Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,328)

Search Parameters:
Keywords = urban and regional studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1751 KiB  
Article
The Structure of the Semantic Network Regarding “East Asian Cultural Capital” on Chinese Social Media Under the Framework of Cultural Development Policy
by Tianyi Tao and Han Woo Park
Information 2025, 16(8), 673; https://doi.org/10.3390/info16080673 (registering DOI) - 7 Aug 2025
Abstract
This study focuses on cultural and urban development policies under China’s 14th Five-Year Plan, exploring the content and semantic structure of discussions on the “East Asian Cultural Capital” project on the Weibo platform. It analyzes how national cultural development policies are reflected in [...] Read more.
This study focuses on cultural and urban development policies under China’s 14th Five-Year Plan, exploring the content and semantic structure of discussions on the “East Asian Cultural Capital” project on the Weibo platform. It analyzes how national cultural development policies are reflected in the discourse system related to the “East Asian Cultural Capital” on social media and emphasizes the guiding role of policies in the dissemination of online culture. When China announced the 14th Five-Year Plan in 2021, the strategic direction and policy framework for cultural development over the five-year period from 2021 to 2025 were clearly outlined. This study employs text mining and semantic network analysis methods to analyze user-generated content on Weibo from 2023 to 2024, aiming to understand public perception and discourse trends. Word frequency and TF-IDF analyses identify key terms and issues, while centrality and CONCOR clustering analyses reveal the semantic structure and discourse communities. MR-QAP regression is employed to compare network changes across the two years. Findings highlight that urban cultural development, heritage preservation, and regional exchange are central themes, with digital media, cultural branding, trilateral cooperation, and cultural–economic integration emerging as key factors in regional collaboration. Full article
(This article belongs to the Special Issue Semantic Networks for Social Media and Policy Insights)
Show Figures

Figure 1

21 pages, 4581 KiB  
Article
Spatiotemporal Variations and Drivers of the Ecological Footprint of Water Resources in the Yangtze River Delta
by Aimin Chen, Lina Chang, Peng Zhao, Xianbin Sun, Guangsheng Zhang, Yuanping Li, Haojun Deng and Xiaoqin Wen
Water 2025, 17(15), 2340; https://doi.org/10.3390/w17152340 - 6 Aug 2025
Abstract
With the acceleration of urbanization in China, water resources have become a key factor restricting regional sustainable development. Current research primarily examines the temporal or spatial variations in the water resources ecological footprint (WREF), with limited emphasis on the integration of both spatial [...] Read more.
With the acceleration of urbanization in China, water resources have become a key factor restricting regional sustainable development. Current research primarily examines the temporal or spatial variations in the water resources ecological footprint (WREF), with limited emphasis on the integration of both spatial and temporal scales. In this study, we collected the data and information from the 2005–2022 Statistical Yearbook and Water Resources Bulletin of the Yangtze River Delta Urban Agglomeration (YRDUA), and calculated evaluation indicators: WREF, water resources ecological carrying capacity (WRECC), water resources ecological pressure (WREP), and water resources ecological surplus and deficit (WRESD). We primarily analyzed the temporal and spatial variation in the per capita WREF and used the method of Geodetector to explore factors driving its temporal and spatial variation in the YRDUA. The results showed that: (1) From 2005 to 2022, the per capita WREF (total water, agricultural water, and industrial water) of the YRDUA generally showed fluctuating declining trends, while the per capita WREF of domestic water and ecological water showed obvious growth. (2) The per capita WREF and the per capita WRECC were in the order of Jiangsu Province > Anhui Province > Shanghai City > Zhejiang Province. The spatial distribution of the per capita WREF was similar to those of the per capita WRECC, and most areas effectively consume water resources. (3) The explanatory power of the interaction between factors was greater than that of a single factor, indicating that the spatiotemporal variation in the per capita WREF of the YRDUA was affected by the combination of multiple factors and that there were regional differences in the major factors in the case of secondary metropolitan areas. (4) The per capita WREF of YRDUA was affected by natural resources, and the impact of the ecological condition on the per capita WREF increased gradually over time. The impact factors of secondary metropolitan areas also clearly changed over time. Our results showed that the ecological situation of per capita water resources in the YRDUA is generally good, with obvious spatial and temporal differences. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

