Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (770)

Search Parameters:
Keywords = urban watersheds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 5440 KiB  
Article
Canals, Contaminants, and Connections: Exploring the Urban Exposome in a Tropical River System
by Alan D. Ziegler, Theodora H. Y. Lee, Khajornkiat Srinuansom, Teppitag Boonta, Jongkon Promya and Richard D. Webster
Urban Sci. 2025, 9(8), 302; https://doi.org/10.3390/urbansci9080302 - 4 Aug 2025
Viewed by 90
Abstract
Emerging and persistent contaminants (EPCs) were detected at high concentrations in Chiang Mai’s Mae Kha Canal, identifying urban waterways as important sources of pollution in the Ping River system in northern Thailand. Maximum levels of metformin (20,000 ng/L), fexofenadine (15,900 ng/L), gabapentin (12,300 [...] Read more.
Emerging and persistent contaminants (EPCs) were detected at high concentrations in Chiang Mai’s Mae Kha Canal, identifying urban waterways as important sources of pollution in the Ping River system in northern Thailand. Maximum levels of metformin (20,000 ng/L), fexofenadine (15,900 ng/L), gabapentin (12,300 ng/L), sucralose (38,000 ng/L), and acesulfame (23,000 ng/L) point to inadequately treated wastewater as a plausible contributor. Downstream enrichment patterns relative to upstream sites highlight the cumulative impact of urban runoff. Five compounds—acesulfame, gemfibrozil, fexofenadine, TBEP, and caffeine—consistently emerged as reliable tracers of urban wastewater, forming a distinct chemical fingerprint of the riverine exposome. Median EPC concentrations were highest in Mae Kha, lower in other urban canals, and declined with distance from the city, reflecting spatial gradients in urban density and pollution intensity. Although most detected concentrations fell below predicted no-effect thresholds, ibuprofen frequently approached or exceeded ecotoxicological benchmarks and may represent a compound of ecological concern. Non-targeted analysis revealed a broader “chemical cocktail” of unregulated substances—illustrating a witches’ brew of pollution that likely escapes standard monitoring efforts. These findings demonstrate the utility of wide-scope surveillance for identifying key compounds, contamination hotspots, and spatial gradients in mixed-use watersheds. They also highlight the need for integrated, long-term monitoring strategies that address diffuse, compound mixtures to safeguard freshwater ecosystems in rapidly urbanizing regions. Full article
Show Figures

Figure 1

26 pages, 1533 KiB  
Article
Optimization of Agricultural and Urban BMPs to Meet Phosphorus and Sediment Loading Targets in the Upper Soldier Creek, Kansas, USA
by Naomi E. Detenbeck, Christopher P. Weaver, Alyssa M. Le, Philip E. Morefield, Samuel Ennett and Marilyn R. ten Brink
Water 2025, 17(15), 2265; https://doi.org/10.3390/w17152265 - 30 Jul 2025
Viewed by 238
Abstract
This study was developed to identify the optimal (most cost-effective) strategies to reduce sediment and phosphorus loadings in the Upper Soldier Creek, Kansas, USA, watershed using the Watershed Management Optimization Support Tool (WMOST) suite of programs. Under average precipitation, loading targets for upland [...] Read more.
This study was developed to identify the optimal (most cost-effective) strategies to reduce sediment and phosphorus loadings in the Upper Soldier Creek, Kansas, USA, watershed using the Watershed Management Optimization Support Tool (WMOST) suite of programs. Under average precipitation, loading targets for upland total phosphorus (TP) could be met with use of grassed swales for treating urban area runoff and of contouring for agricultural runoff. For a wet year, the same target could be met, but with use of a sand filter with underdrain for the urban runoff. Both annual and daily TP loading targets from Total Maximum Daily Loads (TMDLs) were exceeded in simulations of best management practice (BMP) solutions for 14 alternative future climate scenarios. We expanded the set of BMPs to include stream bank stabilization (physical plus riparian restoration) and two-stage channel designs, but upland loading targets could not be met for either TP or total suspended solids (TSS) under any precipitation conditions. An optimization scenario that simulated the routing of flows in excess of those treated by the upland BMPs to an off-channel treatment wetland allowed TMDLs to be met for an average precipitation year. WMOST can optimize cost-effectiveness of BMPs across multiple scales and climate scenarios. Full article
(This article belongs to the Special Issue Optimization-Simulation Modeling of Sustainable Water Resource)
Show Figures

