Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (720)

Search Parameters:
Keywords = value-added co-products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1143 KB  
Article
Utilisation of Woody Waste from Wine Production for Energy Purposes Depending on the Place of Cultivation
by Magdalena Kapłan, Grzegorz Maj, Kamila E. Klimek, Richard Danko, Mojmir Baroň and Radek Sotolář
Agriculture 2026, 16(2), 212; https://doi.org/10.3390/agriculture16020212 - 14 Jan 2026
Viewed by 137
Abstract
Orchard crops generate substantial quantities of diverse biomass each year, with grapevines being among the most economically significant species worldwide. Considering the scale of this biomass, there is a growing need to explore rational strategies for its utilisation, for example, for energy production [...] Read more.
Orchard crops generate substantial quantities of diverse biomass each year, with grapevines being among the most economically significant species worldwide. Considering the scale of this biomass, there is a growing need to explore rational strategies for its utilisation, for example, for energy production or other value-added applications. Such approaches may contribute to improving resource efficiency and reducing the environmental burden associated with agricultural waste. The aim of this study was to examine the energy potential of woody post-production waste from wine processing, with particular emphasis on grape stems of four cultivars—Chardonnay, Riesling, Merlot, and Zweigelt—grown in two contrasting climatic regions: south-eastern Poland and Moravia (Czech Republic). The results demonstrated that both the grape variety and cultivation site significantly influenced the majority of bunch biometric traits, including bunch and berry weight, berry number, and stem dimensions. A moderately warm climate promoted the development of larger and heavier bunches as well as more robust stems across all examined cultivars. Energy analyses indicated that Zweigelt stems produced under moderately warm conditions and Chardonnay stems from a temperate climate exhibited the most favourable combustion properties. Nonetheless, certain constraints were identified, such as increased ash (12.20%) and moisture content (11.51%) in Chardonnay grown in warmer conditions, and elevated CO and CO2 emissions observed for Zweigelt (1333.26 kg·mg−1). Overall, the findings confirm that grape stems constitute a promising local source of bioenergy, with their energy performance determined predominantly by varietal characteristics and climatic factors. Their utilisation aligns with circular-economy principles and may help reduce the environmental impacts associated with traditional viticultural waste management. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

24 pages, 2470 KB  
Review
Metal–Support Interactions in Single-Atom Catalysts for Electrochemical CO2 Reduction
by Alexandra Mansilla-Roux, Mayra Anabel Lara-Angulo and Juan Carlos Serrano-Ruiz
Nanomaterials 2026, 16(2), 103; https://doi.org/10.3390/nano16020103 - 13 Jan 2026
Viewed by 222
Abstract
Electrochemical CO2 reduction (CO2RR) is a promising route to transform a major greenhouse gas into value-added fuels and chemicals. However, its deployment is still hindered by the sluggish activation of CO2, poor selectivity toward multielectron products, and competition [...] Read more.
Electrochemical CO2 reduction (CO2RR) is a promising route to transform a major greenhouse gas into value-added fuels and chemicals. However, its deployment is still hindered by the sluggish activation of CO2, poor selectivity toward multielectron products, and competition with the hydrogen evolution reaction (HER). Single-atom catalysts (SACs) have emerged as powerful materials to address these challenges because they combine maximal metal utilization with well-defined coordination environments whose electronic structure can be precisely tuned through metal–support interactions. This minireview summarizes current understanding of how structural, electronic, and chemical features of SAC supports (e.g., porosity, heteroatom doping, vacancies, and surface functionalization) govern the adsorption and conversion of key CO2RR intermediates and thus control product distributions from CO to CH4, CH3OH and C2+ species. Particular emphasis is placed on selectivity descriptors (e.g., coordination number, d-band position, binding energies of *COOH and *OCHO) and on rational design strategies that exploit curvature, microenvironment engineering, and electronic metal–support interactions to direct the reaction along desired pathways. Representative SAC systems based primarily on N-doped carbons, complemented by selected examples on oxides and MXenes are discussed in terms of Faradaic efficiency (FE), current density and operational stability under practically relevant conditions. Finally, the review highlights remaining bottlenecks and outlines future directions, including operando spectroscopy and data-driven analysis of dynamic single-site ensembles, machine-learning-assisted DFT screening, scalable mechanochemical synthesis, and integration of SACs into industrially viable electrolyzers for carbon-neutral chemical production. Full article
Show Figures