28 pages, 11045 KiB  
Article
Evaluating the Microclimatic Performance of Elevated Open Spaces for Outdoor Thermal Comfort in Cold Climate Zones
by Xuan Ma, Qian Luo, Fangxi Yan, Yibo Lei, Yuyang Lu, Haoyang Chen, Yuhuan Yang, Han Feng, Mengyuan Zhou, Hua Ding and Jingyuan Zhao
Buildings 2025, 15(15), 2777; https://doi.org/10.3390/buildings15152777 - 6 Aug 2025
Abstract
Improving outdoor thermal comfort is a critical objective in urban design, particularly in densely built urban environments. Elevated semi-open spaces—outdoor areas located beneath raised building structures—have been recognized for enhancing pedestrian comfort by improving airflow and shading. However, previous studies primarily focused on [...] Read more.
Improving outdoor thermal comfort is a critical objective in urban design, particularly in densely built urban environments. Elevated semi-open spaces—outdoor areas located beneath raised building structures—have been recognized for enhancing pedestrian comfort by improving airflow and shading. However, previous studies primarily focused on warm or temperate climates, leaving a significant research gap regarding their thermal performance in cold climate zones characterized by extreme seasonal variations. Specifically, few studies have investigated how these spaces perform under conditions typical of northern Chinese cities like Xi’an, which is explicitly classified within the Cold Climate Zone according to China’s national standard GB 50176-2016 and experiences both severe summer heat and cold winter conditions. To address this gap, we conducted field measurements and numerical simulations using the ENVI-met model (v5.0) to systematically evaluate the microclimatic performance of elevated ground-floor spaces in Xi’an. Key microclimatic parameters—including air temperature, mean radiant temperature, relative humidity, and wind velocity—were assessed during representative summer and winter conditions. Our findings indicate that the height of the elevated structure significantly affects outdoor thermal comfort, identifying an optimal elevated height range of 3.6–4.3 m to effectively balance summer cooling and winter sheltering needs. These results provide valuable design guidance for architects and planners aiming to enhance outdoor thermal environments in cold climate regions facing distinct seasonal extremes. Full article
Show Figures

Figure 1

24 pages, 62899 KiB  
Essay
Monitoring and Historical Spatio-Temporal Analysis of Arable Land Non-Agriculturalization in Dachang County, Eastern China Based on Time-Series Remote Sensing Imagery
by Boyuan Li, Na Lin, Xian Zhang, Chun Wang, Kai Yang, Kai Ding and Bin Wang
Earth 2025, 6(3), 91; https://doi.org/10.3390/earth6030091 (registering DOI) - 6 Aug 2025
Abstract
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of [...] Read more.
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of the Beijing–Tianjin–Hebei metropolitan cluster. In recent years, the area has undergone accelerated urbanization and industrial transfer, resulting in drastic land use changes and a pronounced contradiction between arable land protection and the expansion of construction land. The study period is 2016–2023, which covers the key period of the Beijing–Tianjin–Hebei synergistic development strategy and the strengthening of the national arable land protection policy, and is able to comprehensively reflect the dynamic changes of arable land non-agriculturalization under the policy and urbanization process. Multi-temporal Sentinel-2 imagery was utilized to construct a multi-dimensional feature set, and machine learning classifiers were applied to identify arable land non-agriculturalization with optimized performance. GIS-based analysis and the geographic detector model were employed to reveal the spatio-temporal dynamics and driving mechanisms. The results demonstrate that the XGBoost model, optimized using Bayesian parameter tuning, achieved the highest classification accuracy (overall accuracy = 0.94) among the four classifiers, indicating its superior suitability for identifying arable land non-agriculturalization using multi-temporal remote sensing imagery. Spatio-temporal analysis revealed that non-agriculturalization expanded rapidly between 2016 and 2020, followed by a deceleration after 2020, exhibiting a pattern of “rapid growth–slowing down–partial regression”. Further analysis using the geographic detector revealed that socioeconomic factors are the primary drivers of arable land non-agriculturalization in Dachang Hui Autonomous County, while natural factors exerted relatively weaker effects. These findings provide technical support and scientific evidence for dynamic monitoring and policy formulation regarding arable land under urbanization, offering significant theoretical and practical implications. Full article
Show Figures

