol. 2019, 225, 740–753. [Google Scholar] [CrossRef]
- Gecer, M.K.; Kan, T.; Gundogdu, M.; Ercisli, S.; Ilhan, G.; Sagbas, H.I. Physicochemical characteristics of wild and cultivated apricots (Prunus armeniaca L.) from Aras valley in Turkey. Genet. Resour. Crop Evol. 2020, 67, 935–945. [Google Scholar] [CrossRef]
- Yang, L.; Gao, C.; Xie, J.J.; Qiu, J.; Deng, Q.; Zhou, Y.C.; Liao, D.; Deng, C. Fruit economic characteristics and yields of 40 superior Camellia oleifera Abel plants in the low-hot valley area of Guizhou Province, China. Sci. Rep. 2022, 12, 7068. [Google Scholar] [CrossRef] [PubMed]
- López-Bernal, Á.; Fernandes-Silva, A.A.; Vega, V.A.; Hidalgo, J.C.; León, L.; Testi, L.; Villalobos, F.J. A fruit growth approach to estimate oil content in olives. Eur. J. Agron. 2021, 123, 126206. [Google Scholar] [CrossRef]
- Chan, Y.H. Biostatistics 302. Principal component and factor analysis. Singap. Med. J. 2024, 45, 558–565. [Google Scholar]
- Clo, J.; Opedal, Ø.H. Genetics of quantitative traits with dominance under stabilizing and directional selection in partially selfing species. Evolution 2021, 75, 1920–1935. [Google Scholar] [CrossRef]
- Azadi, A.; Jalali, A.S.; Navidi, M.N. Land evaluation approaches comparing TOPSIS and SAW with parametric methods for rice cultivation. Environ. Monit. Assess. 2023, 195, 1296. [Google Scholar] [CrossRef]
- Samuel Cristian, D.; Andrei Daniel, Z.; Leomar Guilherme, W.; Anderson Simionato, M.; Rodrigo, Z.; Josiane, C.; Giovani, B. Across Year and Year-by-year GGE Biplot Analysis to Evaluate Soybean Performance and Stability in Multi-Environment Trials. Euphytica 2019, 215, 113. [Google Scholar]
- Zhang, F.H.; Li, Z.; Zhou, J.Q.; Gu, Y.Y.; Tan, X.F. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera. BMC Plant Biol. 2021, 21, 348. [Google Scholar] [CrossRef]
- Wang, J.T.; Ye, H.; Zhou, H.J.; Chen, P.P.; Liu, H.Z.; Xi, R.M.; Wang, G.; Hou, N.; Zhao, P. Genome-wide association analysis of 101 accessions dissects the genetic basis of shell thickness for genetic improvement in Persian walnut (Juglans regia L.). BMC Plant Biol. 2022, 22, 436. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.H.; Song, J.M.; Deng, Y.J.; Zhou, Y.; Lai, H.G. Agronomic traits and quality screening of superior Camellia oleifera in tropical areas. Tree Genet. Mol. Breed. 2022, 12, 1–8. [Google Scholar] [CrossRef]
- Trunschke, J.; Lunau, K.; Pyke, G.H.; Ren, Z.X.; Wang, H. Flower color evolution and the evidence of pollinator-mediated selection. Front. Plant Sci. 2021, 12, 617851. [Google Scholar] [CrossRef] [PubMed]
- Cerović, R.; Fotirić Akšić, M.; Meland, M. Success rate of individual pollinizers for the pear cultivars “Ingeborg” and “Celina” in a Nordic climate. Agronomy 2020, 10, 970. [Google Scholar] [CrossRef]