Figure 1

16 pages, 2607 KB  
Review
Pleurotus ostreatus for Environmental Remediation and Sustainable Bioprocesses: An Evidence-Mapped Review of Research Gaps and Opportunities
by Luz Miryam Lozada-Martinez, Juan David Reyes-Duque, Yadira Marin-Hamburger and Ivan David Lozada-Martinez
J. Fungi 2026, 12(1), 54; https://doi.org/10.3390/jof12010054 - 12 Jan 2026
Viewed by 211
Abstract
Fungi have emerged as versatile biotechnological platforms for addressing environmental challenges with potential co-benefits for human health. Among them, Pleurotus ostreatus stands out for its ligninolytic enzyme systems (notably laccases), capacity to valorize lignocellulosic residues, and ability to form functional mycelial materials. We [...] Read more.
Fungi have emerged as versatile biotechnological platforms for addressing environmental challenges with potential co-benefits for human health. Among them, Pleurotus ostreatus stands out for its ligninolytic enzyme systems (notably laccases), capacity to valorize lignocellulosic residues, and ability to form functional mycelial materials. We conducted an evidence-mapped review, based on a bibliometric analysis of the Scopus corpus (2001–2025; 2085 records), to characterize research fronts and practical opportunities in environmental remediation and sustainable bioprocesses involving P. ostreatus. The mapped literature shows sustained growth and global engagement, with prominent themes in: (a) oxidative transformation of phenolic compounds, dyes and polycyclic aromatic hydrocarbons; (b) biodegradation/bioconversion of agro-industrial residues into value-added products; and (c) development of bio-based materials and processes aligned with the circular bioeconomy. We synthesize how these strands translate to real-world contexts, reducing contaminant loads, closing nutrient loops, and enabling low-cost processes that may indirectly reduce exposure-related risks. Key translational gaps persist: standardization of environmental endpoints, scale-up from laboratory to field, performance in complex matrices, life-cycle impacts and cost, ecotoxicological safety, and long-term monitoring. A practical agenda was proposed that prioritizes field-scale demonstrations with harmonized protocols, integration of life-cycle assessment and cost metrics, data sharing, and One Health frameworks linking environmental gains with plausible health co-benefits. In conclusion, P. ostreatus is a tractable platform organism for sustainable remediation and bio-manufacturing. This evidence map clarifies where the field is mature and where focused effort can accelerate the impact of future research. Full article
(This article belongs to the Special Issue Fungi Activity on Remediation of Polluted Environments, 2nd Edition)
Show Figures

Figure 1

21 pages, 2017 KB  
Article
Bio-Based Carbon Capture and Utilization Opportunities in Poland: A Preliminary Assessment
by Magdalena Strojny, Paweł Gładysz, Amy Brunsvold and Aneta Magdziarz
Energies 2026, 19(2), 355; https://doi.org/10.3390/en19020355 - 11 Jan 2026
Viewed by 106
Abstract
Carbon capture, utilization, and storage (CCUS) play an increasingly important role in climate mitigation strategies by addressing industrial emissions and enabling pathways toward net-negative emissions. A key challenge lies in determining the pathway of captured CO2, whether through permanent geological storage [...] Read more.
Carbon capture, utilization, and storage (CCUS) play an increasingly important role in climate mitigation strategies by addressing industrial emissions and enabling pathways toward net-negative emissions. A key challenge lies in determining the pathway of captured CO2, whether through permanent geological storage or conversion into value-added products to enhance system viability. As hard-to-abate sectors and the power industry remain major sources of emissions, a comprehensive assessment of the technical, environmental, and economic performance of CCUS pathways is essential. This study evaluates bioenergy with carbon capture and storage/utilization (BECCUS) in the context of the Polish energy sector. Techno-environmental performance was assessed across three pathways: CO2 storage in saline formations, CO2 mineralization, and methanol synthesis. The results show levelized costs of 59.9 EUR/tCO2,in for storage, 109.7 EUR/tCO2,in for mineralization, and 631.1 EUR/tCO2,in for methanol production. Corresponding carbon footprints (including full chain emissions) were −936.4 kgCO2-eq/tCO2,in for storage, −460.6 kgCO2-eq/tCO2,in in for mineralization, and 3963.4 kgCO2-eq/tCO2,in for methanol synthesis. These values highlight the trade-offs between economic viability and climate performance across utilization and storage options. The analysis underscores the potential of BECCS to deliver net-negative emissions and supports strategic planning for CCUS deployment in Poland. Full article
Show Figures