Figure 1

16 pages, 715 KiB  
Review
Public Perceptions and Social Acceptance of Renewable Energy Projects in Epirus, Greece: The Role of Education, Demographics and Visual Exposure
by Evangelos Tsiaras, Stergios Tampekis and Costas Gavrilakis
World 2025, 6(3), 111; https://doi.org/10.3390/world6030111 - 6 Aug 2025
Abstract
The social acceptance of Renewable Energy Sources (RESs) is a decisive factor in the successful implementation of clean energy projects. This study explores the attitudes, demographic profiles, and common misconceptions of citizens in the Region of Epirus, Greece, toward photovoltaic and wind energy [...] Read more.
The social acceptance of Renewable Energy Sources (RESs) is a decisive factor in the successful implementation of clean energy projects. This study explores the attitudes, demographic profiles, and common misconceptions of citizens in the Region of Epirus, Greece, toward photovoltaic and wind energy installations. Special attention is given to the role of education, age, and access to information—as well as spatial factors such as visual exposure—in shaping public perceptions and influencing acceptance of RES deployment. A structured questionnaire was administered to 320 participants across urban and rural areas, with subdivision between regions with and without visual exposure to RES infrastructure. Findings indicate that urban residents exhibit greater acceptance of RES, while rural inhabitants—especially those in proximity to installations—express skepticism, often grounded in esthetic concerns or perceived procedural injustice. Misinformation and lack of knowledge dominate in areas without visual contact. Statistical analysis confirms that younger and more educated participants are more supportive and environmentally aware. The study highlights the importance of targeted educational interventions, transparent consultation, and spatially sensitive communication strategies in fostering constructive engagement with renewable energy projects. The case of Epirus underscores the need for inclusive, place-based policies to bridge the social acceptance gap and support the national energy transition. Full article
Show Figures

Graphical abstract

20 pages, 2104 KiB  
Article
Landscape Heterogeneity and Transition Drive Wildfire Frequency in the Central Zone of Chile
by Mariam Valladares-Castellanos, Guofan Shao and Douglass F. Jacobs
Remote Sens. 2025, 17(15), 2721; https://doi.org/10.3390/rs17152721 - 6 Aug 2025
Abstract
Wildfire regimes are closely linked to changes in landscape structure, yet the influence of accelerated land use transitions on fire activity remains poorly understood, particularly in rapidly transforming regions like central Chile. Although land use change has been extensively documented in the country, [...] Read more.
Wildfire regimes are closely linked to changes in landscape structure, yet the influence of accelerated land use transitions on fire activity remains poorly understood, particularly in rapidly transforming regions like central Chile. Although land use change has been extensively documented in the country, the specific role of the speed, extent, and spatial configuration of these transitions in shaping fire dynamics requires further investigation. To address this gap, we examined how landscape transitions influence fire frequency in central Chile, a region experiencing rapid land use change and heightened fire activity. Using multi-temporal remote sensing data, we quantified land use transitions, calculated landscape metrics to describe their spatial characteristics, and applied intensity analysis to assess their relationship with fire frequency changes. Our results show that accelerated landscape transitions significantly increased fire frequency, particularly in areas affected by forest plantation rotations, new forest establishment, and urban expansion, with changes exceeding uniform intensity expectations. Regional variations were evident: In the more densely populated northern areas, increased fire frequency was primarily linked to urban development and deforestation, while in the more rural southern regions, forest plantation cycles played a dominant role. Areas with a high number of large forest patches were especially prone to fire frequency increases. These findings demonstrate that both the speed and spatial configuration of landscape transitions are critical drivers of wildfire activity. By identifying the specific land use changes and landscape characteristics that amplify fire risks, this study provides valuable knowledge to inform fire risk reduction, landscape management, and urban planning in Chile and other fire-prone regions undergoing rapid transformation. Full article
Show Figures

