Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (326)

Search Parameters:
Keywords = vacuum annealing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6760 KiB  
Article
Influence of Microstructure and Heat Treatment on the Corrosion Resistance of Mg-1Zn Alloy Produced by Laser Powder Bed Fusion
by Raúl Reyes-Riverol, Ángel Triviño-Peláez, Federico García-Galván, Marcela Lieblich, José Antonio Jiménez and Santiago Fajardo
Metals 2025, 15(8), 853; https://doi.org/10.3390/met15080853 - 30 Jul 2025
Viewed by 289
Abstract
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD [...] Read more.
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD and SEM revealed the presence of magnesium oxide (MgO) and the absence of intermetallic second-phase particles. Optical microscopy (OM) images and Electron Backscatter Diffraction (EBSD) maps showed a highly complex grain morphology with anomalous, anisotropic shapes and a heterogeneous grain size distribution. The microstructure includes grains with a pronounced columnar morphology aligned along the build direction and is therefore characterized by a strong crystallographic texture. Electrochemical techniques, including PDP and EIS, along with gravimetric H2 collection, concluded that the transverse plane exhibited greater corrosion resistance compared to the longitudinal plane. Additionally, an increase in cathodic kinetics was observed when comparing as-built with heat-treated samples. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

14 pages, 4651 KiB  
Article
Thermal-Induced Oxygen Vacancy Enhancing the Thermo-Chromic Performance of W-VO2−x@AA/PVP Nanoparticle Composite-Based Smart Windows
by Jiran Liang, Tong Wu, Chengye Zhang, Yunfei Bai, Dequan Zhang and Dangyuan Lei
Nanomaterials 2025, 15(14), 1084; https://doi.org/10.3390/nano15141084 - 12 Jul 2025
Viewed by 310
Abstract
Tungsten-doped vanadium dioxide (W-VO2) shows semiconductor-to-metal phase transition properties at room temperature, which is an ideal thermo-chromic smart window material. However, low visual transmittance and solar modulation limit its application in building energy saving. In this paper, a W-VO2−x@AA [...] Read more.
Tungsten-doped vanadium dioxide (W-VO2) shows semiconductor-to-metal phase transition properties at room temperature, which is an ideal thermo-chromic smart window material. However, low visual transmittance and solar modulation limit its application in building energy saving. In this paper, a W-VO2−x@AA core-shell nanoparticle is proposed to improve the thermo-chromic performance of W-VO2. Oxygen vacancies were used to promote the connection of W-VO2−x nanoparticles with L-ascorbic acid (AA) molecules. Oxygen vacancies were tuned in W-VO2 nanoparticles by thermal annealing temperatures in vacuum, and W-VO2−x@AA nanoparticles were synthesized by the hydrothermal method. A smart window was formed by dispersing W-VO2−x@AA core-shell nanoparticles into PVP evenly and spin-coating them on the surface of glass. The visual transmittance of this smart window reaches up to 67%, and the solar modulation reaches up to 12.1%. This enhanced thermo-chromic performance is related to the electron density enhanced by the AA surface molecular coordination effect through W dopant and oxygen vacancies. This work provides a new strategy to enhance the thermo-chromic performance of W-VO2 and its application in the building energy-saving field. Full article
(This article belongs to the Special Issue Nano Surface Engineering: 2nd Edition)
Show Figures

