Screen Printing Conductive Inks on Textiles: Impact of Plasma Treatment †
Abstract
Highlights
- Plasma treatment is shown to play a role in optimizing the electrical properties of printed silver-based inks.
- Applying plasma treatment tends to increase the thickness of the printed ink and concomitantly decrease sheet resistance.
- Combining nitrogen cleaning and plasma treatment shows promise for improving ink transfer properties and ink–textile contact, which may improve washability.
- Plasma treatment offers a promising research avenue for enhancing encapsulation or serving as a substitute for it in certain applications.
Abstract
1. Introduction
2. Background Literature
2.1. Flatbed Screen Printing
2.2. Substrates and Treatment Methods
2.3. Inks
3. Materials and Methods
3.1. Screen Printing Process
3.2. Substrate and Treatment
3.3. Selected Inks
3.4. Characterization Methods
4. Results
4.1. Microscope Analysis
4.2. Thickness Measurements
4.3. Electrical Characterization
5. Discussion and Research Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PET | Polyethylene terephthalate |
SEM | Scanning electron microscope |
SMEs | Small- and medium-sized enterprises |
TPU | Thermoplastic polyurethane |
Appendix A
Appendix B
References
- Starner, T.; Mann, S.; Rhodes, B.; Healey, J.; Russell, K.; Levine, J.; Pentland, A. Wearable Computing and Augmented Reality; M.I.T. Media Lab Vision and Modeling Group Technical Report; MIT Media Lab: Cambridge, MA, USA, 1995. [Google Scholar]
- Mann, S. Smart Clothing: The Wearable Computer and Wearcam. Pers. Technol. 1997, 1, 21–27. [Google Scholar] [CrossRef]
- Ismar, E.; Kurşun Bahadir, S.; Kalaoglu, F.; Koncar, V. Futuristic Clothes: Electronic Textiles and Wearable Technologies. Glob. Chall. 2020, 4, 1900092. [Google Scholar] [CrossRef]
- Chen, C.; Ding, S.; Wang, J. Digital Health for Aging Populations. Nat. Med. 2023, 29, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Roy, A.K.; Jiang, W.; Mondal, T.; Deen, M.J. Smart Textiles to Enable In-Home Health Care: State of the Art, Challenges, and Future Perspectives. IEEE Flex. Electron. 2024, 3, 120–150. [Google Scholar] [CrossRef]
- Meena, J.S.; Choi, S.B.; Jung, S.-B.; Kim, J.-W. Electronic Textiles: New Age of Wearable Technology for Healthcare and Fitness Solutions. Mater. Today Bio 2023, 19, 100565. [Google Scholar] [CrossRef]
- Dulal, M.; Afroj, S.; Karim, N. Sustainable Eco-Design Approach for next-Generation Wearable e-Textiles. J. Clean. Prod. 2025, 504, 145404. [Google Scholar] [CrossRef]
- Sreenilayam, S.P.; Ahad, I.U.; Nicolosi, V.; Acinas Garzon, V.; Brabazon, D. Advanced Materials of Printed Wearables for Physiological Parameter Monitoring. Mater. Today 2020, 32, 147–177. [Google Scholar] [CrossRef]
- Hinde, K.; White, G.; Armstrong, N. Wearable Devices Suitable for Monitoring Twenty Four Hour Heart Rate Variability in Military Populations. Sensors 2021, 21, 1061. [Google Scholar] [CrossRef] [PubMed]
- Saidi, A.; Gauvin, C. Towards Real-Time Thermal Stress Prediction Systems for Workers. J. Therm. Biol. 2023, 113, 103405. [Google Scholar] [CrossRef]
- Berzowska, J. Electronic Textiles: Wearable Computers, Reactive Fashion, and Soft Computation. TEXTILE 2005, 3, 58–75. [Google Scholar] [CrossRef]
- Sennesael, J.; Moerman, A.; Rogier, H.; Van Torre, P. Carbon-Ink Sensing Patterns for a Contactless Smart Diaper System. In Proceedings of the 2024 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Tampere, Finland, 30 June 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Latsch, B.; Ben Dali, O.; Hench, B.; Chadda, R.; Sellami, Y.; Altmann, A.A.; Schäfer, N.; Seiler, J.; Kupnik, M. Hybrid Sensor Insole for Wearable Ballistocardiography in Remote Health Monitoring. In Proceedings of the 2024 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Tampere, Finland, 30 June 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Panahi, M.; Masihi, S.; Hanson, A.J.; Rodriguez-Labra, J.I.; Masihi, A.; Maddipatla, D.; Narakathu, B.B.; Lawson, D.; Atashbar, M.Z. Development of a Flexible Smart Wearable Oximeter Insole for Monitoring SpO 2 Levels of Diabetics’ Foot Ulcer. IEEE Flex. Electron. 2023, 2, 61–70. [Google Scholar] [CrossRef]
