Bioprocessing of Grape Pomace for Value Added Ingredients with Utilization in Baked Products
Abstract
1. Introduction
2. Composition and Functional Components
2.1. GP Composition
2.1.1. Dietary Fibers
2.1.2. Polyphenols
2.1.3. Macronutrients
2.2. Natural Microbiota
3. Bioprocessing Techniques
3.1. Enzymatic Treatments and Innovative Extractions
3.2. Microbial Fermentation of Grape Pomace
3.2.1. Solid-State Fungal Fermentation
3.2.2. Submerged/Semi-Solid Fermentation
4. Application of Grape Pomace in Bakery Products
4.1. Formulation Approaches for Grape Pomace in Bread and Other Bakery Products
4.2. Compositional, Nutritional, and Sensory Effects
4.3. Stability, Safety and Processing Performance
5. Limitations of the Current Evidence
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferrer-Gallego, R.; Silva, P. The Wine Industry By-Products: Applications for Food Industry and Health Benefits. Antioxidants 2022, 11, 2025. [Google Scholar] [CrossRef]
- Ahmad, B.; Yadav, V.; Yadav, A.; Rahman, M.U.; Yuan, W.Z.; Li, Z.; Wang, X. Integrated Biorefinery Approach to Valorize Winery Waste: A Review from Waste to Energy Perspectives. Sci. Total Environ. 2020, 719, 137315. [Google Scholar] [CrossRef]
- Caponio, G.R.; Minervini, F.; Tamma, G.; Gambacorta, G.; De Angelis, M. Promising Application of Grape Pomace and Its Agri-Food Valorization: Source of Bioactive Molecules with Beneficial Effects. Sustainability 2023, 15, 9075. [Google Scholar] [CrossRef]
- Costa, M.M.; Alfaia, C.M.; Lopes, P.A.; Pestana, J.M.; Prates, J.A.M. Grape By-Products as Feedstuff for Pig and Poultry Production. Animals 2022, 12, 2239. [Google Scholar] [CrossRef]
- Guardianelli, L.M.; Salinas, M.V.; Puppo, M.C.; Hidalgo, A.; Pasini, G. Nutritional and Antioxidant Valorization of Grape Pomace from Argentinian Vino De La Costa and Italian Cabernet Wines. Foods 2025, 14, 2386. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Purcaro, G.; Fan, B.; Tong, L.-T.; Liu, L.; Sun, J.; Wang, F.; Wang, L. Antioxidant Dietary Fibre: A Structure-Function Journey. Trends Food Sci. Technol. 2024, 143, 104305. [Google Scholar] [CrossRef]
- Alves, G.; Lobo, L.A.; Domingues, R.M.C.P.; Monteiro, M.; Perrone, D. Bioaccessibility and Gut Metabolism of Free and Melanoidin-Bound Phenolic Compounds from Coffee and Bread. Front. Nutr. 2021, 8, 708928. [Google Scholar] [CrossRef]
- Kieserling, H.; de Bruijn, W.J.C.; Keppler, J.; Yang, J.; Sagu, S.T.; Güterbock, D.; Rawel, H.; Schwarz, K.; Vincken, J.-P.; Schieber, A.; et al. Protein–Phenolic Interactions and Reactions: Discrepancies, Challenges, and Opportunities. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70015. [Google Scholar] [CrossRef]
- Qin, W.; Pi, J.; Zhang, G. The Interaction between Tea Polyphenols and Wheat Gluten in Dough Formation and Bread Making. Food Funct. 2022, 13, 12827–12835. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ma, S.; Li, L.; Huang, J. Effect of Wheat Bran Dietary Fiber on Structural Properties and Hydrolysis Behavior of Gluten after Synergistic Fermentation of Lactobacillus Plantarum and Saccharomyces Cerevisiae. Front. Nutr. 2022, 9, 982878. [Google Scholar] [CrossRef] [PubMed]
- Amulya, P.R.; Ul Islam, R. Optimization of Enzyme-Assisted Extraction of Anthocyanins from Eggplant (Solanum melongena L.) Peel. Food Chem. X 2023, 18, 100643. [Google Scholar] [CrossRef]
- Yusoff, I.M.; Mat Taher, Z.; Rahmat, Z.; Chua, L.S. A Review of Ultrasound-Assisted Extraction for Plant Bioactive Compounds: Phenolics, Flavonoids, Thymols, Saponins and Proteins. Food Res. Int. 2022, 157, 111268. [Google Scholar] [CrossRef]
- Višnjevec, A.M.; Barp, L.; Lucci, P.; Moret, S. Pressurized Liquid Extraction for the Determination of Bioactive Compounds in Plants with Emphasis on Phenolics. TrAC Trends Anal. Chem. 2024, 173, 117620. [Google Scholar] [CrossRef]
- Pakaweerachat, P.; Chysirichote, T. Valorization of Tannin Rich Triphala Waste for Simultaneous Tannase and Gallic Acid Production under Solid State Fermentation by Aspergillus niger. Chem. Eng. Commun. 2023, 210, 1420–1433. [Google Scholar] [CrossRef]
- Wu, J.; Han, X.; Ye, M.; Li, Y.; Wang, X.; Zhong, Q. Exopolysaccharides Synthesized by Lactic Acid Bacteria: Biosynthesis Pathway, Structure-Function Relationship, Structural Modification and Applicability. Crit. Rev. Food Sci. Nutr. 2023, 63, 7043–7064. [Google Scholar] [CrossRef]