Figure 1

20 pages, 4923 KiB  
Article
Effect of Oxygen and Zirconium on Oxidation and Mechanical Behavior of Fully γ Ti52AlxZr Alloys
by Michal Kuris, Maria Tsoutsouva, Marc Thomas, Thomas Vaubois, Pierre Sallot, Frederic Habiyaremye and Jean-Philippe Monchoux
Metals 2025, 15(7), 745; https://doi.org/10.3390/met15070745 - 2 Jul 2025
Viewed by 291
Abstract
This work provides a comprehensive investigation into the synergistic effects of zirconium and oxygen on the microstructural evolution, high-temperature oxidation resistance, and mechanical properties of γ-phase Ti52AlxZr alloys (x = 0, 0.5, 1, and 2 at.%) under systematically controlled oxygen concentrations. Unlike prior [...] Read more.
This work provides a comprehensive investigation into the synergistic effects of zirconium and oxygen on the microstructural evolution, high-temperature oxidation resistance, and mechanical properties of γ-phase Ti52AlxZr alloys (x = 0, 0.5, 1, and 2 at.%) under systematically controlled oxygen concentrations. Unlike prior studies that have examined these alloying elements in isolation, this study uniquely decouples the contributions of interstitial (oxygen) and substitutional (zirconium) solutes by employing low (LOx) and high (HOx) oxygen levels. Alloys were synthesized via vacuum arc melting and subsequently subjected to homogenization annealing at 1250 °C for 100 h to ensure phase and microstructural stability. Characterization techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD) were employed to elucidate phase constitution and grain morphology. Zirconium addition was found to stabilize the γ-TiAl matrix, suppress α2-phase formation, and promote grain coarsening in LOx specimens. Conversely, elevated oxygen concentrations led to α2-phase precipitation along grain boundaries. Mechanical testing, comprising Vickers hardness and uniaxial compression at ambient and elevated temperatures (800 °C), revealed that both zirconium and oxygen significantly enhanced strength and hardness, with Ti52Al2Zr delivering optimal mechanical performance. Moreover, zirconium substantially improved oxidation resistance by promoting the formation of a thinner, adherent Al2O3 scale while simultaneously inhibiting TiO2 growth. Collectively, the findings demonstrate the critical role of zirconium in engineering advanced γ-TiAl-based intermetallics with superior high-temperature structural integrity and oxidation resistance. Full article
(This article belongs to the Section Crystallography and Applications of Metallic Materials)
Show Figures

Figure 1

14 pages, 4632 KiB  
Article
Resistive Heater Element Based on a Conductive Line in AlN Ceramic Fabricated by Laser Processing
by Nikolay Nedyalkov, Nadya Stankova, Fatme Padikova, Stefan Valkov, Genoveva Atanasova, Tina Dilova and Lyubomir Aleksandrov
Materials 2025, 18(12), 2861; https://doi.org/10.3390/ma18122861 - 17 Jun 2025
Viewed by 382
Abstract
The purpose of this work is to demonstrate that laser-induced conductive tracts in AlN ceramic can be applied for fabrication of an integrated resistive heating element. Nanosecond laser processing at a wavelength of 1064 nm of ceramic in vacuum is used for a [...] Read more.
The purpose of this work is to demonstrate that laser-induced conductive tracts in AlN ceramic can be applied for fabrication of an integrated resistive heating element. Nanosecond laser processing at a wavelength of 1064 nm of ceramic in vacuum is used for a formation of conductive areas. It is demonstrated that the applied laser fluence and the number of pulses influence strongly the electrical properties of the material in the irradiated zone. The resistance value of the produced tracks with a length of about 4 mm and width of about 1 mm may vary from 17 to about 2000 Ohms, depending on the processing conditions. The material in the processed zone is characterized by means of surface composition, morphology, and electric properties. It is found that the electrical conductivity of the formed structure is based on the ceramic decomposition and formation of aluminum layer. The analysis of the influence of the temperature on the electrical resistance value shows that the material’s conductivity could be preserved after annealing, as in the present study it is confirmed up to 300 °C. The ability of the formed tracks to serve as a basis element of ceramic integrated resistive heater is studied by applying DC voltage. It is found that the fabricated element can be used with a high reliability to about 90 °C without special requirements for contact design and encapsulation. Operation at higher temperatures is also demonstrated as the maximal one achieved is about 150 °C at 10V. The performance of the heater is investigated and discussed as the operation range is defined. The proposed element can be a basis for a design of an integrated heater in ceramic with high stability and applications in everyday life and research. Full article
(This article belongs to the Special Issue Advances in Laser Processing Technology of Materials—Second Edition)
Show Figures