Figure 1

19 pages, 1976 KiB  
Article
Excess Commuting in Rural Minnesota: Ethnic and Industry Disparities
by Woo Jang, Jose Javier Lopez and Fei Yuan
Sustainability 2025, 17(15), 7122; https://doi.org/10.3390/su17157122 - 6 Aug 2025
Abstract
Research on commuting patterns has mainly focused on urban and metropolitan areas, and such studies are not typically applied to rural and small-town regions, where workers often face longer commutes due to limited job opportunities and inadequate public transportation. By using the Census [...] Read more.
Research on commuting patterns has mainly focused on urban and metropolitan areas, and such studies are not typically applied to rural and small-town regions, where workers often face longer commutes due to limited job opportunities and inadequate public transportation. By using the Census Transportation Planning Package (CTPP) data, this research fills that gap by analyzing commuting behavior by ethnic group and industry in south-central Minnesota, which is a predominantly rural area of 13 counties in the United States. The results show that both white and minority groups in District 7 experienced an increase in excess commuting from 2006 to 2016, with the minority group in Nobles County showing a significantly higher rise. Analysis by industry reveals that excess commuting in the leisure and hospitality sector (including arts, entertainment, and food services) in Nobles County increased five-fold during this time, indicating a severe spatial mismatch between jobs and affordable housing. In contrast, manufacturing experienced a decline of 50%, possibly indicating better commuting efficiency or a loss of manufacturing jobs. These findings can help city and transportation planners conduct an in-depth analysis of rural-to-urban commuting patterns and develop potential solutions to improve rural transportation infrastructure and accessibility, such as promoting telecommuting and hybrid work options, expanding shuttle routes, and adding more on-demand transit services in rural areas. Full article
Show Figures

Figure 1

24 pages, 6924 KiB  
Article
Long-Term Time Series Estimation of Impervious Surface Coverage Rate in Beijing–Tianjin–Hebei Urbanization and Vulnerability Assessment of Ecological Environment Response
by Yuyang Cui, Yaxue Zhao and Xuecao Li
Land 2025, 14(8), 1599; https://doi.org/10.3390/land14081599 - 6 Aug 2025
Abstract
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation [...] Read more.
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation methods to convert thirty years of 30 m resolution data into 1 km resolution spatiotemporal impervious surface coverage data, constructing a long-term time series annual impervious surface coverage dataset for the Beijing–Tianjin–Hebei region. Based on this dataset, we analyzed urban expansion processes and landscape pattern indices in the Beijing–Tianjin–Hebei region, exploring the spatiotemporal response relationships of ecological environment changes. Results revealed that the impervious surface area increased dramatically from 7579.3 km2 in 1985 to 37,484.0 km2 in 2020, representing a year-on-year growth of 88.5%. Urban expansion rates showed two distinct peaks: 800 km2/year around 1990 and approximately 1700 km2/year during 2010–2015. In high-density urbanized areas with impervious surfaces, the average forest area significantly increased from approximately 2500 km2 to 7000 km2 during 1985–2005 before rapidly declining, grassland patch fragmentation intensified, while in low-density areas, grassland area showed fluctuating decline with poor ecosystem stability. Furthermore, by incorporating natural and social factors such as Fractional Vegetation Coverage (FVC), Habitat Quality Index (HQI), Land Surface Temperature (LST), slope, and population density, we assessed the vulnerability of urbanization development in the Beijing–Tianjin–Hebei region. Results showed that high vulnerability areas (EVI > 0.5) in the Beijing–Tianjin core region continue to expand, while the proportion of low vulnerability areas (EVI < 0.25) in the northern mountainous regions decreased by 4.2% in 2020 compared to 2005. This study provides scientific support for the sustainable development of the Beijing–Tianjin–Hebei urban agglomeration, suggesting location-specific and differentiated regulation of urbanization processes to reduce ecological risks. Full article
Show Figures

Figure 1

15 pages, 1337 KiB  
Article
Application of Prefabricated Public Buildings in Rural Areas with Extreme Hot–Humid Climate: A Case Study of the Yongtai County Digital Industrial Park, Fuzhou, China
by Xin Wu, Jiaying Wang, Ruitao Zhang, Qianru Bi and Jinghan Pan
Buildings 2025, 15(15), 2767; https://doi.org/10.3390/buildings15152767 - 6 Aug 2025
Abstract
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only [...] Read more.
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only jeopardize the attainment of climate objectives, but also hinder equitable development between urban and rural regions. Using the Digital Industrial Park in Yongtai County, Fuzhou City, as a case study, this study focuses on prefabricated public buildings in regions with extreme hot–humid climate, and innovatively integrates BIM (Building Information Modeling)-driven carbon modeling with the Gaussian Two-Step Floating Catchment Area (G2SFCA) method for spatial accessibility assessment to investigate the carbon emissions and economic benefits of prefabricated buildings during the embodied stage, and analyzes the spatial accessibility of prefabricated building material suppliers in Fuzhou City and identifies associated bottlenecks, seeking pathways to promote sustainable rural revitalization. Compared with traditional cast-in-situ buildings, embodied carbon emissions of prefabricated during their materialization phase significantly reduced. This dual-perspective approach ensures that the proposed solutions possess both technical rigor and logistical feasibility. Promoting this model across rural areas sharing similar climatic conditions would advance the construction industry’s progress towards the dual carbon goals. Full article
Show Figures