Figure 1

20 pages, 11785 KiB  
Article
Spatiotemporal Variation in NDVI in the Sunkoshi River Watershed During 2000–2021 and Its Response to Climate Factors and Soil Moisture
by Zhipeng Jian, Qinli Yang, Junming Shao, Guoqing Wang and Vishnu Prasad Pandey
Water 2025, 17(15), 2232; https://doi.org/10.3390/w17152232 - 26 Jul 2025
Viewed by 472
Abstract
Given that the Sunkoshi River watershed (located in the southern foot of the Himalayas) is sensitive to climate change and its mountain ecosystem provides important services, we aim to evaluate its spatial and temporal variation patterns of vegetation, represented by the Normalized Difference [...] Read more.
Given that the Sunkoshi River watershed (located in the southern foot of the Himalayas) is sensitive to climate change and its mountain ecosystem provides important services, we aim to evaluate its spatial and temporal variation patterns of vegetation, represented by the Normalized Difference Vegetation Index (NDVI), during 2000–2021 and identify the dominant driving factors of vegetation change. Based on the NDVI dataset (MOD13A1), we used the simple linear trend model, seasonal and trend decomposition using loess (STL) method, and Mann–Kendall test to investigate the spatiotemporal variation features of NDVI during 2000–2021 on multiple scales (annual, seasonal, monthly). We used the partial correlation coefficient (PCC) to quantify the response of the NDVI to land surface temperature (LST), precipitation, humidity, and soil moisture. The results indicate that the annual NDVI in 52.6% of the study area (with elevation of 1–3 km) increased significantly, while 0.9% of the study area (due to urbanization) degraded significantly during 2000–2021. Daytime LST dominates NDVI changes on spring, summer, and winter scales, while precipitation, soil moisture, and nighttime LST are the primary impact factors on annual NDVI changes. After removing the influence of soil moisture, the contributions of climate factors to NDVI change are enhanced. Precipitation shows a 3-month lag effect and a 5-month cumulative effect on the NDVI; both daytime LST and soil moisture have a 4-month lag effect on the NDVI; and humidity exhibits a 2-month cumulative effect on the NDVI. Overall, the study area turned green during 2000–2021. The dominant driving factors of NDVI change may vary on different time scales. The findings will be beneficial for climate change impact assessment on the regional eco-environment, and for integrated watershed management. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

16 pages, 2024 KiB  
Article
Spatiotemporal Dynamics and Driving Factors of Phytoplankton Community Structure in the Liaoning Section of the Liao River Basin in 2010, 2015, and 2020
by Kang Peng, Zhixiong Hu, Rui Pang, Mingyue Li and Li Liu
Water 2025, 17(15), 2182; https://doi.org/10.3390/w17152182 - 22 Jul 2025
Viewed by 234
Abstract
This study aimed to analyse the spatiotemporal evolution of phytoplankton community dynamics and its underlying mechanisms in the Liaoning section of the Liao River Basin in 2010, 2015, and 2020. Phytoplankton species diversity increased significantly, with an increase from three phyla and 31 [...] Read more.
This study aimed to analyse the spatiotemporal evolution of phytoplankton community dynamics and its underlying mechanisms in the Liaoning section of the Liao River Basin in 2010, 2015, and 2020. Phytoplankton species diversity increased significantly, with an increase from three phyla and 31 species in 2010 to six phyla and 74 species in 2020. Concurrent increases in α-diversity indicated continuous improvements in habitat heterogeneity. The community structure shifted from a diatom-dominated assemblage to a green algae–diatom co-dominated configuration, contributing to an enhanced water purification capacity. The upstream agricultural zone (Tieling section) had elevated biomass and low diversity, indicating persistent non-point-source pollution stress. The midstream urban–industrial zone (Shenyang–Anshan section) emerged as a phytoplankton diversity hotspot, likely due to expanding niche availability in response to point-source pollution control. The downstream wetland zone (Panjin section) exhibited significant biomass decline and delayed diversity recovery, shaped by the dual pressures of resource competition and habitat filtering. The driving mechanism of community succession shifted from nutrient-dominated factors (NH3-N, TN) to redox-sensitive factors (DO, pH). These findings support a ‘zoned–graded–staged’ ecological restoration strategy for the Liao River Basin and inform the use of phytoplankton as bioindicators in watershed monitoring networks. Full article
(This article belongs to the Special Issue Water Environment Pollution and Control, 4th Edition)
Show Figures