- Graça, C.; Lima, A.; Raymundo, A.; Sousa, I. Sourdough Fermentation as a Tool to Improve the Nutritional and Health-Promoting Properties of Its Derived-Products. Fermentation 2021, 7, 246. [Google Scholar] [CrossRef]
- Martău, G.A.; Teleky, B.-E.; Ranga, F.; Pop, I.D.; Vodnar, D.C. Apple Pomace as a Sustainable Substrate in Sourdough Fermentation. Front. Microbiol. 2021, 12, 742020. [Google Scholar] [CrossRef] [PubMed]
- Troilo, M.; Difonzo, G.; Paradiso, V.M.; Pasqualone, A.; Caponio, F. Grape Pomace as Innovative Flour for the Formulation of Functional Muffins: How Particle Size Affects the Nutritional, Textural and Sensory Properties. Foods 2022, 11, 1799. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, Y.; Zhao, Y.; Wang, D.; Wang, W. Influence of Antioxidant Dietary Fiber on Dough Properties and Bread Qualities: A Review. J. Funct. Foods 2021, 80, 104434. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Wang, G.; Xu, L.; Liu, Y.; Yuan, C.; Li, J. The Release Patterns and Potential Prebiotic Characteristics of Soluble and Insoluble Dietary Fiber-Bound Polyphenols from Pinot Noir Grape Pomace In Vitro Digestion and Fermentation. Food Chem. X 2025, 29, 102694. [Google Scholar] [CrossRef]
- Vorobyova, V.; Skiba, M.; Horodniuk, O.; Khrokalo, L.; Vasyliev, G. Betaine-Based Deep Eutectic Grape Pomace Extract Mediated Synthesis of Silver Nanoparticles with Antibacterial Activities. BioNanoScience 2023, 13, 1726–1740. [Google Scholar] [CrossRef]
- da Silva, D.J.; de Oliveira, M.M.; Wang, S.H.; Carastan, D.J.; Rosa, D.S. Designing Antimicrobial Polypropylene Films with Grape Pomace Extract for Food Packaging. Food Packag. Shelf Life 2022, 34, 100929. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A.Ž.; Soković Bajić, S.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Lj Tešić, Ž.; Pešić, M.B. Phenolic Compounds and Biopotential of Grape Pomace Extracts from Prokupac Red Grape Variety. LWT 2021, 138, 110739. [Google Scholar] [CrossRef]
- Onache, P.A.; Geana, E.-I.; Ciucure, C.T.; Florea, A.; Sumedrea, D.I.; Ionete, R.E.; Tița, O. Bioactive Phytochemical Composition of Grape Pomace Resulted from Different White and Red Grape Cultivars. Separations 2022, 9, 395. [Google Scholar] [CrossRef]
- Kannampilly, N.J.; Devadas, C.T. Kinetic Modelling of Anthocyanin Extraction from Grape (Vitis vinifera) Using Response Surface Methodology. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 3015–3019. [Google Scholar] [CrossRef]
- Abreu, T.; Ferreira, R.; Castilho, P.C.; Câmara, J.S.; Teixeira, J.; Perestrelo, R. Unlocking the Fatty Acid and Antioxidant Profile of Grape Pomace: A Systematic Assessment Across Varieties and Vintages for Its Sustainable Valorization. Molecules 2025, 30, 3150. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, X.; Cheng, T.; Liu, R.; Han, F. Anthocyanins and Proanthocyanidins Synergistically Inhibit the Growth of Gastric Cancer Cells in Vitro: Exploring the Potential Physiological Activity of Grape and Red Wine. Nat. Prod. Res. 2024, 39, 6439–6448. [Google Scholar] [CrossRef]
- Zhu, R.; Tong, X.; Du, Y.; Liu, J.; Xu, X.; He, Y.; Wen, L.; Wang, Z. Improvement of Chlorpyrifos-Induced Cognitive Impairment by Mountain Grape Anthocyanins Based on PI3K/Akt Signaling Pathway. Pestic. Biochem. Physiol. 2024, 205, 106172. [Google Scholar] [CrossRef]
- Tian, Z.; Li, K.; Fan, D.; Zhao, Y.; Gao, X.; Ma, X.; Xu, L.; Shi, Y.; Ya, F.; Zou, J. Dose-Dependent Effects of Anthocyanin Supplementation on Platelet Function in Subjects with Dyslipidemia: A Randomized Clinical Trial. eBioMedicine 2021, 70, 103533. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Z.; Ling, W.; Wang, L.; Wang, C.; Ma, J.; Peng, X.; Chen, J. Effect of Anthocyanins Supplementation on Serum IGFBP-4 Fragments and Glycemic Control in Patients with Fasting Hyperglycemia: A Randomized Controlled Trial. Diabetes Metab. Syndr. Obes. 2020, 13, 3395–3404. [Google Scholar] [CrossRef]
- Selim, S.; Abdel-Megeid, N.S.; Alhotan, R.A.; Ebrahim, A.; Hussein, E. Grape Pomace: Agrifood By-Product with Potential to Enhance Performance, Yolk Quality, Antioxidant Capacity, and Eggshell Ultrastructure in Laying Hens. Vet. Sci. 2023, 10, 461. [Google Scholar] [CrossRef]