- Drăgulinescu, A.; Drăgulinescu, A.-M.; Zincă, G.; Bucur, D.; Feieș, V.; Neagu, D.-M. Smart Socks and In-Shoe Systems: State-of-the-Art for Two Popular Technologies for Foot Motion Analysis, Sports, and Medical Applications. Sensors 2020, 20, 4316. [Google Scholar] [CrossRef]
- Pu, J.; Ma, K.; Luo, Y.; Tang, S.; Liu, T.; Liu, J.; Leung, M.; Yang, J.; Hui, R.; Xiong, Y.; et al. Textile Electronics for Wearable Applications. Int. J. Extrem. Manuf. 2023, 5, 042007. [Google Scholar] [CrossRef]
- Agarwala, S. Enabling New Possibilities in Smart Textiles through Printed Electronics. In Proceedings of the 2019 IEEE 9th International Nanoelectronics Conferences (INEC), Kuching, Malaysia, 3–5 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Jeerapan, I.; Khumngern, S. Printed Devices for Wearable Biosensors: Laboratory to Emerging Markets. IEEE Flex. Electron. 2023, 2, 358–365. [Google Scholar] [CrossRef]
- Qu, J.; He, N.; Patil, S.V.; Wang, Y.; Banerjee, D.; Gao, W. Screen Printing of Graphene Oxide Patterns onto Viscose Nonwovens with Tunable Penetration Depth and Electrical Conductivity. ACS Appl. Mater. Interfaces 2019, 11, 14944–14951. [Google Scholar] [CrossRef] [PubMed]
- Zhuldybina, M.; Torres, M.; Nafez Hussein, R.; Moulay, A.; Breen Carmichael, T.; Duc Trinh, N.; Bois, C. Towards Fully Green Printed Device with Environmental Perspectives. Flex. Print. Electron. 2023, 8, 035018. [Google Scholar] [CrossRef]
- Islam, M.R.; Afroj, S.; Yin, J.; Novoselov, K.S.; Chen, J.; Karim, N. Advances in Printed Electronic Textiles. Adv. Sci. 2024, 11, 2304140. [Google Scholar] [CrossRef] [PubMed]
- Wiklund, J.; Karakoç, A.; Palko, T.; Yiğitler, H.; Ruttik, K.; Jäntti, R.; Paltakari, J. A Review on Printed Electronics: Fabrication Methods, Inks, Substrates, Applications and Environmental Impacts. J. Manuf. Mater. Process. 2021, 5, 89. [Google Scholar] [CrossRef]
- Im, H.; Roh, J.-S. Characterization of Silver Conductive Ink Screen-Printed Textile Circuits: Effects of Substrate, Mesh Density, and Overprinting. Materials 2024, 17, 4898. [Google Scholar] [CrossRef]
- Kim, H.; Kim, Y.; Kim, B.; Yoo, H.-J. A Wearable Fabric Computer by Planar-Fashionable Circuit Board Technique. In Proceedings of the 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 3–5 June 2009; pp. 282–285. [Google Scholar] [CrossRef]
- Kazani, I.; Hertleer, C.; De Mey, G.; Schwarz, A.; Guxho, G.; Van Langenhove, L. Electrical Conductive Textiles Obtained by Screen Printing. FIBRES Text. East. Eur. 2012, 20, 57–63. [Google Scholar]
- Lim, T.; Kim, H.J.; Zhang, H.; Lee, S. Screen-Printed Conductive Pattern on Spandex for Stretchable Electronic Textiles. Smart Mater. Struct. 2021, 30, 075006. [Google Scholar] [CrossRef]
- Yang, K.; Torah, R.; Wei, Y.; Beeby, S.; Tudor, J. Waterproof and Durable Screen Printed Silver Conductive Tracks on Textiles. Text. Res. J. 2013, 83, 2023–2031. [Google Scholar] [CrossRef]
- Lee, W.J.; Park, J.Y.; Nam, H.J.; Choa, S.-H. The Development of a Highly Stretchable, Durable, and Printable Textile Electrode. Text. Res. J. 2019, 89, 4104–4113. [Google Scholar] [CrossRef]
- Azani, M.-R.; Hassanpour, A. Electronic Textiles (E-Textiles): Types, Fabrication Methods, and Recent Strategies to Overcome Durability Challenges (Washability & Flexibility). J Mater. Sci. Mater. Electron. 2024, 35, 1897. [Google Scholar] [CrossRef]