- Cutter, A.D. Reproductive transitions in plants and animals: Selfing syndrome, sexual selection and speciation. New Phytol. 2019, 224, 1080–1094. [Google Scholar] [CrossRef] [PubMed]
- Xing, K.F.; Zhang, J.; Chen, S.; Zhang, L.D.; Xie, H.X.; Zhao, Y.; Rong, J. Diversity analysis of phenotypic traits and comprehensive evaluation of Camellia oleifera excellent germplasm resources. J. Zhejiang Univ. (Agric. Life Sci.) 2024, 50, 244–257. [Google Scholar]
- Wu, S.; Zhang, B.; Keyhaninejad, N.; Rodríguez, G.R.; Kim, H.J.; Chakrabarti, M.; Illa-Berenguer, E.; Taitano, N.K.; Gonzalo, M.J.; Díaz, A.; et al. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat. Commun. 2018, 9, 4734. [Google Scholar] [CrossRef]
- UPOV. General Introduction to the Examination of Distinctness, Uniformity and Stability and the Development of Harmonized Descriptions of New Varieties of Plants: TG/1/3; International Union for the Protection of New Varieties of Plants: Geneva, Switzerland, 2022. [Google Scholar]
- Chen, T.; Liu, L.; Zhou, Y.L.; Zheng, Q.; Luo, S.Y.; Xiang, T.T.; Zhou, L.J.; Feng, S.L.; Yang, H.Y.; Ding, C.B. Characterization and comprehensive evaluation of phenotypic characters in wild Camellia oleifera germplasm for conservation and breeding. Front. Plant Sci. 2023, 14, 1052890. [Google Scholar] [CrossRef]
- Reid, J.M.; Acker, P. Properties of phenotypic plasticity in discrete threshold traits. Evolution 2022, 76, 190–206. [Google Scholar] [CrossRef]
- Opedal, Ø.H.; Armbruster, W.S.; Hansen, T.F.; Holstad, A.; Pélabon, C.; Andersson, S.; Campbell, D.R.; Caruso, C.M.; Delph, L.F.; Eckert, C.G.; et al. Evolvability and trait function predict phenotypic divergence of plant populations. Proc. Natl. Acad. Sci. USA 2023, 120, e2203228120. [Google Scholar] [CrossRef]
- Tu, J.; Chen, J.F.; Zhou, J.H.; Ai, W.S.; Chen, L.S. Plantation Quality Assessment of Camellia oleifera in Mid-Subtropical China. Soil Tillage Res. 2019, 186, 249–258. [Google Scholar] [CrossRef]
- Falchi, R.; Bonghi, C.; Drincovich, M.F.; Famiani, F.; Lara, M.V.; Walker, R.P.; Vizzotto, G. Sugar Metabolism in Stone Fruit: Source-Sink Relationships and Environmental and Agronomical Effects. Front. Plant Sci. 2020, 11, 573982. [Google Scholar] [CrossRef]
- Shen, C.H.; Chen, R.F.; Liu, Z. Characteristics of the transport and distribution of photosynthetic products during fruit expansion of Camellia gauchowensis. J. Cent. South Univ. For. Technol. 2024, 44, 58–66. [Google Scholar]
- Martin, J.J.J.; Xu, W.; Li, X.; Liu, X.; Zhou, L.; Li, R.; Fu, D.; Li, Q.; Cao, H. Deciphering the Molecular Mechanisms of Oil Palm Lipid Metabolism Through Combined Metabolomics and Transcriptomics. Food Chem. 2025, 482, 144154. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Meng, J.X.; Pan, D.F.; Yang, C.; Li, Y. Mating system and progeny genetic diversity of Camellia oleifera ‘Ruan Zhi’. J. For. Res. 2018, 30, 1805–1810. [Google Scholar] [CrossRef]