Figure 1

27 pages, 14923 KiB  
Article
Multi-Sensor Flood Mapping in Urban and Agricultural Landscapes of the Netherlands Using SAR and Optical Data with Random Forest Classifier
by Omer Gokberk Narin, Aliihsan Sekertekin, Caglar Bayik, Filiz Bektas Balcik, Mahmut Arıkan, Fusun Balik Sanli and Saygin Abdikan
Remote Sens. 2025, 17(15), 2712; https://doi.org/10.3390/rs17152712 - 5 Aug 2025
Abstract
Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning [...] Read more.
Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning method to evaluate the July 2021 flood in the Netherlands. The research developed 25 different feature scenarios through the combination of Sentinel-1, Landsat-8, and Radarsat-2 imagery data by using backscattering coefficients together with optical Normalized Difference Water Index (NDWI) and Hue, Saturation, and Value (HSV) images and Synthetic Aperture Radar (SAR)-derived Grey Level Co-occurrence Matrix (GLCM) texture features. The Random Forest (RF) classifier was optimized before its application based on two different flood-prone regions, which included Zutphen’s urban area and Heijen’s agricultural land. Results demonstrated that the multi-sensor fusion scenarios (S18, S20, and S25) achieved the highest classification performance, with overall accuracy reaching 96.4% (Kappa = 0.906–0.949) in Zutphen and 87.5% (Kappa = 0.754–0.833) in Heijen. For the flood class F1 scores of all scenarios, they varied from 0.742 to 0.969 in Zutphen and from 0.626 to 0.969 in Heijen. Eventually, the addition of SAR texture metrics enhanced flood boundary identification throughout both urban and agricultural settings. Radarsat-2 provided limited benefits to the overall results, since Sentinel-1 and Landsat-8 data proved more effective despite being freely available. This study demonstrates that using SAR and optical features together with texture information creates a powerful and expandable flood mapping system, and RF classification performs well in diverse landscape settings. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Flood Forecasting and Monitoring)
Show Figures

Figure 1

25 pages, 8686 KiB  
Article
Urban Shrinkage in the Qinling–Daba Mountains: Spatiotemporal Patterns and Influencing Factors
by Yuan Lv, Shanni Yang, Dan Zhao, Yilin He and Shuaibin Li
Sustainability 2025, 17(15), 7084; https://doi.org/10.3390/su17157084 - 5 Aug 2025
Viewed by 42
Abstract
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors [...] Read more.
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors of urban shrinkage plays a vital role in supporting the sustainable development of the region. This study, using permanent resident population growth rates and nighttime light data, classified cities in the region into four spatial patterns: expansion–growth, intensive growth, expansion–shrinkage, and intensive shrinkage. It further examined the spatial characteristics of shrinkage across four periods (2005–2010, 2010–2015, 2015–2020, and 2020–2022). A Geographically and Temporally Weighted Regression (GTWR) model was applied to examine core influencing factors and their spatiotemporal heterogeneity. The results indicated the following: (1) The dominant pattern of urban shrinkage in the Qinling–Daba Mountains shifted from expansion–growth to expansion–shrinkage, highlighting the paradox of population decline alongside continued spatial expansion. (2) Three critical indicators significantly influenced urban shrinkage: the number of students enrolled in general secondary schools (X5), the per capita disposable income of urban residents (X7), and the number of commercial and residential service facilities (X12), with their effects exhibiting significant spatiotemporal heterogeneity. Temporally, X12 was the most influential factor in 2005 and 2010, while in 2015, 2020, and 2022, X5 and X7 became the dominant factors. Spatially, X7 significantly affected both eastern and western areas; X5’s influence was most pronounced in the west; and X12 had the greatest impact in the east. This study explored the patterns and underlying drivers of urban shrinkage in underdeveloped areas, aiming to inform sustainable development practices in regions facing comparable challenges. Full article
(This article belongs to the Special Issue Sustainable Urban Planning and Regional Development)
Show Figures