- Punjab, S.Y.; Muruga, L.J.; Jyothi, N.T. Extraction and Evaluation of Resveratrol from Grape Pomace Obtained from By-Product of Wineries: A Sustainable and Cost-Effective Source for Anti-Aging Formulations. LIPS Int. J. Interdiscip. Res. 2023, 1, 1–4. [Google Scholar]
- Ramos-Romero, S.; Martínez-Maqueda, D.; Hereu, M.; Amézqueta, S.; Torres, J.L.; Pérez-Jiménez, J. Modifications of Gut Microbiota after Grape Pomace Supplementation in Subjects at Cardiometabolic Risk: A Randomized Cross-Over Controlled Clinical Trial. Foods 2020, 9, 1279. [Google Scholar] [CrossRef] [PubMed]
- Mezhibovsky, E.; Wu, G.; Wu, Y.; Ning, Z.; Bacalia, K.; Sadangi, S.; Patel, R.; Poulev, A.; Duran, R.M.; Macor, M.; et al. Grape Polyphenols Reduce Fasting Glucose and Increase Hyocholic Acid in Healthy Humans: A Meta-Omics Study. npj Sci. Food 2025, 9, 87. [Google Scholar] [CrossRef]
- Fariña, E.; Daghero, H.; Bollati-Fogolín, M.; Boido, E.; Cantero, J.; Moncada-Basualto, M.; Olea-Azar, C.; Polticelli, F.; Paulino, M. Antioxidant Capacity and NF-kB-Mediated Anti-Inflammatory Activity of Six Red Uruguayan Grape Pomaces. Molecules 2023, 28, 3909. [Google Scholar] [CrossRef] [PubMed]
- Choleva, M.; Matalliotaki, E.; Antoniou, S.; Asimomyti, E.; Drouka, A.; Stefani, M.; Yannakoulia, M.; Fragopoulou, E. Postprandial Metabolic and Oxidative Stress Responses to Grape Pomace Extract in Healthy Normal and Overweight/Obese Women: A Randomized, Double-Blind, Placebo-Controlled Crossover Study. Nutrients 2023, 15, 156. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, G.; Ciampaglia, R.; Maisto, M.; D’Avino, M.; Caruso, D.; Tenore, G.C.; Novellino, E. Taurisolo®, a Grape Pomace Polyphenol Nutraceutical Reducing the Levels of Serum Biomarkers Associated with Atherosclerosis. Front. Cardiovasc. Med. 2021, 8, 697272. [Google Scholar] [CrossRef]
- Pop, R.M.; Boarescu, P.-M.; Bocsan, C.I.; Gherman, M.L.; Chedea, V.S.; Jianu, E.-M.; Roșian, Ș.H.; Boarescu, I.; Ranga, F.; Muntean, M.D.; et al. Beneficial Effects of White Grape Pomace in Experimental Dexamethasone-Induced Hypertension. Diseases 2025, 13, 132. [Google Scholar] [CrossRef]
- Han, Y.; Yang, C.; Tian, X.; Shi, X.; Wang, H.; Li, H. Grape Pomace Polyphenol Extract Alleviates Obesity in Mice and Improves Gut Microbiota and Short Chain Fatty Acids. Foods 2025, 14, 2823. [Google Scholar] [CrossRef]
- Machado, A.R.; Voss, G.B.; Machado, M.; Paiva, J.A.P.; Nunes, J.; Pintado, M. Chemical Characterization of the Cultivar ‘Vinhão’ (Vitis vinifera L.) Grape Pomace towards Its Circular Valorisation and Its Health Benefits. Meas. Food 2024, 15, 100175. [Google Scholar] [CrossRef]
- Subhashini, J.; Arulnathan, N.; Thirumalaisamy, G.; Jagatheesan, P.N. Assessing the Nutritional Content of Grape Pomace and Its Potential Utilization as a Fruit Processing Industry Waste: A Substitute for Livestock Feed. Asian J. Dairy Food Res. 2025, 1–7. [Google Scholar] [CrossRef]
- Giosuè, A.; Siano, F.; Di Stasio, L.; Picariello, G.; Medoro, C.; Cianciabella, M.; Giacco, R.; Predieri, S.; Vasca, E.; Vaccaro, O.; et al. Turning Wastes into Resources: Red Grape Pomace-Enriched Biscuits with Potential Health-Promoting Properties. Foods 2024, 13, 2195. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. Characterization of Băbească Neagră Grape Pomace and Incorporation into Jelly Candy: Evaluation of Phytochemical, Sensory, and Textural Properties. Foods 2024, 13, 98. [Google Scholar] [CrossRef] [PubMed]
- Baldán, Y.; Riveros, M.; Fabani, M.P.; Rodriguez, R. Grape Pomace Powder Valorization: A Novel Ingredient to Improve the Nutritional Quality of Gluten-Free Muffins. Biomass Conv. Bioref. 2023, 13, 9997–10009. [Google Scholar] [CrossRef]
- Franco, W.; Benavides, S.; Valencia, P.; Ramírez, C.; Urtubia, A. Native Yeasts and Lactic Acid Bacteria Isolated from Spontaneous Fermentation of Seven Grape Cultivars from the Maule Region (Chile). Foods 2021, 10, 1737. [Google Scholar] [CrossRef]
- Anghel, L.; Milea, A.Ș.; Constantin, O.E.; Barbu, V.; Chițescu, C.; Enachi, E.; Râpeanu, G.; Mocanu, G.-D.; Stănciuc, N. Dried Grape Pomace with Lactic Acid Bacteria as a Potential Source for Probiotic and Antidiabetic Value-Added Powders. Food Chem. X 2023, 19, 100777. [Google Scholar] [CrossRef]
- Torreggiani, A.; Demarinis, C.; Pinto, D.; Papale, A.; Difonzo, G.; Caponio, F.; Pontonio, E.; Verni, M.; Rizzello, C.G. Up-Cycling Grape Pomace through Sourdough Fermentation: Characterization of Phenolic Compounds, Antioxidant Activity, and Anti-Inflammatory Potential. Antioxidants 2023, 12, 1521. [Google Scholar] [CrossRef]