Figure 1

16 pages, 2968 KB  
Article
Turning CO2 into Ethanol: Enhancing Electrochemical Reduction Through Cu-Doped Electrodes
by Jose Antonio Abarca, Ana M. Ferraria, Ana M. Botelho do Rego, Sara Realista, Paulo N. Martinho, Angel Irabien and Guillermo Díaz-Sainz
Energies 2026, 19(2), 354; https://doi.org/10.3390/en19020354 - 11 Jan 2026
Viewed by 164
Abstract
The electrochemical reduction of CO2 to ethanol represents a sustainable alternative to recycle CO2 into a value-added product, yet achieving high selectivity and efficiency remains a challenge. This work explores Cu-based catalysts supported on SiO2 and ZrO2, with [...] Read more.
The electrochemical reduction of CO2 to ethanol represents a sustainable alternative to recycle CO2 into a value-added product, yet achieving high selectivity and efficiency remains a challenge. This work explores Cu-based catalysts supported on SiO2 and ZrO2, with and without ZnO doping, for ethanol production in a continuous flow-cell system. Gas diffusion electrodes are fabricated using commercial catalysts with varying Cu loadings (5–10%) and ZnO contents (2–3.5%). Comprehensive characterization by XPS confirms the presence of Cu2+ and Zn2+ species, while SEM reveals that ZnO incorporation improves surface uniformity and aggregate distribution compared to undoped samples. Electrochemical tests demonstrate that 10% Cu on SiO2 achieves a Faradaic efficiency of 96% for ethanol at −3 mA cm−2, outperforming both doped catalysts and previously reported materials. However, efficiency declines at higher current densities, indicating a trade-off between selectivity and productivity. ZnO doping enhances C2+ product formation but does not surpass the undoped catalyst in ethanol selectivity. These results underline the importance of catalyst composition, support interactions, and operating conditions, and point to further optimization of electrode architecture and cell configuration to sustain high ethanol yields under industrially relevant conditions. Full article
Show Figures

Figure 1

22 pages, 604 KB  
Review
A Review of Steel Slag Carbonation: Mechanisms, Applications, and Sustainability Assessment
by Xinyue Liu, Xianbin Ai, Zhigang Que, Xiaoming Liu and Zengqi Zhang
Materials 2026, 19(2), 286; https://doi.org/10.3390/ma19020286 - 9 Jan 2026
Viewed by 225
Abstract
Steel slag (SS), as a major solid waste of the steel industry, has CO2 sequestration potential due to its rich calcium and magnesium alkaline components. SS carbonation is a promising strategy gaining industrial traction to simultaneously treat industrial solid waste and greenhouse [...] Read more.
Steel slag (SS), as a major solid waste of the steel industry, has CO2 sequestration potential due to its rich calcium and magnesium alkaline components. SS carbonation is a promising strategy gaining industrial traction to simultaneously treat industrial solid waste and greenhouse gases. This article firstly describes the properties of SS and summarizes the research progress of SS carbonation. The classification of mineral carbonation technology is introduced, and the advantages and disadvantages are analyzed. The key factors affecting the SS carbonation are discussed. Then, the current industrial application status and life cycle assessment results are summarized. Finally, the conclusions are summarized, and the future research direction is proposed. Carbonation of SS can effectively fix CO2 and produce high-value-added products, realizing a win–win situation of environmental and economic benefits, which is of great significance to the green transformation of the steel industry and the realization of the “double carbon” goal. Full article
Show Figures