Figure 1

17 pages, 17692 KiB  
Article
An Exploration of Manufacturing Technology to Refine the Grain Size and Improve the Properties of Welded TA1 Titanium Plates for Cathode Rollers
by Lin Qi, Jing Hu, Dayue Wang, Jingyi Gu, Weiju Jia, Xulong An and Wei Wei
Coatings 2025, 15(6), 687; https://doi.org/10.3390/coatings15060687 - 6 Jun 2025
Viewed by 477
Abstract
Electrolytic copper foil is one of the core materials in the fields of electronics, communications, and power. The cathode roller is the key component of the complete set of electrolytic copper foil equipment, and the quality of the titanium cylinder of the cathode [...] Read more.
Electrolytic copper foil is one of the core materials in the fields of electronics, communications, and power. The cathode roller is the key component of the complete set of electrolytic copper foil equipment, and the quality of the titanium cylinder of the cathode roller directly determines the quality of the electrolytic copper foil. There typically exists a longitudinal weld on the surface of the cathode roller’s titanium cylinder sleeve manufactured by the welding method, which leads to the degradation of the quality of the electrolytic copper foil. Refining the grains in the weld zone and the heat-affected zone to close to those of the base material is a key solution for the manufacturing of welded cathode rollers. In order to effectively modify the microstructure and obtain an optimal refining effect in the weld zone of a TA1 cathode roller, a novel composite technology consisting of low-energy and fewer-pass welding combined with multi-pass rolling deformation and vacuum annealing treatment was primarily explored for high-purity TA1 titanium plates in this study. The microstructure of each area of the weld was observed using the DMI-3000M optical microscope, and the hardness was measured using the HVS-30 Vickers hardness tester. The research results show that the microstructure of each area of the weld can be effectively refined by using the novel composite technology of low-energy and fewer-pass welding, multi-pass rolling deformation, and vacuum annealing treatment. Among the explored experimental conditions, the optimal grain refinement effect is obtained with a V-shaped welding groove and four passes of welding with a welding current of 90 A and a voltage of 8–9 V, followed by 11 passes of rolling deformation with a total deformation rate of 45% and, finally, vacuum annealing at 650 °C for 1 h. The grain size grades in the weld zone and the heat-affected zone are close to those of the base material, namely grade 7.5~10, grade 7.5~10, and grade 7.5~10 for the weld zone, heat-affected zone, and base material, respectively. Meanwhile, this technology can also refine the grains of the base material, which is conducive to improving the overall mechanical properties of the titanium plate. Full article
Show Figures

Figure 1

13 pages, 3815 KiB  
Article
Optimizing Crystalline MoS2 Growth on Technologically Relevant Platinum Substrates Using Ionized Jet Deposition: Interface Interactions and Structural Insights
by Cristian Tomasi Cebotari, Christos Gatsios, Andrea Pedrielli, Lucia Nasi, Francesca Rossi, Andrea Chiappini, Riccardo Ceccato, Roberto Verucchi, Marco V. Nardi and Melanie Timpel
Surfaces 2025, 8(2), 38; https://doi.org/10.3390/surfaces8020038 - 6 Jun 2025
Viewed by 479
Abstract
Transition metal dichalcogenides, especially molybdenum disulfide (MoS2), exhibit exceptional properties that make them suitable for a wide range of applications. However, the interaction between MoS2 and technologically relevant substrates, such as platinum (Pt) electrodes, can significantly influence its properties. This [...] Read more.
Transition metal dichalcogenides, especially molybdenum disulfide (MoS2), exhibit exceptional properties that make them suitable for a wide range of applications. However, the interaction between MoS2 and technologically relevant substrates, such as platinum (Pt) electrodes, can significantly influence its properties. This study investigates the growth and properties of MoS2 thin films on Pt substrates using ionized jet deposition, a versatile, low-cost vacuum deposition technique. We explore the effects of the roughness of Pt substrates and self-heating during deposition on the chemical composition, structure, and strain of MoS2 films. By optimizing the deposition system to achieve crystalline MoS2 at room temperature, we compare as-deposited and annealed films. The results reveal that as-deposited MoS2 films are initially amorphous and conform to the Pt substrate roughness, but crystalline growth is reached when the sample holder is sufficiently heated by the plasma. Further post-annealing at 270 °C enhances crystallinity and reduces sulfur-related defects. We also identify a change in the MoS2–Pt interface properties, with a reduction in Pt–S interactions after annealing. Our findings contribute to the understanding of MoS2 growth on Pt and provide insights for optimizing MoS2-based devices in catalysis and electronics. Full article
Show Figures