- Komolafe, A.O.; Nunes-Matos, H.; Glanc-Gostkiewicz, M.; Torah, R.N. Evaluating the Effect of Textile Material and Structure for Printable and Wearable E-Textiles. IEEE Sensors J. 2021, 21, 18263–18270. [Google Scholar] [CrossRef]
- Nigusse, A.B.; Malengier, B.; Mengistie, D.A.; Tseghai, G.B.; Van Langenhove, L. Development of Washable Silver Printed Textile Electrodes for Long-Term ECG Monitoring. Sensors 2020, 20, 6233. [Google Scholar] [CrossRef]
- Zille, A.; Oliveira, F.R.; Souto, A.P. Plasma Treatment in Textile Industry: Plasma Treatment in Textile Industry. Plasma Process. Polym. 2015, 12, 98–131. [Google Scholar] [CrossRef]
- Jelil, R.A. A Review of Low-Temperature Plasma Treatment of Textile Materials. J. Mater. Sci. 2015, 50, 5913–5943. [Google Scholar] [CrossRef]
- Peran, J.; Ercegović Ražić, S. Application of Atmospheric Pressure Plasma Technology for Textile Surface Modification. Text. Res. J. 2020, 90, 1174–1197. [Google Scholar] [CrossRef]
- Radetić, M.; Marković, D. A Review on the Role of Plasma Technology in the Nano-finishing of Textile Materials with Metal and Metal Oxide Nanoparticles. Plasma Process. Polym. 2022, 19, 2100197. [Google Scholar] [CrossRef]
- Hossain, M.M.; Herrmann, A.S.; Hegemann, D. Plasma Hydrophilization Effect on Different Textile Structures. Plasma Process. Polym. 2006, 3, 299–307. [Google Scholar] [CrossRef]
- Deogaonkar, S.C. Dielectric Barrier Discharge Plasma Induced Surface Modification of Polyester/Cotton Blend Fabrics to Improve Polypyrrole Coating Adhesion and Conductivity. J. Text. Inst. 2020, 111, 1530–1537. [Google Scholar] [CrossRef]
- Vinisha Rani, K.; Sarma, B.; Sarma, A. Plasma Treatment on Cotton Fabrics to Enhance the Adhesion of Reduced Graphene Oxide for Electro-Conductive Properties. Diam. Relat. Mater. 2018, 84, 77–85. [Google Scholar] [CrossRef]
- Jamaliniya, S.; Samei, N.; Shahidi, S. Using Low Temperature Plasma for Surface Modification of Polyester Fabric: Dyeing and Printing Improvement. J. Text. Inst. 2019, 110, 647–651. [Google Scholar] [CrossRef]
- Gong, F.; Meng, C.; He, J.; Dong, X. Fabrication of Highly Conductive and Multifunctional Polyester Fabrics by Spray-Coating with PEDOT:PSS Solutions. Prog. Org. Coat. 2018, 121, 89–96. [Google Scholar] [CrossRef]
- Wang, C.X.; Lv, J.C.; Ren, Y.; Zhi, T.; Chen, J.Y.; Zhou, Q.Q.; Lu, Z.Q.; Gao, D.W.; Jin, L.M. Surface Modification of Polyester Fabric with Plasma Pretreatment and Carbon Nanotube Coating for Antistatic Property Improvement. Appl. Surf. Sci. 2015, 359, 196–203. [Google Scholar] [CrossRef]
- Locher, I.; Tröster, G. Screen-Printed Textile Transmission Lines. Text. Res. J. 2007, 77, 837–842. [Google Scholar] [CrossRef]
- Gomes, P.; Tama, D.; Carvalho, H.; Souto, A.P. Resistance Variation of Conductive Ink Applied by the Screen Printing Technique on Different Substrates. Color. Technol. 2020, 136, 130–136. [Google Scholar] [CrossRef]
- Ibanez Labiano, I.; Arslan, D.; Ozden Yenigun, E.; Asadi, A.; Cebeci, H.; Alomainy, A. Screen Printing Carbon Nanotubes Textiles Antennas for Smart Wearables. Sensors 2021, 21, 4934. [Google Scholar] [CrossRef]
- Kayaharman, M.; Argasinski, H.; Atkinson, J.; Zhang, K.; Zhou, Y.N.; Goldthorpe, I.A. Enhancing and Understanding the High Stretchability of Printable, Conductive Silver Nanowire Ink. J. Electron. Mater. 2023, 52, 4634–4643. [Google Scholar] [CrossRef]
- de Carvalho, J.T.M. Sustainable Fiber-Based Structures for Application in Electronic and Electrochemical Systems. Master’s Thesis, NOVA University Lisbon, Lisbon, Portugal, 2023. [Google Scholar]