Figure 1

18 pages, 3184 KiB  
Article
Changes in Macroinvertebrate Community Structure Associated with Land Use in Sierra Nevada de Santa Marta, Colombia
by Cristian Granados-Martínez, Meyer Guevara-Mora, Eugenia López-López and José Rincón Ramírez
Water 2025, 17(14), 2142; https://doi.org/10.3390/w17142142 - 18 Jul 2025
Viewed by 1055
Abstract
Rivers in tropical semi-arid regions face increasing anthropogenic pressures yet remain critically understudied despite their global importance. This study evaluated the aquatic macroinvertebrate community structure in the Ranchería River, Colombia, across three land use conditions: conserved zones (CZs), urban/agricultural zones (UAZs), and mining [...] Read more.
Rivers in tropical semi-arid regions face increasing anthropogenic pressures yet remain critically understudied despite their global importance. This study evaluated the aquatic macroinvertebrate community structure in the Ranchería River, Colombia, across three land use conditions: conserved zones (CZs), urban/agricultural zones (UAZs), and mining influence zones (MZs). Ten sampling stations were established, and macroinvertebrate communities were assessed alongside physical, chemical, and hydromorphological variables during the dry season (January–March 2021). A total of 9288 individuals from 84 genera across 16 orders were collected. Generalized Linear Models revealed significant differences among zones for 67 genera (79.8%), indicating strong community responses to land use gradients. Conserved zones exhibited the highest diversity according to the Hill numbers and were dominated by sensitive taxa, including Simulium, Smicridea, and Leptohyphes. Urban/agricultural zones showed the lowest richness (35 genera) and were characterized by disturbance-tolerant species, particularly Melanoides. Mining zones displayed intermediate diversity but exhibited severe habitat alterations. A redundancy analysis with variance partitioning revealed that land use types constituted the primary driver of community structure (a 24.1% pure effect), exceeding the physical and chemical variables (19.5%) and land cover characteristics (19.2%). The integrated model explained 63.5% of the total compositional variation, demonstrating that landscape-scale anthropogenic disturbances exert a greater influence on aquatic communities than local environmental conditions alone. Different anthropogenic activities create distinct environmental filters affecting macroinvertebrate assemblages, emphasizing the importance of land use planning for maintaining aquatic ecosystem integrity in semi-arid watersheds. Full article
Show Figures

Graphical abstract

23 pages, 5058 KiB  
Article
Integrated Assessment of Lake Degradation and Revitalization Pathways: A Case Study of Phewa Lake, Nepal
by Avimanyu Lal Singh, Bharat Raj Pahari and Narendra Man Shakya
Sustainability 2025, 17(14), 6572; https://doi.org/10.3390/su17146572 - 18 Jul 2025
Viewed by 330
Abstract
Phewa Lake, Nepal’s second-largest natural lake, is under increasing ecological stress due to sedimentation, shoreline encroachment, and water quality decline driven by rapid urban growth, fragile mountainous catchments, and changing climate patterns. This study employs an integrated approach combining sediment yield estimation from [...] Read more.
Phewa Lake, Nepal’s second-largest natural lake, is under increasing ecological stress due to sedimentation, shoreline encroachment, and water quality decline driven by rapid urban growth, fragile mountainous catchments, and changing climate patterns. This study employs an integrated approach combining sediment yield estimation from its catchment using RUSLE, shoreline encroachment analysis via satellite imagery and historical records, and identification of pollution sources and socio-economic factors through field surveys and community consultations. The results show that steep, sparsely vegetated slopes are the primary sediment sources, with Harpan Khola (a tributary of Phewa Lake) contributing over 80% of the estimated 339,118 tons of annual sediment inflow. From 1962 to 2024, the lake has lost approximately 5.62 sq. km of surface area, primarily due to a combination of sediment deposition and human encroachment. Pollution from untreated sewage, urban runoff, and invasive aquatic weeds further degrades water quality and threatens biodiversity. Based on the findings, this study proposes a way forward to mitigate sedimentation, encroachment, and pollution, along with a sustainable revitalization plan. The approach of this study, along with the proposed sustainability measures, can be replicated in other lake systems within Nepal and in similar watersheds elsewhere. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