- UPOV. Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability of Sweet Cherry: TG/35/7; International Union for the Protection of New Varieties of Plants: Geneva, Switzerland, 2016. [Google Scholar]
Trait | Frequency Distribution/% | H′ | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
Plant | Life form | 45.70 | 54.30 | 0.69 | |||
Tree form | 34.11 | 56.29 | 9.60 | 0.92 | |||
Branch | Branch posture | 12.25 | 54.64 | 28.48 | 4.64 | 1.09 | |
Juvenile shoot coloration | 84.11 | 15.89 | 0.44 | ||||
Number of terminal bud | 55.30 | 8.94 | 35.76 | 0.91 | |||
Bud pubescence | 7.62 | 92.38 | 0.27 | ||||
Leaf | Leaf shape | 10.60 | 52.32 | 20.53 | 7.62 | 8.94 | 1.31 |
Leaf vein state | 90.73 | 9.27 | 0.31 | ||||
Leaf surface morphology | 58.28 | 37.75 | 3.97 | 0.81 | |||
Leaf tip morphology | 48.34 | 21.52 | 4.64 | 25.50 | 1.17 | ||
Leaf base morphology | 19.87 | 50.99 | 18.87 | 10.26 | 1.21 | ||
Leaf serration morphology | 5.63 | 55.30 | 12.58 | 26.49 | 1.10 | ||
Fower | Flower opening pattern | 13.91 | 81.13 | 4.97 | 0.59 | ||
Flower color | 99.01 | 0.99 | 0.06 | ||||
Petal shape | 26.49 | 50.00 | 23.51 | 1.04 | |||
Degree of petal apex dehiscence | 6.95 | 89.07 | 3.97 | 0.42 | |||
Petal surface morphology | 34.44 | 50.99 | 14.57 | 0.99 | |||
Degree of style dehiscence | 56.29 | 25.83 | 17.88 | 0.98 | |||
Filaments connection | 62.25 | 37.75 | 0.66 | ||||
Ovary hair length | 29.80 | 70.20 | 0.61 | ||||
Fruit | Fruit shape | 13.91 | 47.68 | 12.25 | 21.52 | 4.64 | 1.36 |
Fruit angularity | 55.30 | 44.70 | 0.69 | ||||
Fruit surface condition | 73.18 | 26.82 | 0.58 | ||||
Fruit pedicel | 16.89 | 38.74 | 44.37 | 1.03 | |||
Fruit navel | 6.29 | 50.99 | 42.72 | 0.88 | |||
Pericarp color | 33.77 | 59.27 | 6.62 | 0.33 | 0.88 | ||
Seed color | 31.46 | 21.52 | 37.09 | 9.93 | 1.29 | ||
Seed shape | 20.20 | 4.97 | 20.53 | 40.07 | 14.24 | 1.44 | |
average | 0.85 |
Traits | Eigenvector of the Principal Component | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Leaf length | −0.434 | −0.265 | 0.695 | −0.236 | −0.088 | 0.114 | 0.208 |
Leaf width | −0.307 | −0.159 | 0.801 | −0.169 | −0.031 | −0.078 | −0.329 |
Leaf area | −0.402 | −0.234 | 0.790 | −0.217 | −0.055 | 0.026 | −0.051 |
Leaf shape index | −0.177 | −0.139 | −0.162 | −0.073 | −0.082 | 0.275 | 0.740 |
Petiole length | −0.219 | −0.209 | 0.483 | −0.308 | −0.039 | 0.367 | 0.160 |
Petiole diameter | −0.186 | −0.319 | 0.454 | −0.162 | 0.013 | 0.356 | −0.003 |
Sawtooth density | 0.248 | 0.250 | −0.432 | 0.093 | 0.196 | 0.084 | −0.007 |