- Martins, P.; Silva, C.; Oliveira, J.; Marques, A. Preliminary Tests with Screen-Printed Piezoresistive Pressure Sensors on PET and Textile Substrates. In Proceedings of the 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Vienna, Austria, 10 July 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Tavares, J.; Loss, C.; Pinho, P.; Alves, H. Flexible Textile Antennas for 5G Using Eco-Friendly Water-Based Solution and Scalable Printing Processes. Adv. Mater. Technol. 2024, 9, 2301499. [Google Scholar] [CrossRef]
- Guerineau, J.; Ton, J.; Bassaoui, M.; Zhuldybina, M. Electronic Textile Printing for Sensing Wearables. In Proceedings of the 2024 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Tampere, Finland, 30 June 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Hedayat, N.; Du, Y.; Ilkhani, H. Review on Fabrication Techniques for Porous Electrodes of Solid Oxide Fuel Cells by Sacrificial Template Methods. Renew. Sustain. Energy Rev. 2017, 77, 1221–1239. [Google Scholar] [CrossRef]
- Jin, H.; Matsuhisa, N.; Lee, S.; Abbas, M.; Yokota, T.; Someya, T. Enhancing the Performance of Stretchable Conductors for E-Textiles by Controlled Ink Permeation. Adv. Mater. 2017, 29, 1605848. [Google Scholar] [CrossRef]
- Islam, M.R.; Afroj, S.; Beach, C.; Islam, M.H.; Parraman, C.; Abdelkader, A.; Casson, A.J.; Novoselov, K.S.; Karim, N. Fully Printed and Multifunctional Graphene-Based Wearable e-Textiles for Personalized Healthcare Applications. IScience 2022, 25, 103945. [Google Scholar] [CrossRef] [PubMed]
- Köhler, A.R. Challenges for Eco-Design of Emerging Technologies: The Case of Electronic Textiles. Mater. Des. 2013, 51, 51–60. [Google Scholar] [CrossRef]
- Chakraborty, M.; Kettle, J.; Dahiya, R. Electronic Waste Reduction Through Devices and Printed Circuit Boards Designed for Circularity. IEEE Flex. Electron. 2022, 1, 4–23. [Google Scholar] [CrossRef]
- Coulombe, A.; Guérineau, J.; Mezghani, N. Smart Apparel Design for Urinary Incontinence Detection. In Proceedings of the 8th International Conference on Intelligent Textiles & Mass Customisation, Montreal, QC, Canada, 18–21 October 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Tekcin, M.; Kursun, S. Development of Wearable Textile-Based Moisture Sensor for Smart Diaper Applications and Examination of Its Comfort Properties. J. Text. Inst. 2024, 1–12. [Google Scholar] [CrossRef]
Properties | Inks | |
---|---|---|
Ink 1 SINK 127-07 Creative Materials | Ink 2 SInk01NP Nano Paint | |
Viscosity, cPs | 18,000–25,000 | 8000–20,000 |
Solid content, % | 84 | 65 |
Surface resistivity, Ω/sq | 0.008 | 0.029 |
Curing conditions | 60 min at 70 °C |
PET | No Treatment | N2 Cleaning + O2 Plasma 2 min | N2 Cleaning + O2 Plasma 4 min | ||
---|---|---|---|---|---|
Thickness (μm) | Ink 1 | 21.50 ± 0.04 | 26.54 ± 2.61 | 26.68 ± 3.81 | 29.99 ± 5.43 |
Ink 2 | 16.75 ± 0.06 | 15.78 ± 1.78 | 17.08 ± 1.83 | 21.86 ± 2.03 | |
Sheet resistance (Ω/sq) | Ink 1 | 4.56 ± 0.00 | 14.34 ± 0.30 | 13.83 ± 0.21 | 11.70 ± 0.13 |
Ink 2 | 7.79 ± 0.00 | 16.57 ± 0.34 | 15.95 ± 0.19 | 14.68 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guérineau, J.; Ton, J.; Zhuldybina, M. Screen Printing Conductive Inks on Textiles: Impact of Plasma Treatment. Sensors 2025, 25, 4240. https://doi.org/10.3390/s25134240
Guérineau J, Ton J, Zhuldybina M. Screen Printing Conductive Inks on Textiles: Impact of Plasma Treatment. Sensors. 2025; 25(13):4240. https://doi.org/10.3390/s25134240
Chicago/Turabian StyleGuérineau, Julia, Jollan Ton, and Mariia Zhuldybina. 2025. "Screen Printing Conductive Inks on Textiles: Impact of Plasma Treatment" Sensors 25, no. 13: 4240. https://doi.org/10.3390/s25134240
APA StyleGuérineau, J., Ton, J., & Zhuldybina, M. (2025). Screen Printing Conductive Inks on Textiles: Impact of Plasma Treatment. Sensors, 25(13), 4240. https://doi.org/10.3390/s25134240