20 pages, 5384 KiB  
Article
Integrated Water Resources Management in Response to Rainfall Change: A Runoff-Based Approach for Mixed Land-Use Catchments
by Jinsun Kim and Ok Yeon Choi
Environments 2025, 12(7), 241; https://doi.org/10.3390/environments12070241 - 14 Jul 2025
Viewed by 534
Abstract
The U.S. Environmental Protection Agency (EPA) developed the concept of Water Quality Volume (WQv) as a Best Management Practice (BMP) to treat the first 25.4 mm of rainfall in urban areas, aiming to capture approximately 90% of annual runoff. However, applying this urban-based [...] Read more.
The U.S. Environmental Protection Agency (EPA) developed the concept of Water Quality Volume (WQv) as a Best Management Practice (BMP) to treat the first 25.4 mm of rainfall in urban areas, aiming to capture approximately 90% of annual runoff. However, applying this urban-based standard—designed for areas with over 50% imperviousness—to rural regions with higher infiltration and pervious surfaces may result in overestimated facility capacities. In Korea, a uniform WQv criterion of 5 mm is applied nationwide, regardless of land use or hydrological conditions. This study examines the suitability of this 5 mm standard in rural catchments using the Hydrological Simulation Program–Fortran (HSPF). Eight sub-watersheds in the target area were simulated under varying cumulative runoff depths (1–10 mm) to assess pollutant loads and runoff characteristics. First-flush effects were most evident below 5 mm, with variation depending on land cover. Nature-based treatment systems for constructed wetlands were modeled for each sub-watershed, and their effectiveness was evaluated using Flow Duration Curves (FDCs) and Load Duration Curves (LDCs). The findings suggest that the uniform 5 mm WQv criterion may result in overdesign in rural watersheds and highlight the need for region-specific standards that consider local land-use and hydrological variability. Full article
(This article belongs to the Special Issue Monitoring of Contaminated Water and Soil)
Show Figures

Figure 1

21 pages, 6165 KiB  
Article
Hydrological Transformation and Societal Perception of Urban Pluvial Flooding in a Karstic Watershed: A Case Study from the Southern Mexican Caribbean
by Cristina C. Valle-Queb, David G. Rejón-Parra, José M. Camacho-Sanabria, Rosalía Chávez-Alvarado and Juan C. Alcérreca-Huerta
Environments 2025, 12(7), 237; https://doi.org/10.3390/environments12070237 - 10 Jul 2025
Viewed by 976
Abstract
Urban pluvial flooding (UPF) is an increasingly critical issue due to rapid urbanization and intensified precipitation driven by climate change that yet remains understudied in the Caribbean. This study analyzes the effects of UPF resulting from the transformation of a natural karstic landscape [...] Read more.
Urban pluvial flooding (UPF) is an increasingly critical issue due to rapid urbanization and intensified precipitation driven by climate change that yet remains understudied in the Caribbean. This study analyzes the effects of UPF resulting from the transformation of a natural karstic landscape into an urbanized area considering a sub-watershed in Chetumal, Southern Mexican Caribbean, as a case study. Hydrographic numerical modeling was conducted using the IBER 2.5.1 software and the SCS-CN method to estimate surface runoff for a critical UPF event across three stages: (i) 1928—natural condition; (ii) 1998—semi-urbanized (78% coverage); and (iii) 2015—urbanized (88% coverage). Urbanization led to the orthogonalization of the drainage network, an increase in the sub-watershed area (20%) and mainstream length (33%), flow velocities rising 10–100 times, a 52% reduction in surface roughness, and a 32% decrease in the potential maximum soil retention before runoff occurs. In urbanized scenarios, 53.5% of flooded areas exceeded 0.5 m in depth, compared to 16.8% in non-urbanized conditions. Community-based knowledge supported flood extent estimates with 44.5% of respondents reporting floodwater levels exceeding 0.50 m, primarily in streets. Only 43.1% recalled past flood levels, indicating a loss of societal memory, although risk perception remained high among directly affected residents. The reported UPF effects perceived in the area mainly related to housing damage (30.2%), mobility disruption (25.5%), or health issues (12.9%). Although UPF events are frequent, insufficient drainage infrastructure, altered runoff patterns, and limited access to public shelters and communication increased vulnerability. Full article
Show Figures