Corolla diameter | −0.147 | −0.090 | 0.323 | 0.693 | 0.100 | −0.022 | 0.177 |
Petal length | −0.241 | −0.010 | 0.459 | 0.549 | 0.263 | −0.139 | 0.116 |
Petal width | −0.107 | 0.168 | 0.153 | 0.710 | 0.100 | 0.343 | 0.042 |
Petal shape index | −0.083 | −0.223 | 0.239 | −0.355 | 0.230 | −0.539 | 0.147 |
Petal number | 0.028 | −0.071 | −0.174 | 0.008 | −0.432 | 0.105 | 0.246 |
Sepal number | 0.118 | 0.127 | 0.191 | 0.494 | 0.051 | −0.041 | −0.008 |
Style length | 0.015 | 0.055 | 0.228 | 0.461 | 0.161 | 0.003 | 0.062 |
Style dehiscence number | 0.340 | 0.027 | 0.036 | 0.310 | 0.022 | 0.167 | 0.222 |
Stamen height | −0.103 | 0.184 | 0.273 | 0.488 | 0.321 | −0.094 | −0.064 |
Single fruit weight | 0.907 | −0.190 | 0.127 | −0.089 | 0.183 | 0.085 | −0.001 |
Fresh seed weight per fruit | 0.929 | 0.045 | 0.257 | −0.033 | −0.126 | 0.019 | 0.026 |
Dry seed weight per fruit | 0.890 | 0.278 | 0.282 | −0.087 | −0.046 | 0.006 | 0.020 |
Dry kernel weight per fruit | 0.813 | 0.392 | 0.342 | −0.119 | 0.057 | −0.051 | 0.014 |
Fruit diameter | 0.856 | −0.275 | 0.142 | −0.055 | 0.223 | 0.106 | −0.099 |
Fruit height | 0.626 | −0.172 | 0.144 | −0.059 | 0.128 | −0.474 | 0.342 |
Fruit shape index | −0.328 | 0.123 | −0.019 | −0.006 | −0.130 | −0.620 | 0.483 |
Pericarp thickness | 0.382 | −0.500 | −0.005 | −0.136 | 0.614 | −0.013 | 0.101 |
Seed number | 0.521 | 0.027 | 0.352 | −0.038 | −0.151 | 0.275 | 0.225 |
Fresh seed rate | 0.255 | 0.519 | 0.296 | 0.117 | −0.664 | −0.110 | 0.004 |
Dry seed rate | 0.096 | 0.849 | 0.264 | −0.012 | −0.351 | −0.081 | −0.015 |
Fresh seed moisture content | 0.150 | −0.751 | −0.035 | 0.164 | −0.248 | −0.014 | 0.040 |
Kernel ratio | −0.238 | 0.483 | 0.241 | −0.156 | 0.428 | −0.213 | −0.036 |
Oil content of kernel | −0.162 | 0.518 | −0.157 | −0.282 | 0.326 | 0.397 | 0.222 |
Oil content of dry seed | −0.256 | 0.674 | 0.024 | −0.294 | 0.499 | 0.157 | 0.133 |
Oil content of fresh fruit | −0.080 | 0.943 | 0.199 | −0.158 | 0.020 | 0.028 | 0.053 |
Eigenvalue | 5.900 | 4.565 | 3.717 | 2.781 | 2.220 | 1.795 | 1.409 |
Contribution rate/% | 18.438 | 14.267 | 11.617 | 8.692 | 6.937 | 5.611 | 4.403 |
Cumulative contribution rate/% | 18.438 | 32.705 | 44.322 | 53.014 | 59.951 | 65.561 | 69.964 |
Trait | Rating Range | LSD0.05 | Step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||
Leaf area/mm2 | <790 | 790–1000 | 1000–1210 | 1210–1420 | 1420–1630 | 1630–1840 | 1840–2050 | 2050–2260 | ≥2260 | 51.167 | |
Leaf shape index | <1.6 | 1.6–1.7 | 1.7–1.8 | 1.8–1.9 | 1.9–2.0 | 2.0–2.1 | 2.1–2.2 | 2.2–2.3 | ≥2.3 | 0.025 | |
Corolla diameter/mm | <43 | 43–46 | 49–55 | 55–61 | 61–67 | 67–73 | 73–79 | ≥79 | 1.493 | ||
Petal shape index | <1.1 | 1.1–1.3 | 1.3–1.5 | 1.5–1.7 | ≥1.7 | 0.041 | |||||