Figure 1

24 pages, 28123 KiB  
Article
The Role of Titanium Carbides in Forming the Microstructure and Properties of Ti-33Mo-0.2C Alloy
by Wojciech Szkliniarz and Agnieszka Szkliniarz
Coatings 2025, 15(5), 546; https://doi.org/10.3390/coatings15050546 - 2 May 2025
Viewed by 452
Abstract
This study presents the characteristics of the Ti-33Mo-0.2C alloy, which belongs to the group of titanium alloys with a stable β phase and contains 0.27 wt% carbon; this is significantly higher than the permissible level for this alloy, which is 0.1 wt%. The [...] Read more.
This study presents the characteristics of the Ti-33Mo-0.2C alloy, which belongs to the group of titanium alloys with a stable β phase and contains 0.27 wt% carbon; this is significantly higher than the permissible level for this alloy, which is 0.1 wt%. The Ti-33Mo-0.2C alloy was melted in a vacuum induction furnace with a cold copper crucible and subsequently processed into a 12 mm diameter rod through hot rolling and annealing under standard conditions. The microstructure, as well as the mechanical and physicochemical properties of the Ti-33Mo-0.2C alloy, were compared with those of the Ti-33Mo alloy of a similar chemical composition. The following techniques were used to characterize the microstructure and properties of the alloys: LM; SEM/EDS (WDS); XRD; and mechanical, creep, and corrosion testing. The conducted analyses demonstrated that the addition of approximately 0.2 wt% carbon to the Ti-33Mo alloy leads to the expected improvement in microstructural stability by reducing grain growth and inhibiting the precipitation of the α phase at β grain boundaries. Consequently, a unique simultaneous enhancement of both strength and ductility, with increased creep resistance, is observed while maintaining the excellent corrosion resistance of the investigated alloy. The observed beneficial effects and additional capabilities resulting from the presence of carbon in the investigated alloy justify the conclusion that carbon should no longer be regarded as an undesirable impurity, which stands in contrast to some previous statements. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