Figure 1

23 pages, 11464 KiB  
Article
Characterization of Water Quality and the Relationship Between WQI and Benthic Macroinvertebrate Communities as Ecological Indicators in the Ghris Watershed, Southeast Morocco
by Ali El Mansour, Saida Ait Boughrous, Ismail Mansouri, Abdellali Abdaoui, Wafae Squalli, Asmae Nouayti, Mohamed Abdellaoui, El Mahdi Beyouda, Christophe Piscart and Ali Ait Boughrous
Water 2025, 17(14), 2055; https://doi.org/10.3390/w17142055 - 9 Jul 2025
Viewed by 454
Abstract
The Ghris watershed in southern Morocco is a significant ecological and agricultural area. However, due to the current impacts of climate change, farming activities, and pollution, data on its quality and biological importance need to be updated. Therefore, this study aimed to evaluate [...] Read more.
The Ghris watershed in southern Morocco is a significant ecological and agricultural area. However, due to the current impacts of climate change, farming activities, and pollution, data on its quality and biological importance need to be updated. Therefore, this study aimed to evaluate the physico-chemical and biological quality of surface water in the Ghris River. The Water Quality Index (WQI) and the Iberian Biological Monitoring Working Group (IBMWP) index were used to assess water quality along four sampling sites in 2024. The collected data were analyzed with descriptive and multivariate statistics. In total, 424 benthic macroinvertebrates belonging to seven orders were identified in the surface waters of the Ghris basin. These microfauna were significantly variable among the studied sites (p < 0.05). Station S4 is significantly rich in species, including seven orders and nine families of macroinvertebrates, followed by Station S2, with seven orders and eight families. Stations S3 and S1 showed less species diversity, with three orders and one family, respectively. The Insecta comprised 95.9% of the abundance, while the Crustacea constituted just 4.1%. The physico-chemical parameters significantly surpassed (p < 0.05) the specified norms of surface water in Morocco. This indicates a decline in the water quality of the studied sites. The findings of the principal component analysis (PCA) demonstrate that the top two axes explain 87% of the cumulative variation in the data. Stations 2 and 3 are closely associated with high concentrations of pollutants, notably Cl, SO42−, NO3, and K+ ions. Dissolved oxygen (DO) showed a slight correlation with S2 and S3, while S4 was characterized by high COD and PO4 concentrations, low levels of mineral components (except Cl), and average temperature conditions. Bioindication scores for macroinvertebrate groups ranging from 1 to 10 enabled the assessment of pollution’s influence on aquatic biodiversity. The IBMWP biotic index indicated discrepancies in water quality across the sites. This study gives the first insight and updated data on the biological and chemical quality of surface water in the Ghris River and the entire aquatic ecosystem in southeast Morocco. These data are proposed as a reference for North African and Southern European rivers. However, more investigations are needed to evaluate the impacts of farming, mining, and urbanization on the surface and ground waters in the study zone. Similarly, it is vital to carry out additional research in arid and semi-arid zones since there is a paucity of understanding regarding taxonomic and functional diversity, as well as the physico-chemical factors impacting water quality. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