- Stanek-Wandzel, N.; Krzyszowska, A.; Zarębska, M.; Gębura, K.; Wasilewski, T.; Hordyjewicz-Baran, Z.; Tomaka, M. Evaluation of Cellulase, Pectinase, and Hemicellulase Effectiveness in Extraction of Phenolic Compounds from Grape Pomace. Int. J. Mol. Sci. 2024, 25, 13538. [Google Scholar] [CrossRef] [PubMed]
- Poblete, J.; Aranda, M.; Quispe-Fuentes, I. Efficient Conditions of Enzyme-Assisted Extractions and Pressurized Liquids for Recovering Polyphenols with Antioxidant Capacity from Pisco Grape Pomace as a Sustainable Strategy. Molecules 2025, 30, 2977. [Google Scholar] [CrossRef]
- Machado, T.O.X.; de AC Kodel, H.; Alves dos Santos, F.; dos Santos Lima, M.; Costa, A.S.G.; Oliveira, M.B.P.P.; Dariva, C.; dos Santos Estevam, C.; Fathi, F.; Souto, E.B. Cellulase-Assisted Extraction Followed by Pressurized Liquid Extraction for Enhanced Recovery of Phenolic Compounds from ‘BRS Violeta’ Grape Pomace. Sep. Purif. Technol. 2025, 354, 129218. [Google Scholar] [CrossRef]
- Stanek-Wandzel, N.; Zarębska, M.; Wasilewski, T.; Hordyjewicz-Baran, Z.; Krzyszowska, A.; Gębura, K.; Tomaka, M. Enhancing Phenolic Compound Recovery from Grape Pomace Residue: Synergistic Approach of Ultrasound- and Enzyme-Assisted Extraction. ACS Omega 2025, 10, 23129–23138. [Google Scholar] [CrossRef] [PubMed]
- Balan, N.; Măntăilă, S.; Râpeanu, G.; Stănciuc, N. Enhanced Extraction of Bioactive Compounds from Red Grape Pomace: Optimizing Ultrasound-Assisted Extraction with Ethanol and NaDES as Solvents. Antioxidants 2025, 14, 526. [Google Scholar] [CrossRef] [PubMed]
- Tolve, R.; Simonato, B.; Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G. Wheat Bread Fortification by Grape Pomace Powder: Nutritional, Technological, Antioxidant, and Sensory Properties. Foods 2021, 10, 75. [Google Scholar] [CrossRef]
- Muñoz-Bernal, Ó.A.; Coria-Oliveros, A.J.; Vazquez-Flores, A.A.; Subiria-Cueto, C.R.; De La Rosa, L.A.; de la Luz Reyes-Vega, M.; Rodrigo-García, J.; del Rocio Martinez-Ruiz, N.; Alvarez-Parrilla, E. Functional and Sensory Evaluation of Bread Made from Wheat Flour Fortified with Wine Byproducts. Food Prod. Process. Nutr. 2024, 6, 94. [Google Scholar] [CrossRef]
- Baskaya-Sezer, D. The Characteristics of Microwave-Treated Insoluble and Soluble Dietary Fibers from Grape and Their Effects on Bread Quality. Food Sci. Nutr. 2023, 11, 7877–7886. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, D.; Zhang, J.; Shen, J.; Cao, J.; Gu, H.; Cui, M.; He, L.; Chen, G.; Liu, S.; et al. Improving Soluble Phenolic Profile and Antioxidant Activity of Grape Pomace Seeds through Fungal Solid-State Fermentation. Foods 2024, 13, 1158. [Google Scholar] [CrossRef]
- Xiao, X.; Li, J.; Xiong, H.; Tui, W.; Zhu, Y.; Zhang, J. Effect of Extrusion or Fermentation on Physicochemical and Digestive Properties of Barley Powder. Front. Nutr. 2022, 8, 794355. [Google Scholar] [CrossRef]
- Shen, Y.; Kang, B.; Lu, Y.; Du, X.; Qin, C.; Li, J.; Zhao, Z.; Yu, R.; Shi, S.; Han, L. Production of Optical Pure L-Lactic Acid from Cabernet Sauvignon Grape Pomace by Engineered Lactiplantibacillus Plantarum. Front. Energy Res. 2023, 11, 1228827. [Google Scholar] [CrossRef]
- Barakat, N.; Bouajila, J.; Beaufort, S.; Rizk, Z.; Taillandier, P.; El Rayess, Y. Development of a New Kombucha from Grape Pomace: The Impact of Fermentation Conditions on Composition and Biological Activities. Beverages 2024, 10, 29. [Google Scholar] [CrossRef]
- Mitchell, D.A.; De Lima Luz, L.F.; Krieger, N.; Berovič, M. Bioreactors for Solid-State Fermentation. In Comprehensive Biotechnology; Elsevier: Amsterdam, The Netherlands, 2011; pp. 347–360. ISBN 978-0-08-088504-9. [Google Scholar]
- Oiza, N.; Moral-Vico, J.; Sánchez, A.; Oviedo, E.R.; Gea, T. Solid-State Fermentation from Organic Wastes: A New Generation of Bioproducts. Processes 2022, 10, 2675. [Google Scholar] [CrossRef]
- Meini, M.-R.; Cabezudo, I.; Galetto, C.S.; Romanini, D. Production of Grape Pomace Extracts with Enhanced Antioxidant and Prebiotic Activities through Solid-State Fermentation by Aspergillus niger and Aspergillus oryzae. Food Biosci. 2021, 42, 101168. [Google Scholar] [CrossRef]
- Cabezudo, I.; Galetto, C.S.; Romanini, D.; Furlán, R.L.E.; Meini, M.R. Production of Gallic Acid and Relevant Enzymes by Aspergillus Niger and Aspergillus Oryzae in Solid-State Fermentation of Soybean Hull and Grape Pomace. Biomass Conv. Bioref. 2023, 13, 14939–14947. [Google Scholar] [CrossRef]