Graphical abstract

30 pages, 9295 KB  
Review
Nonmetallic Heteroatom Engineering in Copper-Based Electrocatalysts: Advances in CO2 Reduction
by Ningjing Li, Hongzhen Peng, Xue Liu, Jiang Li, Jing Chen and Lihua Wang
Catalysts 2026, 16(1), 61; https://doi.org/10.3390/catal16010061 - 4 Jan 2026
Viewed by 395
Abstract
With the escalating challenges of global warming and the energy crisis, electrocatalytic CO2 reduction reaction (CO2RR) has emerged as a promising strategy to mitigate atmospheric CO2 concentrations while converting it into high-value-added chemicals. Among various CO2RR catalysts, [...] Read more.
With the escalating challenges of global warming and the energy crisis, electrocatalytic CO2 reduction reaction (CO2RR) has emerged as a promising strategy to mitigate atmospheric CO2 concentrations while converting it into high-value-added chemicals. Among various CO2RR catalysts, copper-based materials exhibit unique capabilities for C-C coupling, yet their practical application remains constrained by several limitations: Low selectivity for C2+ products (typically <60%); Catalyst instability due to dynamic reconfiguration of active sites under high overpotentials; poor energy efficiency caused by competing hydrogen evolution reactions (HERs), etc. Recent studies demonstrate that nonmetallic heteroatom doping or functionalized ligand incorporation can effectively modulate the electronic structure and surface microenvironment of Cu-based catalysts, thereby enhancing CO2RR performance. In this review, we comprehensively summarize recent advances in such strategies. We first systematically elucidate the unique advantages of copper-based catalysts as benchmark materials for multi-carbon (C2+) product synthesis, along with the current challenges they face. Subsequently, we highlight recent advances in modulating copper-based catalysts through the incorporation of diverse nonmetallic heteroatoms (e.g., N, S, B, P, halogens) or the introduction of functionalized ligands, with a particular focus on mechanistic insights and characterization methods aimed at enhancing C-C coupling efficiency and improving C2+ product selectivity. Finally, we present perspectives on the remaining opportunities and challenges in this research field. Full article
(This article belongs to the Special Issue Recent Advances in Photo/Electrocatalytic CO2 Reduction)
Show Figures

Graphical abstract

16 pages, 2076 KB  
Article
Morphology Dependence of Catalytic Properties of CeO2 Nanocatalysts for One-Step CO2 Conversion to Diethyl Carbonate
by Siru Chen, Yiwen Chen, Jun Yin, Guocheng Deng, Jie Xu, Fei Wang and Bing Xue
Catalysts 2026, 16(1), 58; https://doi.org/10.3390/catal16010058 - 4 Jan 2026
Viewed by 294
Abstract
The conversion of CO2 into value-added chemicals exemplifies an innovative and eco-friendly approach to addressing carbon emissions. In this study, shape-specific CeO2 nanocrystals (nanorods, nanocubes, and nanoparticles) were successfully synthesized and employed as catalysts to study the structure-dependent behavior and reaction [...] Read more.
The conversion of CO2 into value-added chemicals exemplifies an innovative and eco-friendly approach to addressing carbon emissions. In this study, shape-specific CeO2 nanocrystals (nanorods, nanocubes, and nanoparticles) were successfully synthesized and employed as catalysts to study the structure-dependent behavior and reaction mechanism for one-step CO2 conversion to diethyl carbonate (DEC). Among the three catalysts, CeO2 nanorods (Ce-NR) exhibited the best catalytic activity in the synthesis of DEC from CO2 compared with CeO2 nanocubes (Ce-NC) and nanoparticles (Ce-NP), which achieved the DEC production of 1.32 mmolDEC/gcat at 423 K and 5 MPa for 4 h. Comprehensive characterization further confirmed the enhanced activity of Ce-NR originated from the morphology effect, particularly the promotion of oxygen vacancies and Ce3+ species, which promoted reaction activity. Furthermore, the Ce-NR catalyst almost retained 1.32 mmolDEC/gcat DEC production of its initial activity after four cycles, underscoring its exceptional stability and promising industrial scalability. These findings provide fundamental insights to guide the rational design of efficient catalysts for CO2 activation and other critical transformations. Full article
Show Figures