21 pages, 9658 KiB  
Article
Analysis of Ecosystem Pattern Evolution and Driving Forces in the Qin River Basin in the Middle Reaches of the Yellow River
by Yi Liu, Mingdong Zang, Jianbing Peng, Yuze Bai, Siyuan Wang, Zibin Wang, Peidong Shi, Miao Liu, Kairan Xu and Ning Zhang
Sustainability 2025, 17(13), 6199; https://doi.org/10.3390/su17136199 - 7 Jul 2025
Viewed by 384
Abstract
As an ecological transition zone, the ecosystem of the Qin River Basin in the middle reaches of the Yellow River is of great significance to the regional ecological balance. With the rapid socio-economic development, land use changes are significant, and the spatial and [...] Read more.
As an ecological transition zone, the ecosystem of the Qin River Basin in the middle reaches of the Yellow River is of great significance to the regional ecological balance. With the rapid socio-economic development, land use changes are significant, and the spatial and temporal patterns of ecosystems are evolving. Exploring its dynamics and driving mechanisms is crucial to the ecological protection and sustainable development of watersheds. This research systematically examines the spatiotemporal dynamics and driving mechanisms of ecosystem patterns in the middle Yellow River’s Qin River Basin (1990–2020). Quantitative assessments integrating ecosystem transition metrics and redundancy analysis reveal three critical insights: (1) dominance of agricultural land and woodland (74.81% combined coverage), with grassland (18.58%) and other land types (6.61%) constituting secondary components; (2) dynamic interconversion between woodland and grassland accompanied by urban encroachment on agricultural land, manifesting as net reductions in woodland (−13.74%), farmland (−6.60%), and wetland (−38.64%) contrasting with grassland (+43.34%) and built-up area (+116.63%) expansion; (3) quantified anthropogenic drivers showing agricultural intensification (45.03%) and ecological protection measures (36.50%) as primary forces, while urbanization account for 18.47% of observed changes. The first two RDA ordination axes significantly (p < 0.01) explain 68.3% of the variance in ecosystem evolution, particularly linking land-use changes to socioeconomic indicators. Based on these findings, the study proposes integrated watershed management strategies emphasizing scientific land-use optimization, controlled urban expansion, and systematic ecological rehabilitation to enhance landscape stability in this ecologically sensitive region. The conclusions of this study have important reference value for other ecologically sensitive watersheds in land use planning, ecological protection policy making, and ecological restoration practice, which can provide a theoretical basis and practical guidance. Full article
Show Figures

Figure 1

26 pages, 33866 KiB  
Article
Three-Dimensional Multitemporal Game Engine Visualizations for Watershed Analysis, Lighting Simulation, and Change Detection in Built Environments
by Heikki Kauhanen, Toni Rantanen, Petri Rönnholm, Osama Bin Shafaat, Kaisa Jaalama, Arttu Julin and Matti Vaaja
ISPRS Int. J. Geo-Inf. 2025, 14(7), 265; https://doi.org/10.3390/ijgi14070265 - 5 Jul 2025
Viewed by 530
Abstract
This study explores the reuse of high-resolution 3D spatial datasets for multiple urban analyses within a game engine environment, aligning with circular economy principles in sustainable urban planning. The work is situated in two residential test areas in Finland, where watershed analysis, lighting [...] Read more.
This study explores the reuse of high-resolution 3D spatial datasets for multiple urban analyses within a game engine environment, aligning with circular economy principles in sustainable urban planning. The work is situated in two residential test areas in Finland, where watershed analysis, lighting simulation, and change detection were conducted using data acquired through drone photogrammetry and terrestrial laser scanning. These datasets were processed and visualized using Unreal Engine 5.5, enabling the interactive, multitemporal exploration of urban phenomena. The results demonstrate how a single photogrammetric dataset—originally captured for visual or structural purposes—can serve a broad range of analytical functions, such as simulating seasonal lighting conditions, modeling stormwater runoff, and visualizing spatial changes over time. The study highlights the importance of capturing data at a resolution that satisfies the most demanding intended use, while allowing simpler analyses to benefit simultaneously. Reflections on game engine capabilities, data quality thresholds, and user interactivity underline the feasibility of integrating such tools into citizen participation, housing company decision making, and urban governance. The findings advocate for a circular data approach in urban planning, reducing redundant fieldwork and supporting sustainable data practices through multi-purpose digital twins and spatial simulations. Full article
Show Figures