- Šelo, G.; Planinić, M.; Tišma, M.; Martinović, J.; Perković, G.; Bucić-Kojić, A. Bioconversion of Grape Pomace with Rhizopus Oryzae under Solid-State Conditions: Changes in the Chemical Composition and Profile of Phenolic Compounds. Microorganisms 2023, 11, 956. [Google Scholar] [CrossRef]
- Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G.; Simonato, B. Breadstick Fortification with Red Grape Pomace: Effect on Nutritional, Technological and Sensory Properties. J. Sci. Food Agric. 2022, 102, 2545–2552. [Google Scholar] [CrossRef] [PubMed]
- Palladino, F.; Marcelino, P.R.F.; Schlogl, A.E.; José, Á.H.M.; Rodrigues, R.d.C.L.B.; Fabrino, D.L.; Santos, I.J.B.; Rosa, C.A. Bioreactors: Applications and Innovations for a Sustainable and Healthy Future—A Critical Review. Appl. Sci. 2024, 14, 9346. [Google Scholar] [CrossRef]
- Chiarini, E.; Alessandria, V.; Buzzanca, D.; Giordano, M.; Seif Zadeh, N.; Mancuso, F.; Zeppa, G. Valorization of Fruit By-Products Through Lactic Acid Fermentation for Innovative Beverage Formulation: Microbiological and Physiochemical Effects. Foods 2024, 13, 3715. [Google Scholar] [CrossRef]
- Akbulut, M.; Çoklar, H.; Bulut, A.N.; Hosseini, S.R. Evaluation of Black Grape Pomace, a Fruit Juice by-Product, in Shalgam Juice Production: Effect on Phenolic Compounds, Anthocyanins, Resveratrol, Tannin, and in Vitro Antioxidant Activity. Food Sci. Nutr. 2024, 12, 4372–4384. [Google Scholar] [CrossRef]
- Trossolo, E.; Alabiden Tlais, A.Z.; Tonini, S.; Filannino, P.; Gobbetti, M.; Cagno, R.D. Fermentation of a Wine Pomace and Microalgae Blend to Synergistically Enhance the Functional Value of Protein- and Polyphenol-Rich Matrices. Food Res. Int. 2025, 202, 115785. [Google Scholar] [CrossRef]
- Rodríguez, M.; Bianchi, F.; Simonato, B.; Rizzi, C.; Fontana, A.; Tironi, V.A. Exploration of Grape Pomace Peels and Amaranth Flours as Functional Ingredients in the Elaboration of Breads: Phenolic Composition, Bioaccessibility, and Antioxidant Activity. Food Funct. 2024, 15, 608–624. [Google Scholar] [CrossRef]
- Subiria-Cueto, R.; Reyes-Blas, H.; Olivas-Armendáriz, I.; Wall-Medrano, A.; González-Aguilar, G.A.; de la Rosa, L.A.; Martínez-Ruiz, N.d.R.; Alvarez-Parrilla, E. Grape Pomace and Pecan Shell Fortified Bread: The Effect of Dietary Fiber-Phenolic Compounds Interaction on the In Vitro Accessibility of Phenolic Compounds and In Vitro Glycemic Index. Food Chem. 2025, 462, 140925. [Google Scholar] [CrossRef] [PubMed]
- Nakov, G.; Brandolini, A.; Hidalgo, A.; Ivanova, N.; Stamatovska, V.; Dimov, I. Effect of Grape Pomace Powder Addition on Chemical, Nutritional and Technological Properties of Cakes. LWT 2020, 134, 109950. [Google Scholar] [CrossRef]
- Antoniolli, A.; Becerra, L.; Piccoli, P.; Fontana, A.; Antoniolli, A.; Becerra, L.; Piccoli, P.; Fontana, A. Phenolic, Nutritional and Sensory Characteristics of Bakery Foods Formulated with Grape Pomace. Plants 2024, 13, 590. [Google Scholar] [CrossRef]
- Rocchetti, G.; Rizzi, C.; Cervini, M.; Rainero, G.; Bianchi, F.; Giuberti, G.; Lucini, L.; Simonato, B. Impact of Grape Pomace Powder on the Phenolic Bioaccessibility and on In Vitro Starch Digestibility of Wheat Based Bread. Foods 2021, 10, 507. [Google Scholar] [CrossRef]
- Miolla, R.; Ottomano Palmisano, G.; Roma, R.; Caponio, F.; Difonzo, G.; De Boni, A. Functional Foods Acceptability: A Consumers’ Survey on Bread Enriched with Oenological By-Products. Foods 2023, 12, 2014. [Google Scholar] [CrossRef]
- Scappaticci, G.; Mercanti, N.; Pieracci, Y.; Ferrari, C.; Mangia, R.; Marianelli, A.; Macaluso, M.; Zinnai, A. Bread Improvement with Nutraceutical Ingredients Obtained from Food By-Products: Effect on Quality and Technological Aspects. Foods 2024, 13, 825. [Google Scholar] [CrossRef] [PubMed]
- Mangiapelo, L.; Frangiamone, M.; Vila-Donat, P.; Paşca, D.; Ianni, F.; Cossignani, L.; Manyes, L. Grape Pomace as a Novel Functional Ingredient: Mitigating Ochratoxin A Bioaccessibility and Unraveling Cytoprotective Mechanisms In Vitro. Curr. Res. Food Sci. 2024, 9, 100800. [Google Scholar] [CrossRef]
- Lou, W.; Li, B.; Nataliya, G. The Influence of Cabernet Sauvignon Wine Grape Pomace Powder Addition on the Rheological and Microstructural Properties of Wheat xDough. CyTA—J. Food 2021, 19, 751–761. [Google Scholar] [CrossRef]