15 pages, 4032 KiB  
Article
The Effect of Microstructural Changes Produced by Heat Treatment on the Electromagnetic Interference Shielding Properties of Ti-Based MXenes
by Xue Han, Jae Jeong Lee, Ji Soo Kyoung and Yun Sung Woo
Nanomaterials 2025, 15(9), 676; https://doi.org/10.3390/nano15090676 - 29 Apr 2025
Viewed by 491
Abstract
Ti-based MXenes such as Ti3C2TX and Ti2CTX have attracted considerable attention because of their superior electromagnetic interference (EMI) shielding effectiveness compared to other EMI shielding materials, especially for high electromagnetic (EM) wave absorption. In this [...] Read more.
Ti-based MXenes such as Ti3C2TX and Ti2CTX have attracted considerable attention because of their superior electromagnetic interference (EMI) shielding effectiveness compared to other EMI shielding materials, especially for high electromagnetic (EM) wave absorption. In this study, we investigated the microstructural changes produced by heat treatment and their effect on the EMI shielding properties of Ti-based MXenes. Ti3C2TX and Ti2CTX films were prepared using vacuum filtration and annealed at temperatures up to 300 °C. The microstructures and chemical bonding properties of these heat-treated Ti3C2TX and Ti2CTX films were analyzed, and the EMI shielding effectiveness was measured in the X-band and THz frequency range. The porous Ti3C2TX film showed higher EM absorption than that calculated using the transfer matrix method. On the other hand, the Ti2CTX films had a more densely stacked structure and lower EM absorption. As the heat treatment temperature increased, Ti3C2TX developed a more porous structure without significant changes in its chemical bonding. Its EM absorption per unit of thickness increased up to 6 dB/μm, while the reflectance remained constant at less than 1 dB/μm after heat treatment. This suggested that the heat treatment of Ti-based MXenes can increase the porosity of the film by removing residual organics without changing the chemical bonds, thereby increasing electromagnetic shielding through absorption. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

18 pages, 16129 KiB  
Article
TaMoNbTiZr Multielement Alloy for Medical Instruments
by Ileana Mariana Mates, Victor Geanta, Doina Manu, Hajnal Kelemen, Adrian Emanuel Onici, Julia Claudia Mirza-Rosca and Ionelia Voiculescu
Materials 2025, 18(8), 1876; https://doi.org/10.3390/ma18081876 - 20 Apr 2025
Viewed by 2356
Abstract
In this paper, a new TaMoNbTiZr multielement alloy has been designed, using chemical elements that exhibit extremely low bio-toxicity for the human body. The alloy was obtained by melting in vacuum arc remelting (VAR) equipment MRF ABJ 900 from high-purity chemical elements (99.5%) [...] Read more.
In this paper, a new TaMoNbTiZr multielement alloy has been designed, using chemical elements that exhibit extremely low bio-toxicity for the human body. The alloy was obtained by melting in vacuum arc remelting (VAR) equipment MRF ABJ 900 from high-purity chemical elements (99.5%) as mini-ingots having about 40 g weight each. The biocompatible alloys underwent changes in hardness after performing the annealing at 900 °C for 2 h, followed by cooling in water. The new alloy had an average hardness in the cast state of 545 HV0.5, and after heat treatment, it hardened to a value of 984 HV0.5, over 40% higher than that in the casting state, which ensures a longer working period. To use them as materials for medical instruments, their biocompatibility was highlighted through specific laboratory tests. For this, mesenchymal stem cells isolated from bone tissue and a human fibroblast cell line were cultured in vitro on the TaMoNbTiZr alloy’s surface. The biocompatibility of the alloy with the biological environment was evaluated by analyzing cell viability, adhesion, and proliferation, and in parallel, the cytolysis effects manifested by the increase in lactate dehydrogenase activity in the culture media were analyzed. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