Figure 1

23 pages, 12120 KiB  
Article
Estimating Macroplastic Mass Transport from Urban Runoff in a Data-Scarce Watershed: A Case Study from Cordoba, Argentina
by María Fernanda Funes, Teresa María Reyna, Carlos Marcelo García, María Lábaque, Sebastián López, Ingrid Strusberg and Susana Vanoni
Sustainability 2025, 17(13), 6177; https://doi.org/10.3390/su17136177 - 5 Jul 2025
Viewed by 493
Abstract
Urban growth has intensified the generation of solid waste, particularly in densely populated and vulnerable neighborhoods, leading to environmental degradation and public health risks. This study presents a multidisciplinary methodology to estimate the mass of macroplastic litter mobilized from urban surfaces into nearby [...] Read more.
Urban growth has intensified the generation of solid waste, particularly in densely populated and vulnerable neighborhoods, leading to environmental degradation and public health risks. This study presents a multidisciplinary methodology to estimate the mass of macroplastic litter mobilized from urban surfaces into nearby watercourses during storm events. Focusing on the Villa Páez neighborhood in Cordoba, Argentina—a data-scarce and flood-prone urban basin—the approach integrates socio-environmental surveys, field observations, Google Street View analysis, and hydrologic modeling using EPA SWMM 5.2. Macroplastic accumulation on streets was estimated based on observed waste density, and its transport under varying garbage collection intervals and rainfall intensities was simulated using a conceptual pollutant model. Results indicate that plastic mobilization increases substantially with storm intensity and accumulation duration, with the majority of macroplastic mass transported during high-return-period rainfall events. The study highlights the need for frequent waste collection, improved monitoring in vulnerable urban areas, and scenario-based modeling tools to support more effective waste and stormwater management. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

18 pages, 8570 KiB  
Article
Exploring Urban Water Management Solutions for Mitigating Water Cycle Issues: Application to Bogotá, Colombia
by Yoonkyung Park, Inkyeong Sim, Changyeon Won, Jongpyo Park and Reeho Kim
Water 2025, 17(13), 1992; https://doi.org/10.3390/w17131992 - 2 Jul 2025
Viewed by 349
Abstract
Urbanization and climate change have disrupted natural water circulation by increasing impervious surfaces and altering rainfall patterns, leading to reduced groundwater infiltration, deteriorating water quality, and heightened flood risks. This study investigates the application of Low Impact Development (LID) and flood control facilities [...] Read more.
Urbanization and climate change have disrupted natural water circulation by increasing impervious surfaces and altering rainfall patterns, leading to reduced groundwater infiltration, deteriorating water quality, and heightened flood risks. This study investigates the application of Low Impact Development (LID) and flood control facilities as structural measures to address these challenges in the upper watershed of the Fucha River in Bogotá, Colombia. The methodology involved analyzing watershed characteristics, defining circulation problems, setting hydrological targets, selecting facility types and locations, evaluating performance, and conducting an economic analysis. To manage the target rainfall of 26.5mm under normal conditions, LID facilities such as vegetated swales, rain gardens, infiltration channels, and porous pavements were applied, managing approximately 2362 m3 of runoff. For flood control, five detention tanks were proposed, resulting in a 31.8% reduction in peak flow and a 7.3% decrease in total runoff volume. The flooded area downstream was reduced by 46.8ha, and the benefit–cost ratio was calculated at 1.02. These findings confirm that strategic application of LID and detention facilities can contribute to effective urban water cycle management and disaster risk reduction. While the current disaster management approach in Bogotá primarily focuses on post-event response, this study highlights the necessity of transitioning toward proactive disaster preparedness. In particular, the introduction and expansion of flood forecasting and warning systems are recommended as non-structural measures, especially in urban areas with complex infrastructure and climate-sensitive hydrology. Full article
(This article belongs to the Special Issue Urban Water Management: Challenges and Prospects)
Show Figures