- Wu, P.; Chen, X.D. Validation of in Vitro Bioaccessibility Assays—A Key Aspect in the Rational Design of Functional Foods towards Tailored Bioavailability. Curr. Opin. Food Sci. 2021, 39, 160–170. [Google Scholar] [CrossRef]
- Francavilla, A.; Joye, I.J. Anthocyanin Content of Crackers and Bread Made with Purple and Blue Wheat Varieties. Molecules 2022, 27, 7180. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, S.D.; de Souza, E.L.; Araújo, C.M.; Martins, A.C.S.; Borges, G.d.S.C.; Lima, M.d.S.; Viera, V.B.; Garcia, E.F.; da Conceição, M.L.; de Souza, A.L.; et al. Spontaneous Fermentation Improves the Physicochemical Characteristics, Bioactive Compounds, and Antioxidant Activity of Acerola (Malpighia emarginata D.C.) and Guava (Psidium guajava L.) Fruit Processing by-Products. 3 Biotech 2023, 13, 315. [Google Scholar] [CrossRef]
- Ramírez, R.; Delgado, J.; Rocha-Pimienta, J.; Valdés, M.E.; Martín-Mateos, M.J.; Ayuso-Yuste, M.C. Preservation of White Wine Pomace by High Hydrostatic Pressure. Heliyon 2023, 9, e21199. [Google Scholar] [CrossRef] [PubMed]
- De Bellis, P.; Maggiolino, A.; Albano, C.; De Palo, P.; Blando, F. Ensiling Grape Pomace with and Without Addition of a Lactiplantibacillus plantarum Strain: Effect on Polyphenols and Microbiological Characteristics, In Vitro Nutrient Apparent Digestibility, and Gas Emission. Front. Vet. Sci. 2022, 9, 808293. [Google Scholar] [CrossRef] [PubMed]




| Compound/Class | Main GP Fraction | Reported Health Effects/Outcomes | Model/Design | Source |
|---|---|---|---|---|
| Proanthocyanidins (PACs) | Seeds >> skins; often bound to insoluble fiber | Improved insulin sensitivity in at-risk adults; suggests metabolic benefits partly independent of major microbiota shifts. | Randomized cross-over clinical trial (n = 49) | [33] |
| Proanthocyanidins (PACs) | Seeds, skins | Short-term glycemic improvement; bile-acid shift linked to glucose regulation. | Human meta-omics intervention (n = 27) | [34] |
| Anthocyanins (e.g., malvidin-3-O-glucoside) | Skins (red cultivars) | Anti-inflammatory activity via NF-κB pathway; strong antioxidant capacity (ORAC/FRAP). | In vitro (colon epithelial reporter line) | [35] |
| Phenolic acids (gallic, caffeic, syringic, chlorogenic, p-coumaric) | Seeds and skins | Reduced TBARS/uric acid or protein carbonyls post-meal; supports anti-oxidative, anti-atherogenic potential. | Human acute crossover (n ≈ 18) | [36] |
| Stilbenes (resveratrol, piceid) within GP polyphenols | Skins (± seeds) | Atheroprotective biomarker shifts (↓ TMAO, ↓ ox-LDL). | Human clinical study (n = 213) | [37] |
| Polyphenol-rich white GP extract | White grape skins/seeds | Antihypertensive, antioxidant, anti-inflammatory; endothelial NO pathway. | Animal model (rat) | [38] |
| GP polyphenol extract (mixed) | Primarily skins/seeds | Anti-obesity; gut microbiota modulation; improved metabolic profile. | Animal model (mouse) | [39] |
| Grape Variety and Location | Sample Form (Research Design) | Moisture (g/100 g) | Protein (g/100 g DW) | Lipids (g/100 g DW) | Ash (g/100 g DW) | Dietary Fiber (g/100 g DW) | Carbohydrates (g/100 g DW) | References |
|---|---|---|---|---|---|---|---|---|
| Isabella grape pomace, La Plata, Argentina | Dried whole pomace | 3.7 | 12.0 | 9.6 | 5.5 | 57.5 | 14.7 | [5] |
| Cabernet grape pomace, Veneto, Italy | Dried whole pomace | 6.9 | 11.6 | 4.6 | 7.0 | 64.5 | 12.3 | [5] |
| Băbească Neagră, Romania | Oven-dried pomace powder, particle size <125 µm | 11.5 | 8.4 | 18.3 | 1.9 | 57.0 | 58.2 | [43] |
| Băbească Neagră, Roma-nia | Oven-dried pomace powder, particle size (125–200 µm) | 12.0 | 8.0 | 19.5 | 1.7 | 52.1 | 59.2 | [43] |
| Băbească Neagră, Romania | Oven-dried pomace powder, particle size (≥200–<300 µm) | 11.6 | 7.7 | 20.1 | 1.6 | 48.2 | 60.0 | [43] |
| Zinfandel, Italy | Grape pomace flour used for muffins | – | 13.0 | 8.0 | 9.0 | 45.0 | – | [18] |
| Syrah, Argentina | GP powder dried at 55 °C | – | 10.04 | 9.30 | – | 17.55 | 50.53 | [44] |
| Syrah, Argentina | GP powder dried at 75 °C | – | 10.03 | 9.57 | – | 23.11 | 40.09 | [44] |
| Mixed grape pomace, India | Dried whole pomace | 20.4 | 13.17 | 12.89 | 2.68 | 55.28 | 15.98 | [41] |
| Vinhão, Portugal | Dehydrated GP | 3.43 | 9.85 | 3.38 | 8.20 | 49.37 | 35.47 | [40] |