17 pages, 4841 KiB  
Article
Fabricating Silver Nanowire–IZO Composite Transparent Conducting Electrodes at Roll-to-Roll Speed for Perovskite Solar Cells
by Justin C. Bonner, Bishal Bhandari, Garrett J. Vander Stouw, Geethanjali Bingi, Kurt A. Schroder, Julia E. Huddy, William J. Scheideler and Julia W. P. Hsu
Nanomanufacturing 2025, 5(2), 5; https://doi.org/10.3390/nanomanufacturing5020005 - 29 Mar 2025
Viewed by 701
Abstract
This study addresses the challenges of efficient, large-scale production of flexible transparent conducting electrodes (TCEs). We fabricate TCEs on polyethylene terephthalate (PET) substrates using a high-speed roll-to-roll (R2R) compatible method that combines gravure printing and photonic curing. The hybrid TCEs consist of Ag [...] Read more.
This study addresses the challenges of efficient, large-scale production of flexible transparent conducting electrodes (TCEs). We fabricate TCEs on polyethylene terephthalate (PET) substrates using a high-speed roll-to-roll (R2R) compatible method that combines gravure printing and photonic curing. The hybrid TCEs consist of Ag metal bus lines (Ag MBLs) coated with silver nanowires (AgNWs) and indium zinc oxide (IZO) layers. All materials are solutions deposited at speeds exceeding 10 m/min using gravure printing. We conduct a systematic study to optimize coating parameters and tune solvent composition to achieve a uniform AgNW network. The entire stack undergoes photonic curing, a low-energy annealing method that can be completed at high speeds and will not damage the plastic substrates. The resulting hybrid TCEs exhibit a transmittance of 92% averaged from 400 nm to 1100 nm and a sheet resistance of 11 Ω/sq. Mechanical durability is tested by bending the hybrid TCEs to a strain of 1% for 2000 cycles. The results show a minimal increase (<5%) in resistance. The high-throughput potential is established by showing that each hybrid TCE fabrication step can be completed at 30 m/min. We further fabricate methylammonium lead iodide solar cells to demonstrate the practical use of these TCEs, achieving an average power conversion efficiency (PCE) of 13%. The high-performance hybrid TCEs produced using R2R-compatible processes show potential as a viable choice for replacing vacuum-deposited indium tin oxide films on PET. Full article
Show Figures

Figure 1

21 pages, 16369 KiB  
Article
Application Characteristics of Ultra-Fine 15 μm Stainless Steel Wires: Microstructures, Electrical Fatigue, and Ball Formation Mechanisms
by Hsiang-Chi Yang, Fei-Yi Hung, Bo-Ding Wu and Yi-Tze Chang
Micromachines 2025, 16(3), 326; https://doi.org/10.3390/mi16030326 - 12 Mar 2025
Viewed by 590
Abstract
Stainless steel wires exhibit excellent mechanical properties and are widely used in engineering applications. This study fabricates 15 μm stainless steel wires for potential integration into wire bonding technology for electronic packaging. The research explores the microstructural characteristics, electrical conduction mechanisms, and ball [...] Read more.
Stainless steel wires exhibit excellent mechanical properties and are widely used in engineering applications. This study fabricates 15 μm stainless steel wires for potential integration into wire bonding technology for electronic packaging. The research explores the microstructural characteristics, electrical conduction mechanisms, and ball formation behavior of ultra-fine stainless-steel wires to assess their feasibility for wire bonding applications. Results indicate that both 15 μm and 30 μm stainless steel wires exhibit elongated grains with outstanding tensile strength and hardness. Compared to the 30 μm wires, the 15 μm wires undergo more pronounced work hardening, leading to higher tensile strength and resistance. This study investigates the differences between vacuum and electrified annealing processes to address the work hardening and ductility issues in stainless steel wires. Results confirm that the hardness of the original wire significantly decreases after vacuum annealing at 780 °C for 15 min. Furthermore, using the derived equation, T=IV2.3085×103+25, the annealing temperature of 780 °C is converted into an equivalent current, and electrify annealing is conducted under a condition of 0.08 A for 15 min. The annealed wires exhibit a softening effect and enhance ductility. Furthermore, due to stored deformation energy and recrystallization effects, the electrical fatigue life of 15 μm stainless steel wires is approximately 300 cycles. After electrifying annealing, the base microstructure becomes more homogeneous due to thermal effects, reducing fatigue life to around 150 cycles. However, due to the softening effect, the annealed wires make the EFO process easier and minimize solidification segregation in the free air ball (FAB) microstructure, demonstrating their potential for electronic packaging applications. Full article
Show Figures