Figure 1

19 pages, 3257 KiB  
Article
Total Phosphorus Loadings and Corrective Actions Needed to Restore Water Quality in a Eutrophic Urban Lake in Minnesota, USA: A Case Study
by Neal D. Mundahl and John Howard
Limnol. Rev. 2025, 25(3), 28; https://doi.org/10.3390/limnolrev25030028 - 1 Jul 2025
Viewed by 242
Abstract
Lake Winona, a 129 ha eutrophic urban lake comprised of two interconnected basins, exceeds state water quality standards for total phosphorus. Historical lake nutrient data and traditional watershed modeling for the lake’s two basins highlighted multiple major pathways (e.g., municipal stormwater discharges, watershed [...] Read more.
Lake Winona, a 129 ha eutrophic urban lake comprised of two interconnected basins, exceeds state water quality standards for total phosphorus. Historical lake nutrient data and traditional watershed modeling for the lake’s two basins highlighted multiple major pathways (e.g., municipal stormwater discharges, watershed runoff, internal loading, and wetland discharges) for total phosphorus (P) loading, with >900 kg P/year estimated entering the water columns of each basin. Updated data sources and newer watershed modeling resulted in significantly different (both higher and lower) P loading estimates for the various P sources, especially watershed runoff and internal loading. Overall, basin-specific loading estimates using the updated model were significantly lower (28–40%) than previous estimates: 680 and 546 kg P/year mobilized in the western and eastern basins, respectively. To achieve state water quality standards (<60 ppm P for the western basin, <40 ppm for the eastern basin), watershed and internal P loading each would need to be reduced by approximately 120 kg P/year across the two basins. Reductions could be achieved by a combination of alum treatments to reduce internal loading, removal of common carp (Cyprinus carpio) to prevent interference with alum treatments and nutrient releases via excretion and defecation, and six engineered structures to intercept P before it enters the lake. The different P reduction projects would cost USD 119 to 7920/kg P removed, totaling USD 5.2 million, or USD 40,310/hectare of lake surface area. Full article
Show Figures

Figure 1

16 pages, 1563 KiB  
Article
Hydrological Benefits of Green Roof Retrofitting Policies: A Case Study of an Urban Watershed in Brazil
by Thiago Masaharu Osawa, Fábio Ferreira Nogueira, Stephanie Caroline Machado Gonzaga, Fernando Garcia Silva, Sabrina Domingues Miranda, Brenda Chaves Coelho Leite and José Rodolfo Scarati Martins
Water 2025, 17(13), 1936; https://doi.org/10.3390/w17131936 - 28 Jun 2025
Viewed by 422
Abstract
Green roofs (GRs) are emerging as effective tools for mitigating urban runoff, particularly in cities facing challenges related to increased impervious surfaces and flooding risks. This study evaluates the potential hydrological performance of GR retrofitting in São José dos Campos, Brazil, based on [...] Read more.
Green roofs (GRs) are emerging as effective tools for mitigating urban runoff, particularly in cities facing challenges related to increased impervious surfaces and flooding risks. This study evaluates the potential hydrological performance of GR retrofitting in São José dos Campos, Brazil, based on municipal legislation, focusing on the effects of reducing the Effective Impervious Area (EIA) in urban watersheds. Using a range of projected EIA reduction scenarios (Mandatory, Incentivized, and Ideal), this study compares key hydrological indicators such as peak flow attenuation, runoff volume reduction, and hydrograph delay during rainfall events with different return periods. The results show that retrofitting with GRs significantly attenuates peak flows and delays runoff, with the ‘Ideal’ scenario (EIA = 16%) achieving peak flow reductions of up to 41% and runoff volume reductions of 35%. However, the effectiveness of GRs diminishes for high-intensity rainfall events, suggesting that GRs are most effective for frequent, low-intensity storms. These findings demonstrate the potential of GRs in reducing flooding risks in urban environments, highlighting the importance of integrating GRs into broader sustainable drainage systems. This study further emphasizes that while financial support is crucial for promoting GR adoption, it alone is not sufficient. Policies should be complemented by educational efforts and urban regulatory measures to ensure widespread adoption and long-term impact. This research provides urban planners and stakeholders with evidence to enhance urban resilience, sustainability, and effective flood risk management. Full article
Show Figures

Figure 1

Back to TopTop