energies-logo

Journal Browser

Journal Browser

Electrochemical CO2 Reduction: Electrocatalyst, Reaction Mechanism, and Process Engineering

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "D2: Electrochem: Batteries, Fuel Cells, Capacitors".

Deadline for manuscript submissions: 29 August 2025 | Viewed by 711

Special Issue Editors


E-Mail Website
Guest Editor
1. LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
2. ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4100 Porto, Portugal
Interests: CO2 capture and utilization; CO2 electrochemical reduction; heterogeneous catalysis; electrochemistry; inorganic synthesis; materials characterization

E-Mail Website
Guest Editor
1. LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
2. ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4100 Porto, Portugal
Interests: synthesis; organic and inorganic chemistry, catalysts; CO2 electrochemical reduction; photovoltaics

Special Issue Information

Dear Colleagues,

The electrochemical reduction of CO2 (CO2RR) is a promising approach to converting CO2 into value-added fuels and chemicals using renewable electricity, offering a sustainable means of carbon management and energy production. In recent years, we have witnessed significant advances in the development of electrocatalysts, the optimization of reactor designs, and the enhancement of system efficiency. However, challenges such as catalyst stability, product selectivity, competitive hydrogen evolution, and scale-up limitations must be addressed to advance CO2RR for industrial implementation.

This Special Issue aims to showcase recent developments in CO2 electrolysis, covering key aspects such as catalyst design, reaction mechanisms, electrolyte and reactor optimization, product purification, and system integration. Additionally, we welcome contributions that present approaches to CO2 capture and purification that are tailored to electrochemical conversion.

The scope of this Special Issue includes, but is not limited to, the following topics:

  • Development and characterization of electrocatalysts;
  • Mechanistic studies and theoretical modelling;
  • Electrolyte and reactor design for improved performance;
  • Strategies to enhance product selectivity and energy efficiency;
  • Product collection, separation, and industrial applications;
  • Integration of CO2 capture with electrochemical conversion.

We welcome original research articles, reviews, and perspectives that advance our understanding and practical implementation of CO2RR, contributing to scalable and sustainable carbon conversion technologies.

Dr. Cátia Azenha
Dr. Ana Mafalda Vaz Martins Pereira
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • CO2 electroreduction
  • catalyst design
  • electrolyzers
  • mechanistic studies
  • selectivity and energy efficiency
  • scale-up
  • industrial application

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 4625 KiB  
Article
Multiphysics Modeling and Performance Optimization of CO2/H2O Co-Electrolysis in Solid Oxide Electrolysis Cells: Temperature, Voltage, and Flow Configuration Effects
by Rui Xue, Jinping Wang, Jiale Chen and Shuaibo Che
Energies 2025, 18(15), 3941; https://doi.org/10.3390/en18153941 - 24 Jul 2025
Viewed by 271
Abstract
This study developed a two-dimensional multiphysics-coupled model for co-electrolysis of CO2 and H2O in solid oxide electrolysis cells (SOECs) using COMSOL Multiphysics, systematically investigating the influence mechanisms of key operating parameters including temperature, voltage, feed ratio, and flow configuration on [...] Read more.
This study developed a two-dimensional multiphysics-coupled model for co-electrolysis of CO2 and H2O in solid oxide electrolysis cells (SOECs) using COMSOL Multiphysics, systematically investigating the influence mechanisms of key operating parameters including temperature, voltage, feed ratio, and flow configuration on co-electrolysis performance. The results demonstrate that increasing temperature significantly enhances CO2 electrolysis, with the current density increasing over 12-fold when temperature rises from 923 K to 1423 K. However, the H2O electrolysis reaction slows beyond 1173 K due to kinetic limitations, leading to reduced H2 selectivity. Higher voltages simultaneously accelerate all electrochemical reactions, with CO and H2 production at 1.5 V increasing by 15-fold and 13-fold, respectively, compared to 0.8 V, while the water–gas shift reaction rate rises to 6.59 mol/m3·s. Feed ratio experiments show that increasing CO2 concentration boosts CO yield by 5.7 times but suppresses H2 generation. Notably, counter-current operation optimizes reactant concentration distribution, increasing H2 and CO production by 2.49% and 2.3%, respectively, compared to co-current mode, providing critical guidance for reactor design. This multiscale simulation reveals the complex coupling mechanisms in SOEC co-electrolysis, offering theoretical foundations for developing efficient carbon-neutral technologies. Full article
Show Figures

Figure 1

21 pages, 3490 KiB  
Article
Energy-Efficient CO2 Conversion for Carbon Utilization Using a Gliding Arc/Glow Discharge with Magnetic Field Acceleration—Optimization and Characterization
by Svetlana Lazarova, Snejana Iordanova, Stanimir Kolev, Veselin Vasilev and Tsvetelina Paunska
Energies 2025, 18(14), 3816; https://doi.org/10.3390/en18143816 - 17 Jul 2025
Viewed by 297
Abstract
The dry conversion of CO2 into CO and O2 provides an attractive path for CO2 utilization which allows for the use of the CO produced for the synthesis of valuable hydrocarbons. In the following work, the CO2 conversion is [...] Read more.
The dry conversion of CO2 into CO and O2 provides an attractive path for CO2 utilization which allows for the use of the CO produced for the synthesis of valuable hydrocarbons. In the following work, the CO2 conversion is driven by an arc discharge at atmospheric pressure, producing hot plasma. This study presents a series of experiments aiming to optimize the process. The results obtained include the energy efficiency and the conversion rate of the process, as well as the electrical parameters of the discharge (current and voltage signals). In addition, optical emission spectroscopy diagnostics based on an analysis of C2’s Swan bands are used to determine the gas temperature in the discharge. The data is analyzed according to several aspects—an analysis of the arc’s motion based on the electrical signals; an analysis of the effect of the gas flow and the discharge current on the discharge performance for CO2 conversion; and an analysis of the vibrational and rotational temperatures of the arc channel. The results show significant improvements over previous studies. Relatively high gas conversion and energy efficiency are achieved due to the arc acceleration caused by the Lorentz force. The rotational (gas) temperatures are in the order of 5500–6000 K. Full article
Show Figures

Figure 1

Back to TopTop