Graphical abstract

18 pages, 2332 KB  
Review
Recent Advances in Photoelectrochemical Nitrate Reduction to Ammonia
by Kaixin Zhu and Hefeng Zhang
Int. J. Mol. Sci. 2026, 27(1), 470; https://doi.org/10.3390/ijms27010470 - 1 Jan 2026
Viewed by 450
Abstract
Ammonia, as an essential chemical, plays an indispensable role in both industry and agriculture. However, the traditional Haber–Bosch technique for ammonia synthesis suffers from high energy consumption and significant CO2 emissions. Therefore, developing an energy-efficient and eco-friendly method for ammonia production is [...] Read more.
Ammonia, as an essential chemical, plays an indispensable role in both industry and agriculture. However, the traditional Haber–Bosch technique for ammonia synthesis suffers from high energy consumption and significant CO2 emissions. Therefore, developing an energy-efficient and eco-friendly method for ammonia production is imperative. Photoelectrochemical (PEC) nitrate reduction to ammonia has emerged as a promising green alternative, which utilizes renewable solar energy to convert nitrate into valuable ammonia, thereby contributing to nitrogen recycling and wastewater remediation. This review systematically summarizes recent advances in PEC nitrate reduction to ammonia, focusing on the rational design of efficient photocathodes with the development of semiconductor materials, cocatalysts, p–n junction and heterostructure strategies. Furthermore, the integration of photocathodes with photoanodes enables the assembly of bias-free PEC systems capable of simultaneously producing ammonia and value-added chemicals, demonstrating the potential for scalable solar-driven ammonia synthesis. The mechanistic studies and future research directions are also discussed. The review aims to offer valuable insights and promote the further development of PEC nitrate reduction to ammonia. Full article
(This article belongs to the Special Issue Advanced Functional Materials for Catalysis and Storage)
Show Figures

Figure 1

27 pages, 4839 KB  
Article
Advanced Hybrid Polysaccharide—Lipid Nanocarriers for Bioactivity Improvement of Phytochemicals from Centella asiatica and Hypericum perforatum
by Ioana Lăcătusu, Mihaela Bacalum, Diana Lavinia Stan, Ovidiu-Cristian Oprea, Mihaela Neagu, Georgeta Alexandru, Mihaela Prisacari and Nicoleta Badea
Pharmaceutics 2026, 18(1), 48; https://doi.org/10.3390/pharmaceutics18010048 - 30 Dec 2025
Viewed by 327
Abstract
Background/Objectives: Phytochemicals are known to be active contributors to a healthy life, providing valuable wound healing benefits. Methods: This research took an innovative approach that successfully overcame the bioavailability limits of herbal extracts, by entrapping CentellaA with HypericumP in nanostructured lipid carriers (NLCs) [...] Read more.
Background/Objectives: Phytochemicals are known to be active contributors to a healthy life, providing valuable wound healing benefits. Methods: This research took an innovative approach that successfully overcame the bioavailability limits of herbal extracts, by entrapping CentellaA with HypericumP in nanostructured lipid carriers (NLCs) and hybrid hyaluronic acid (HA-NLCs) as valuable formulations with enhanced bioactivity. Results: NLCs and HA-NLCs showed excellent entrapping efficiency values for CentellaA and HypericumP ranging from 89.5 to 95.3%. Co-entrapping of CentellaA:HypericumP in a weight ratio of 4:1 and 2:1 led to diameters of 221.4 ± 2.08 nm for NLC-CentellaA-HypericumP and 220.3 ± 1.74 nm for hybrid HA-NLC-CentellaA-HypericumP. The bimodal calorimetric profile of NLCs contributed to a lower degree of lipid core structural organization. HA-NLC-CentellaA showed the safest biocompatibility behavior with BJ skin cells. Conclusions: The cells treated with NLC-CentellaA exhibited a favorable scratch wound closure and promoted the fastest BJ cell migration. NLC- and HA-NLC herbal extracts remodeled the cytoskeleton of BJ fibroblast cells. The morphological fluorescence changes revealed that the fibroblast cells retained intact their cytoskeleton, characteristic of a viable cell with no obvious stress. An active motility of cells treated with NLCs in the wound area was detected, indicating strong pro-migratory properties; e.g., for NLC-CentellaA, the wound was almost closed after 30 h. Designing NLCs with HA adaptability to reinforce the skin wound healing action represents a desired step for the development of herbal products that meets the challenge of combining the benefits of phytochemicals and nanotechnology to create value-added herbal products. Full article
Show Figures