Style length/mm | <7.4 | 7.4–8.6 | 8.6–9.8 | 9.8–11.0 | 11.0–12.2 | ≥12.2 | 0.296 | ||||
Single fruit weight/g | <12.2 | 12.2–15.8 | 15.8–19.4 | 19.4–23.0 | 23.0–26.6 | 26.6–30.2 | 30.2–33.8 | 33.8–37.4 | ≥37.4 | 0.852 | |
Fruit shape index | <0.79 | 0.85–0.91 | 0.91–0.97 | 0.97–1.03 | 1.03–1.09 | 1.09–1.15 | 1.15–1.21 | ≥1.21 | 0.014 | ||
Fresh fruit seed extraction rate/% | <30.4 | 30.4–33.6 | 33.6–36.8 | 36.8–40.0 | 40.0–43.2 | 43.2–46.4 | 46.4–49.6 | 49.6–52.8 | ≥52.8 | 0.791 | |
Oil content of kernel/% | <36.2 | 36.2–39.0 | 39.0–41.8 | 41.8–44.6 | 44.6–47.4 | 47.4–50.2 | 50.2–53.0 | 53.0–55.8 | ≥55.8 | 0.681 | |
Oil content of fresh fruit/% | <3.7 | 3.7–5.0 | 5.0–6.3 | 6.3–7.6 | 7.6–8.9 | 8.9–10.2 | 10.2–11.5 | ≥11.5 | 0.256 | ||
serrate density/pcs·cm−1 | <2.35 | 2.35–3.45 | 3.45–4.55 | 4.55–5.65 | ≥5.65 | 1.1 | |||||
Number of petals | 4 | 5 | 6 | 7 | 8 | ≥9 | 1 | ||||
Style cracking number | 1 | 2 | 3 | 4 | 1 | ||||||
Seed number | <3 | 3–5 | 5–7 | 7–9 | 9–11 | ≥11 | 2 |
Number | Distance to Positive Ideal Solution(D+) | Distance to Negative Ideal Solution(D−) | Relative Closeness(C) | Rank |
---|---|---|---|---|
TQ122 | 0.166 | 0.470 | 0.739 | 1 |
TQ49 | 0.170 | 0.472 | 0.735 | 2 |
TQ219 | 0.175 | 0.464 | 0.726 | 3 |
TQ282 | 0.178 | 0.471 | 0.725 | 4 |
TQ109 | 0.182 | 0.477 | 0.724 | 5 |
TQ79 | 0.189 | 0.470 | 0.714 | 6 |
TQ135 | 0.189 | 0.466 | 0.712 | 7 |
TQ174 | 0.190 | 0.465 | 0.710 | 8 |
TQ55 | 0.190 | 0.455 | 0.706 | 9 |
TQ230 | 0.190 | 0.447 | 0.702 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Kong, Q.; Yan, H.; Liu, J.; Tang, R.; Zhou, L.; Yang, H.; Jiang, X.; Feng, S.; Ding, C.; et al. Phenotypic Diversity Analysis and Integrative Evaluation of Camellia oleifera Germplasm Resources in Ya’an, Sichuan Province. Plants 2025, 14, 2249. https://doi.org/10.3390/plants14142249
Zheng S, Kong Q, Yan H, Liu J, Tang R, Zhou L, Yang H, Jiang X, Feng S, Ding C, et al. Phenotypic Diversity Analysis and Integrative Evaluation of Camellia oleifera Germplasm Resources in Ya’an, Sichuan Province. Plants. 2025; 14(14):2249. https://doi.org/10.3390/plants14142249
Chicago/Turabian StyleZheng, Shiheng, Qingbo Kong, Hanrui Yan, Junjie Liu, Renke Tang, Lijun Zhou, Hongyu Yang, Xiaoyu Jiang, Shiling Feng, Chunbang Ding, and et al. 2025. "Phenotypic Diversity Analysis and Integrative Evaluation of Camellia oleifera Germplasm Resources in Ya’an, Sichuan Province" Plants 14, no. 14: 2249. https://doi.org/10.3390/plants14142249
APA StyleZheng, S., Kong, Q., Yan, H., Liu, J., Tang, R., Zhou, L., Yang, H., Jiang, X., Feng, S., Ding, C., & Chen, T. (2025). Phenotypic Diversity Analysis and Integrative Evaluation of Camellia oleifera Germplasm Resources in Ya’an, Sichuan Province. Plants, 14(14), 2249. https://doi.org/10.3390/plants14142249