Figure 1

13 pages, 3888 KiB  
Article
Gas Sensitivity Improvements of Nanowire Hexadecafluorinated Iron Phthalocyanines by Thermal Vacuum Annealing
by Carmen L. Metzler, Soraya Y. Flores, John Cruz Lozada, Jean González, Sebastián Suárez Schmidt, Danilo Barrionuevo, Peter Feng, Wilfredo Otaño, Luis Fonseca and Dalice M. Piñero Cruz
Chemosensors 2025, 13(3), 95; https://doi.org/10.3390/chemosensors13030095 - 7 Mar 2025
Viewed by 1154
Abstract
In the quest for more sensitive gas sensors, researchers have studied how heating the sensors, using UV light, and thermally annealing sensors improve performance. During thermal annealing, the heating process can improve the crystallinity of the material while also increasing the electrode and [...] Read more.
In the quest for more sensitive gas sensors, researchers have studied how heating the sensors, using UV light, and thermally annealing sensors improve performance. During thermal annealing, the heating process can improve the crystallinity of the material while also increasing the electrode and sensing material interactions to create more available active sites and thus improve sensor performance. Hexadecafluorinated iron (II) phthalocyanine (FePcF16) nanowires have high sensitivity towards NH3 selectively, and thermally annealing the NWs after the deposition can further improve the sensing response and recovery. For this reason, the effect of annealing FePcF16 NWs at different temperatures was studied to optimize these systems. In this work, FePcF16 NWs were synthesized using physical vapor deposition (PVD) to deposit on interdigitated electrodes. The NWs were characterized by SEM, EDS, PXRD, FTIR, and Raman spectroscopy to confirm their purity. The sensors were annealed at different temperatures, inserted into a gas sensing chamber, and exposed to 1 ppm NH3 in air, and the electrical current was measured. The results show that the optimized FePcF16 NWs have excellent sensing properties, with a 58% increase in response towards NH3 after a stepwise annealing at 300 °C confirming these systems are good prospective candidates for sensing NH3 at room temperature. Full article
(This article belongs to the Section Nanostructures for Chemical Sensing)
Show Figures

Graphical abstract

13 pages, 3088 KiB  
Article
The Effect of Annealing on the First Hydrogenation Behavior of Atomized Ti48.8Fe46.0Mn5.2 Alloy
by Seyedehfaranak Hosseinigourajoubi, Chris Schade and Jacques Huot
Metals 2025, 15(3), 251; https://doi.org/10.3390/met15030251 - 26 Feb 2025
Viewed by 883
Abstract
In this paper, we report the effect of annealing on the first hydrogenation behavior of Ti48.8Fe46.0Mn5.2 alloy. This alloy was produced by gas atomization, and a portion of the powder was subjected to vacuum annealing at 1120 °C [...] Read more.
In this paper, we report the effect of annealing on the first hydrogenation behavior of Ti48.8Fe46.0Mn5.2 alloy. This alloy was produced by gas atomization, and a portion of the powder was subjected to vacuum annealing at 1120 °C for 1 h. The goal was to investigate the usefulness of this atomized powder for hydrogen storage and also to investigate the effect of annealing. Scanning electron microscopy (SEM) images revealed that both atomized and annealed alloys exhibit a two-phase structure. The atomized alloy consists of a main TiFe matrix and a filamentous Ti2Fe-like phase. After annealing, the microstructure is globular. In addition to the microstructure, there was a change in the chemical composition of the matrix and secondary phase after annealing. The first hydrogenation at room temperature of both atomized and annealed samples required cold rolling. However, the kinetics was much slower for the annealed sample compared to the atomized sample. After the first hydrogenation, the XRD analysis identified the main phases as TiFe, TiFeH0.94, and Ti2FeH3, indicating that both the TiFe and Ti2Fe phases participated in hydrogen absorption during hydrogenation. Full article
Show Figures