Figure 1

24 pages, 1280 KB  
Review
Bioprocessing of Grape Pomace for Value Added Ingredients with Utilization in Baked Products
by Alexandru Zmuncilă, Carmen Rodica Pop, Anca Corina Fărcaş, Simona Maria Man, Maria Simona Chiș, Alexandra Lițoiu and Adriana Păucean
Foods 2026, 15(1), 50; https://doi.org/10.3390/foods15010050 - 23 Dec 2025
Viewed by 467
Abstract
Bioprocessing grape pomace (GP) presents a sustainable solution aligned with circular economic principles and transforms it into valuable functional ingredients for baked products. This review (2020–2025) synthesizes enzymatic and microbial strategies that modify the fiber–phenolic matrix and improve dough performance. Enzyme-assisted extraction, alone [...] Read more.
Bioprocessing grape pomace (GP) presents a sustainable solution aligned with circular economic principles and transforms it into valuable functional ingredients for baked products. This review (2020–2025) synthesizes enzymatic and microbial strategies that modify the fiber–phenolic matrix and improve dough performance. Enzyme-assisted extraction, alone or combined with ultrasound or pressurized liquids, increases extractable polyphenols and antioxidant capacity in GP fractions used as flour substitutions or pre-ferments. Fungal solid-state and lactic fermentations liberate bound phenolic compounds and generate acids and exopolysaccharides. Among these routes, enzyme-assisted extraction and lactic sourdough-type fermentations currently appear the most compatible with bakery-scale implementation, offering substantial phenolic enrichment while relying on relatively simple, food-grade equipment. In current bakery applications, GP is mainly used as crude grape pomace powder, which typically shows higher total phenolics and antioxidant capacity. Moreover, in several models it lowers starch hydrolysis and predicted glycemic index. The practical substitution rate is between 5 and 10% of flour, which balances nutritional gains with processing disadvantages. These can be mitigated by fractionation toward soluble dietary fiber or co-fortification with flours rich in protein and fiber. An additional benefit of these methods includes reduced mycotoxin bioaccessibility in vitro. A key evidence gap is the absence of standardized comparisons between raw and bioprocessed GP in identical formulations. Overall, GP emerges as a promising ingredient for bakery products, while the added technological and nutritional value of bioprocessing remains to be quantified. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