| Red grape pomace for biscuits (Northern Italy) | Crude crushed GP (not fully dried) | 14.8 | 6.0 | 6.1 | 3.2 | 55.0 | 70.0 | [42] |
| Study | GP Matrix/ Fraction | Bioprocess Type | Main Compositional Changes vs. Control | Implications for Bakery Products |
|---|---|---|---|---|
| Stanek-Wandzel et al. [51] | Red grape pomace (whole) | Enzyme-assisted extraction (EAE) | Cellulase-assisted extract showed the highest TPC (1924 vs. 1717 mg GAE/100 g for solid–liquid extraction); cellulase most effective for catechins; hemicellulase for phenolic acids. | Phenolic-rich extracts for low-level addition to dough/sourdough; enzyme-treated residue can act as a fiber-rich flour replacer. |
| Poblete et al. [49] | Pisco grape pomace (whole, dried) | EAE vs. pressurized liquid extraction (PLE) | PLE gave higher TPC (50.03 vs. 38.49 mg GAE/g dw) but lower antioxidant capacity (342.47 vs. 371.00 μmol TE/g dw) than EAE. | Illustrates yield vs. antioxidant trade-off; extracts can fortify bread, while exhausted pomace provides dietary fiber. |
| Machado et al. [50] | BRS Violeta grape pomace | Cellulase-assisted EAE followed by PLE | PLE alone extracted the highest TPC (120.1 mg GAE/g), whereas EAE + PLE selectively enriched gallic acid (1.9-fold), p-coumaric acid, epicatechin, epicatechin gallate and myricetin (10.9-fold). | Enables targeted enrichment in specific phenolics for breads with tailored antioxidant profiles. |
| Balan et al. [52] | Red grape pomace | Ultrasound-assisted extraction (UAE) | UAE with ethanol gave the highest TPC (465.8 vs. 414.0 mg GAE/100 g dw with NaDES); anthocyanin extraction increased 1.82-fold and antioxidant capacity approximately doubled. | Efficient recovery of anthocyanins and antioxidants for color and antioxidant enhancement in GP-enriched breads/sourdoughs. |
| Meini et al. [62] | Malbec–Tannat grape pomace | Solid-state fermentation (SSF) with Aspergillus niger and A. oryzae | TPC did not increase significantly vs. control, but antioxidant capacity rose to 73.7 and 109.2 mmol TE/100 g; fermented extracts promoted Lactobacillus casei growth. | SSF extracts show strong antioxidant and prebiotic potential; SSF-treated GP is expected to be less harsh as a high-fiber inclusion in dough. |
| Šelo et al. [64] | Grape pomace (whole) | SSF with Rhizopus oryzae | Eleven phenolics increased 1.1–2.5-fold; pomace mass decreased by 17.6%, with major changes in sugars and proteins. | Partial depolymerisation of cell-wall components may reduce particle hardness and modify water binding at 5–10% GPP inclusion. |
| Zhao et al. [56] | Grape pomace seeds | SSF with Aspergillus niger, Monascus anka and Eurotium cristatum | TPC increased 6.42-fold; flavonoids 6.68-fold; antioxidant capacity increased (DPPH 2.14-fold; ABTS 3.64-fold) vs. control. | Highly enriched phenolic fractions can be added at low levels to raise TPC and antioxidant capacity without high fiber load. |
| Torreggiani et al. [47] | Primitivo grape pomace | Semi-solid lactic fermentation (sourdough-type) | Fermentation with Lactiplantibacillus plantarum T0A10 increased DPPH from 74% to 95% and ABTS from 0.62 to 1.02 mM Trolox eq.; shifted the anthocyanin profile; reduced TNF-α and IL-1β expression in Caco-2 cells. | Shows that GP-based sourdoughs can deliver higher antioxidant capacity and anti-inflammatory potential in wheat bread systems. |
| Trossolo et al. [69] | Hydrated blend of wine pomace and Chlorella vulgaris (15% + 15% w/w) | Submerged fermentation (SmF) | ABTS increased from 0.69 to 3.10 mmol Trolox eq/g; DPPH from 1.04 to 2.43 mmol BHT/100 g; IVPD from 93.72% to 96.41–98.03%; PDCAAS from 0.57 to 0.60–0.62; phenolic profile shifted towards flavanols and flavonols. | Synergic fermentation improves protein quality and phenolic profile; conceptually suited as a GP-based fermented ingredient for bread pre-ferments. |
| Product Type | GP Ingredient and Level (on Flour/Formula Basis) | Key Compositional Outcomes in Final Product | Reference |
|---|---|---|---|
| Bread | Lyophilised red GP powder 2% + citrus pectin 2% (both replacing flour) in industrial pan-bauletto bread | Bread dry matter ~58.4–58.6% (similar across treatments); crumb water activity decreased slightly to 0.916–0.929 (0.937 in control); pH decreased from 5.84 to 4.88; phenolic content increased from 0.67 to 1.10 g/kg DM (≈64% ↑). | [76] |