Figure 1

14 pages, 3565 KiB  
Article
Microstructure and Properties of Ti-5Al-2.5Sn Alloy with Higher Carbon Content
by Agnieszka Szkliniarz and Wojciech Szkliniarz
Coatings 2025, 15(2), 224; https://doi.org/10.3390/coatings15020224 - 13 Feb 2025
Cited by 1 | Viewed by 1142
Abstract
This study investigates the characteristics of the Ti-5Al-2.5Sn-0.2C alloy, an alpha titanium alloy containing approximately 0.2 wt% carbon—a concentration significantly exceeding the standard allowable limit of 0.08 wt%. The Ti-5Al-2.5Sn-0.2C alloy was melted in a vacuum induction furnace with a cold copper crucible, [...] Read more.
This study investigates the characteristics of the Ti-5Al-2.5Sn-0.2C alloy, an alpha titanium alloy containing approximately 0.2 wt% carbon—a concentration significantly exceeding the standard allowable limit of 0.08 wt%. The Ti-5Al-2.5Sn-0.2C alloy was melted in a vacuum induction furnace with a cold copper crucible, processed into bar form through hot rolling, and subsequently annealed under standard conditions. The microstructure and mechanical properties of the Ti-5Al-2.5Sn-0.2C alloy were systematically compared with those of the Ti-5Al-2.5Sn alloy (Grade 6), which possesses a similar chemical composition. The results revealed that the addition of 0.2 wt% carbon significantly influences the alloy’s solidification process, phase transformation temperatures, phase composition, and phase lattice parameters. Moreover, the carbon addition enhances key mechanical properties, including tensile strength, yield strength, hardness, and wear resistance, as well as creep and oxidation resistance. While a slight reduction in plasticity and increase in impact energy were observed, the alloy remained within the permissible range defined by existing standards. Full article
(This article belongs to the Special Issue Advanced Light Metals: Microstructure, Properties, and Applications)
Show Figures

Figure 1

20 pages, 6311 KiB  
Article
The Effect of Vacuum Annealing on the Structural, Electric, and Optical Properties, and Photocatalytic Activities of Sputtered TiO2 and Nb-Doped TiO2 Films
by Mengna Li, Yingying Fang and Baoshun Liu
Catalysts 2025, 15(2), 166; https://doi.org/10.3390/catal15020166 - 11 Feb 2025
Cited by 2 | Viewed by 861
Abstract
TiO2 is still a prototype material in photocatalytic studies. The defects, including the intrinsic and foreign defects, are reported to be important in determining the TiO2 photocatalytic properties. In the current research, amorphous TiO2- and Nb-doped TiO2 (NTO) [...] Read more.
TiO2 is still a prototype material in photocatalytic studies. The defects, including the intrinsic and foreign defects, are reported to be important in determining the TiO2 photocatalytic properties. In the current research, amorphous TiO2- and Nb-doped TiO2 (NTO) films were firstly prepared through magnetron sputtering, which were then heated under vacuum. The as-deposited TiO2 and NTO films were amorphous, and transferred to anatase after heating. The vacuum heating at a higher temperature caused an obvious reduction in TiO2 films, and the NTO film was more prone to be reduced as Nb dopants decreased the thermal stability of the TiO2 lattice. The structure change induced by vacuum annealing had a great effect on electric and optical properties. The conductivity of the NTO films was 10,000 times and 100 times higher than that of the undoped TiO2 films after post-vacuum heating at 450 °C and 650 °C, respectively. In addition to an increase in the band tail absorption, the NTO films presented strong free-electron absorption after vacuum heating; this means that the NTO films presented a clear Bornstein moss shift after vacuum heating because of the high conduction electron density. The change in the photoinduced absorption spectra revealed a possible result that photo-induced electrons can be also trapped at Nb sites, indicating that the Nb-related defect forms deep gap states; this greatly limits the photo-induced electron interfacial transfer. The results showed that the photocatalytic degradation of methylene blue decreased after vacuum heating. Full article
(This article belongs to the Special Issue TiO2 Photocatalysts: Design, Optimization and Application)
Show Figures

Figure 1

Back to TopTop