17 pages, 3215 KB  
Article
Activity of Copper and Blast Furnace Slag and Its Influence on the Properties of Cement
by Stefania Grzeszczyk, Aneta Matuszek-Chmurowska, Alina Kaleta-Jurowska, Krystian Jurowski, Piotr Podkowa and Seweryn Stęplowski
Materials 2026, 19(1), 38; https://doi.org/10.3390/ma19010038 - 22 Dec 2025
Viewed by 328
Abstract
Reducing CO2 emissions from cement production is currently one of the major challenges faced by the cement industry. One approach to lowering these emissions is to reduce the clinker factor by incorporating alternative mineral additives into cement. Consequently, there is a growing [...] Read more.
Reducing CO2 emissions from cement production is currently one of the major challenges faced by the cement industry. One approach to lowering these emissions is to reduce the clinker factor by incorporating alternative mineral additives into cement. Consequently, there is a growing interest in the use of copper slags (CSs) as supplementary cementitious materials. Therefore, this study investigates the properties of cements containing substantial amounts of copper slag (up to 60%) and, for comparison, the same proportions of granulated blast furnace slag. The inclusion of substantial amounts of CS results both from the lack of studies in this area and from the potential benefits associated with the utilization of larger quantities of copper slag. The chemical, phase, and particle size composition of CS and granulated blast furnace slag added to CEM I 42.5 cement from the Odra cement plant in amounts of 20%, 40%, and 60% by weight were compared. The pozzolanic activity index of the copper slag and the hydraulic activity index of the blast furnace slag were determined. The high pozzolanic activity of the CS was attributed to its high degree of vitrification (nearly 100%). In contrast, the lower hydraulic activity of the blast furnace slag was explained by its lower glass phase content (about 90% by mass). A gradual decrease in the total heat of hydration released within the first two days was observed with increasing slag content in the cement, slightly more pronounced for copper slags. However, at later stages (2–28 days), XRD analysis indicated higher hydration activity in cements containing copper slag, resulting from its strong pozzolanic reactivity. Cements with copper slag also showed slightly lower water demand compared to those with blast furnace slag. An increase in setting time was observed with higher slag content, more noticeable for blast furnace slag. The type and amount of slag in cement reduce both yield stress and plastic viscosity. Greater reductions were observed at higher slag content. Moreover, copper slag caused greater paste fluidity, attributed to the lower amount of fine particles fraction. The addition of slag decreased flexural and compressive strength in the early period (up to 7 days), this reduction being proportional to slag content. After 90 days, mortars containing 20% and 40% copper slag achieved strength values exceeding that of the reference mortar by 4%. In contrast, at a 60% CS content, a 5% decrease was observed, while for cement with 60% BFS the decrease was 11%. This indicates that a lower copper slag content in the cement (40%) is more favorable in terms of strength. Full article
(This article belongs to the Special Issue Sustainability and Performance of Cement-Based Materials)
Show Figures

Graphical abstract

17 pages, 3622 KB  
Article
CuO-Clinoptilolite Composites for Sustainable CO2 Conversion: Modulating Pathways Toward Alcohols
by Fabiana L. Santos, José B. G. Filho, Vinícius M. F. Santos, Karolina Furukawa, Maraisa Gonçalves, Juliana A. Torres, Amanda S. Giroto, Lucas S. Ribeiro, Lucas Bonelli, Caue Ribeiro and André E. Nogueira
Photochem 2026, 6(1), 3; https://doi.org/10.3390/photochem6010003 - 20 Dec 2025
Viewed by 267
Abstract
The increasing atmospheric concentration of CO2 is a major contributor to global climate change, underscoring the urgent need for effective strategies to convert CO2 into value-added products. In this sense, a composite was successfully synthesized by combining clinoptilolite zeolite (CZ) with [...] Read more.
The increasing atmospheric concentration of CO2 is a major contributor to global climate change, underscoring the urgent need for effective strategies to convert CO2 into value-added products. In this sense, a composite was successfully synthesized by combining clinoptilolite zeolite (CZ) with varying amounts of copper oxide (CuO-1% and 10%) for CO2 photoreduction. The composites were characterized using insightful techniques, including XRD, nitrogen physisorption, DRS, and SEM. The results confirmed the incorporation and dispersion of CuO within the CZ support. The XRD analysis revealed characteristic crystalline CuO peaks. Despite the low surface area (<15 m2·g−1) and macroporous nature of the samples, EDS imaging revealed an effective and homogeneous dispersion of CuO, indicating efficient surface distribution. UV–Vis diffuse reflectance spectroscopy revealed band gap energies of 3.30 eV (CZ), 3.38 eV (1%-CuO/CZ), and 1.75 eV (10%-CuO/CZ), highlighting the pronounced electronic changes resulting from CuO incorporation. Photocatalytic tests conducted under UVC irradiation (λ = 254 nm) revealed that 10%-CuO/CZ exhibited the highest CO and CH4 production, 35 µmol·g−1 and 3.6 µmol·g−1, respectively. The composite also delivered the highest CO productivity (5.91 µmol·g−1·h−1), approximately 3.5 times that of pristine CZ, in addition to achieving the highest CH4 productivity (0.60 µmol·g−1·h−1). Furthermore, turnover frequency (TOF) analysis normalized per Cu site revealed that CuO incorporation not only enhances total productivity but also improves the intrinsic catalytic efficiency of the active copper centers. Overall, the synthesized composites demonstrate promising potential for CO2 photoreduction, driven by synergistic structural, electronic, and morphological features. Full article
Show Figures