Figure 1

17 pages, 3063 KiB  
Article
Spatiotemporal Variation in Carbon Storage in the Central Plains Urban Agglomeration Under Multi-Scenario Simulations
by Jinxin Wang, Chengyu Zhao, Zhiyi Shi and Xiangkai Cheng
Land 2025, 14(8), 1594; https://doi.org/10.3390/land14081594 - 5 Aug 2025
Viewed by 66
Abstract
Understanding changes in land use structures under multiple scenarios and their impacts on carbon storage is essential for revealing the evolution of regional development patterns and the underlying mechanisms of carbon cycle dynamics. This study adopted an integrated PLUS-InVEST modeling framework to analyze [...] Read more.
Understanding changes in land use structures under multiple scenarios and their impacts on carbon storage is essential for revealing the evolution of regional development patterns and the underlying mechanisms of carbon cycle dynamics. This study adopted an integrated PLUS-InVEST modeling framework to analyze and predict changes in carbon storage in the Central Plains Urban Agglomeration (CPUA) under different scenarios for the years 2030 and 2060. The results showed the following: (1) From 2000 to 2020, the areas of forest land, water bodies, and construction land expanded, while the areas of cropland, grassland, and barren land decreased. Over this 20-year period, carbon storage showed a declining trend, decreasing from 2390.07 × 106 t in 2000 to 2372.19 × 106 t in 2020. (2) In both 2030 and 2060, cropland remained the primary land use type in the CPUA. Overall, carbon storage in the CPUA was higher in the southwestern area and decreased in the central and eastern parts, which was mainly related to the land use distribution pattern in the CPUA. (3) Carbon storage under the EP (ecological protection) and CP (cropland protection) scenarios was significantly higher than under the other two scenarios, and in 2030, carbon storage under the CP and EP scenarios exceeded that in 2020, while the UD (urban development) scenario had the lowest total carbon storage. This indicated that the expansion of construction land was detrimental to carbon storage enhancement, underscoring the importance of implementing ecological protection strategies. In summary, the results of this study quantitatively reflected the changes in carbon storage in the CPUA under different future development scenarios, providing a reference for formulating regional development strategies. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

16 pages, 1617 KiB  
Article
Social Determinants of the Transition in Food Consumption in Paraíba, Brazil, Between 2008 and 2018
by Sara Ferreira de Oliveira, Rodrigo Pinheiro de Toledo Vianna, Poliana de Araújo Palmeira, Flávia Emília Leite de Lima Ferreira, Patrícia Vasconcelos Leitão Moreira, Adélia da Costa Pereira de Arruda Neta, Nadjeanny Ingrid Galdino Gomes, Eufrásio de Andrade Lima Neto and Rafaela Lira Formiga Cavalcanti de Lima
Nutrients 2025, 17(15), 2550; https://doi.org/10.3390/nu17152550 - 4 Aug 2025
Viewed by 167
Abstract
Background/Objectives: Dietary patterns have changed over time, characterising a process of nutritional transition that reflects socioeconomic and demographic inequalities among different populations. This study assessed changes in dietary consumption patterns and the associated social determinants, comparing two time periods in a sample of [...] Read more.
Background/Objectives: Dietary patterns have changed over time, characterising a process of nutritional transition that reflects socioeconomic and demographic inequalities among different populations. This study assessed changes in dietary consumption patterns and the associated social determinants, comparing two time periods in a sample of individuals from a state in the Northeast Region of Brazil. Methods: Data from the 2008–2009 and 2017–2018 Household Budget Survey for the state of Paraíba were analysed, totalling 951 and 1456 individuals, respectively. Foods were categorised according to the NOVA classification and compared based on sociodemographic and economic variables. To determine the factors that most strongly explain the contribution of each NOVA food group to the diet, beta regression analysis was conducted. Results: Differences were observed between the two periods regarding the dietary contribution of the NOVA food groups, with a decrease in consumption of unprocessed foods and an increase in ultra-processed foods. Living in urban areas, being an adolescent, and having an income above the minimum wage were associated with reduced intake of unprocessed foods in both periods. Additionally, being an adolescent and having more than eight years of schooling were associated with higher consumption of ultra-processed foods. Conclusions: The population under study showed changes in food consumption, reflecting a transition process that is occurring unevenly across socioeconomic and demographic groups, thereby reinforcing social inequalities. These findings can guide priorities in food and nutrition policies, highlighting the need for intervention studies to evaluate the effectiveness of such actions. Full article
(This article belongs to the Special Issue Food Security: Addressing Global Malnutrition and Hunger)
Show Figures