| Whole GP powder, 5% of wheat flour | Total dietary fiber (TDF) 3.9 g/100 g DM (control 2.8; +39%); starch 82.9 g/100 g DM (85.5 in control; ↓); TPC 101.5 mg GAE/100 g DM (29.1 in control; ≈3.5-fold ↑). | [53] | |
| Whole GP powder, 5% of wheat flour | TPC 107.0 mg/100 g FW (63.8 in control; +68%); anthocyanins 21.0 mg/100 g (0 in control). | [74] | |
| Lyophilised red GP powder, 8% of wheat flour | Moisture 33.6%; protein 7.5%; fat 1.3%; ash 1.9%; carbohydrates 56.1%; dietary fiber 6.1% (mainly insoluble); pH 4.6; TPC 5.1 mg GAE/g; FRAP 10.0 µmol TE/g. | [54] | |
| Lyophilised GP powder 8% + pecan shell 5% replacing wheat flour | Moisture 31.0% (33.3% in control); protein 8.3 vs. 7.7 g/100 g; fat 6.4 vs. 4.3 g/100 g; carbohydrates 59.4 vs. 63.7 g/100 g; TDF 14.4 vs. 4.7 g/100 g (≈3-fold ↑, mainly insoluble); TPC 31.2 vs. 2.1 mg GAE/g (≈15-fold ↑). | [71] | |
| Whole GP powder, 10% of wheat flour | TDF 6.3 g/100 g DM (2.8 in control; +125%); starch 75.3 g/100 g DM (↓ vs. control); TPC 207.1 mg GAE/100 g DM (≈7-fold ↑ vs. 29.1). | [53] | |
| Whole GP powder, 10% of wheat flour | TPC 127.8 mg/100 g FW (≈2-fold ↑ vs. control 63.8); anthocyanins 35.8 mg/100 g. | [74] | |
| Lyophilised GP powder 2% replacing wheat flour (with or without ochratoxin A contamination) | Intestinal OTA bioaccessibility decreased from 94% (OTA control) to 81% with GP; GP also reduced mitochondrial stress markers in Caco-2 cells. | [77] | |
| Breadsticks | Red GP powder, 5% of wheat flour mix | Protein 13.11 g/100 g (13.63 in control); lipids 4.86 vs. 4.59 g/100 g; starch 69.67 vs. 70.96 g/100 g; TDF 6.05 vs. 3.47 g/100 g (+74%); ash 2.81 vs. 2.50 g/100 g. | [65] |
| Red GP powder, 10% of wheat flour mix | Protein 12.92 g/100 g; lipids 5.30 g/100 g; starch 65.71 g/100 g; TDF 8.55 g/100 g (+146% vs. control); ash 3.08 g/100 g. | [65] | |
| Muffins | Lyophilised red GP powder, 5% of wheat flour | Moisture 20.25 vs. 21.51 g/100 g (control); protein 6.6 vs. 7.33 g/100 g; lipids 21.33 vs. 20.33 g/100 g; fiber 1.90 vs. 0.32 g/100 g (~6× ↑); ash 1.22 vs. 0.68 g/100 g; carbohydrates 47.7 vs. 50.9 g/100 g. | [73] |
| Red whole GP powder, 20% of wheat flour; coarse fractions (M425/M300, ≥300 µm) | Moisture ~23–25 g/100 g; protein ~9–10 g/100 g; lipids ~23–26 g/100 g; carbohydrates ~35–40 g/100 g; TDF ~3–4 g/100 g; TPC 0.64–0.69 mg/g; anthocyanins 24.5–28.0 µg/g. | [18] | |
| Red whole GP powder, 20% of wheat flour; fine fractions (M212/M150, ≤300 µm) | Moisture ~23–25 g/100 g; protein ~9–10 g/100 g; lipids ~23–26 g/100 g; carbohydrates ~35–40 g/100 g; TDF ~3–4 g/100 g; TPC 0.64–0.69 mg/g; anthocyanins 24.5–28.0 µg/g. | [18] | |
| Cupcakes/cakes | Whole GP powder, 10% of wheat flour in cupcakes | TPC 53.73 mg GAE/100 g DM vs. 19.56 in control (≈2.7-fold ↑); anthocyanins 26.4 g/kg DM at 10% GP; strong increase in antioxidant capacity (DPPH, FRAP). | [72] |
| Biscuits | Lyophilised red GP powder, 10% of wheat flour | Fiber 5.83 vs. 0.90 g/100 g (≈6.5-fold ↑); moisture decreased; ash increased vs. control; other proximate components followed typical biscuit profile. | [73] |
| Cereal bars | Lyophilised red GP powder, 10% of total bar formula | Fiber 3.31 vs. 0.49 g/100 g (≈6.8-fold ↑); moisture reduced; ash increased vs. control; lipids and carbohydrates similar. | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zmuncilă, A.; Pop, C.R.; Fărcaş, A.C.; Man, S.M.; Chiș, M.S.; Lițoiu, A.; Păucean, A. Bioprocessing of Grape Pomace for Value Added Ingredients with Utilization in Baked Products. Foods 2026, 15, 50. https://doi.org/10.3390/foods15010050
Zmuncilă A, Pop CR, Fărcaş AC, Man SM, Chiș MS, Lițoiu A, Păucean A. Bioprocessing of Grape Pomace for Value Added Ingredients with Utilization in Baked Products. Foods. 2026; 15(1):50. https://doi.org/10.3390/foods15010050
Chicago/Turabian StyleZmuncilă, Alexandru, Carmen Rodica Pop, Anca Corina Fărcaş, Simona Maria Man, Maria Simona Chiș, Alexandra Lițoiu, and Adriana Păucean. 2026. "Bioprocessing of Grape Pomace for Value Added Ingredients with Utilization in Baked Products" Foods 15, no. 1: 50. https://doi.org/10.3390/foods15010050
APA StyleZmuncilă, A., Pop, C. R., Fărcaş, A. C., Man, S. M., Chiș, M. S., Lițoiu, A., & Păucean, A. (2026). Bioprocessing of Grape Pomace for Value Added Ingredients with Utilization in Baked Products. Foods, 15(1), 50. https://doi.org/10.3390/foods15010050