Figure 1

14 pages, 1359 KB  
Article
Properties of n-Octadecane PCM Composite with Recycled Aluminum as a Thermal Enhancer
by Nicoleta Cobîrzan, Gyorgy Thalmaier, Crețu Mihaela, Mircea Năsui and Dan Doru Micu
Materials 2025, 18(24), 5638; https://doi.org/10.3390/ma18245638 - 15 Dec 2025
Viewed by 313
Abstract
This paper presents new types of PCM composites proposed and analyzed for cooling applications in buildings. The composites (n-octadecane-Al-long/n-octadecane-Al-short) were made of n-octadecane with 7% and 7.5% vol. of recycled aluminum added as a thermal conductivity enhancer to avoid sinking during the melting [...] Read more.
This paper presents new types of PCM composites proposed and analyzed for cooling applications in buildings. The composites (n-octadecane-Al-long/n-octadecane-Al-short) were made of n-octadecane with 7% and 7.5% vol. of recycled aluminum added as a thermal conductivity enhancer to avoid sinking during the melting phase and to improve thermal conductivity. Recycled aluminum chips are inexpensive, abundant, and generate a lower environmental impact during composite production. The effect of the chip content was found to increase the thermal conductivity values of the composites by 100% (n-octadecane-Al short) and by 600% (n-octadecane-Al-long) compared to n-octadecane. The percentage of mass increase remained low. The latent heat of n-octadecane-Al-long decreased from 245 kJ/kg to 195 kJ/kg, the melting time shortened from 990 s to 850 s, and the CO2 emission reduction was by 150 kg CO2eq/year. The volume of the PCM composites varied from 0.083 m3 (n-octadecane) to 0.091 for n-octadecane-Al-long, which represents an increase of up to 11% needed to absorb the solar heat gained by the optimized PCM composite. Full article
(This article belongs to the Special Issue Powder Metallurgy and Advanced Materials)
Show Figures

Graphical abstract

19 pages, 1404 KB  
Article
Optimizing Vineyard Pruning Biochars for Nutrient Adsorption: Toward Sustainable Fertilizer Applications
by Olena Dorosh, Andreia F. Peixoto, Cristina Delerue-Matos, Paula M. L. Castro and Manuela M. Moreira
Environments 2025, 12(12), 491; https://doi.org/10.3390/environments12120491 - 15 Dec 2025
Viewed by 461
Abstract
Agricultural residues, such as vineyard prunings, are abundant yet underutilized resources with potential for conversion into value-added products. In this study, vineyard prunings were investigated for the first time as feedstock for nutrient-enriched biochars intended for use as enhanced efficiency fertilizers (EEFs). Four [...] Read more.
Agricultural residues, such as vineyard prunings, are abundant yet underutilized resources with potential for conversion into value-added products. In this study, vineyard prunings were investigated for the first time as feedstock for nutrient-enriched biochars intended for use as enhanced efficiency fertilizers (EEFs). Four biochars were produced using distinct physical (industrial-scale pyrolysis, CO2-assisted pyrolysis) and chemical (MgCl2, AlCl3 pretreatment) procedures. Their adsorption capacities for nitrogen (N), phosphorus (P), and potassium (K) were evaluated across a wide pH range (2–13). Optimization studies, including dosage, kinetics, and isotherms, revealed maximum Langmuir adsorption capacities of 10.4 mg N g−1 and 12.7 mg P g−1, which were comparable to or higher than other low-cost agricultural biochars, confirming the competitive performance of vineyard pruning-derived biochars. Beyond adsorption efficiency, these biochars provide additional benefits by valorizing a widely available viticulture residue, reducing open-field disposal and burning, and generating low-cost fertilizers that may reduce nutrient leaching and improve soil health. This work introduces a novel circular pathway linking vineyard waste management to sustainable nutrient delivery, integrating agricultural byproduct utilization with environmental remediation strategies. Full article
(This article belongs to the Special Issue Biochar as an Environmental Technology)
Show Figures

Figure 1

Back to TopTop