Figure 1

19 pages, 4452 KiB  
Article
Artificial Surface Water Construction Aggregated Water Loss Through Evaporation in the North China Plain
by Ziang Wang, Yan Zhou, Wenge Zhang, Shimin Tian, Yaoping Cui, Haifeng Tian, Xiaoyan Liu and Bing Han
Remote Sens. 2025, 17(15), 2698; https://doi.org/10.3390/rs17152698 - 4 Aug 2025
Viewed by 175
Abstract
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of [...] Read more.
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of regional water resources and assessing their current status. Therefore, a deep understanding of its changing patterns and driving forces is essential for achieving the sustainable management of water resources. In this study, we examined the interannual variability and trends of SWA in the NCP from 1990 to 2023 using annual 30 m water body maps generated from all available Landsat imagery, a robust water mapping algorithm, and the cloud computing platform Google Earth Engine (GEE). The results showed that the SWA in the NCP has significantly increased over the past three decades. The continuous emergence of artificial reservoirs and urban lakes, along with the booming aquaculture industry, are the main factors driving the growth of SWA. Consequently, the expansion of artificial water bodies resulted in a significant increase in water evaporation (0.16 km3/yr). Moreover, the proportion of water evaporation to regional evapotranspiration (ET) gradually increased (0–0.7%/yr), indicating that the contribution of water evaporation from artificial water bodies to ET is becoming increasingly prominent. Therefore, it can be concluded that the ever-expanding artificial water bodies have become a new hidden danger affecting the water security of the NCP through evaporative loss and deserve close attention. This study not only provides us with a new perspective for deeply understanding the current status of water resources security in the NCP but also provides a typical case with great reference value for the analysis of water resources changes in other similar regions. Full article
Show Figures

Figure 1

20 pages, 5967 KiB  
Article
Inundation Modeling and Bottleneck Identification of Pipe–River Systems in a Highly Urbanized Area
by Jie Chen, Fangze Shang, Hao Fu, Yange Yu, Hantao Wang, Huapeng Qin and Yang Ping
Sustainability 2025, 17(15), 7065; https://doi.org/10.3390/su17157065 - 4 Aug 2025
Viewed by 114
Abstract
The compound effects of extreme climate change and intensive urban development have led to more frequent urban inundation, highlighting the urgent need for the fine-scale evaluation of stormwater drainage system performance in high-density urban built-up areas. A typical basin, located in Shenzhen, was [...] Read more.
The compound effects of extreme climate change and intensive urban development have led to more frequent urban inundation, highlighting the urgent need for the fine-scale evaluation of stormwater drainage system performance in high-density urban built-up areas. A typical basin, located in Shenzhen, was selected, and a pipe–river coupled SWMM was developed and calibrated via a genetic algorithm to simulate the storm drainage system. Design storm scenario analyses revealed that regional inundation occurred in the central area of the basin and the enclosed culvert sections of the midstream river, even under a 0.5-year recurrence period, while the downstream open river channels maintained a substantial drainage capacity under a 200-year rainfall event. To systematically identify bottleneck zones, two novel metrics, namely, the node cumulative inundation volume and the conduit cumulative inundation length, were proposed to quantify the local inundation severity and spatial interactions across the drainage network. Two critical bottleneck zones were selected, and strategic improvement via the cross-sectional expansion of pipes and river culverts significantly enhanced the drainage efficiency. This study provides a practical case study and transferable technical framework for integrating hydraulic modeling, spatial analytics, and targeted infrastructure upgrades to enhance the resilience of drainage systems in high-density urban environments, offering an actionable framework for sustainable urban stormwater drainage system management. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

Back to TopTop