Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,581)

Search Parameters:
Keywords = uniform continuity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 1065 KB  
Article
Bridging Digital Readiness and Educational Inclusion: The Causal Impact of OER Policies on SDG4 Outcomes
by Fatma Gülçin Demirci, Yasin Nar, Ayşe Ilgün Kamanli, Ayşe Bilgen, Ejder Güven and Yavuz Selim Balcioglu
Sustainability 2026, 18(2), 777; https://doi.org/10.3390/su18020777 - 12 Jan 2026
Abstract
This study examines the relationship between national open educational resource (OER) policies and Sustainable Development Goal 4 (SDG4) outcomes across 187 countries between 2015 and 2024, with particular attention to the moderating role of artificial intelligence (AI) readiness. Despite widespread optimism about digital [...] Read more.
This study examines the relationship between national open educational resource (OER) policies and Sustainable Development Goal 4 (SDG4) outcomes across 187 countries between 2015 and 2024, with particular attention to the moderating role of artificial intelligence (AI) readiness. Despite widespread optimism about digital technologies as catalysts for universal education, systematic evidence linking formal OER policy frameworks to measurable improvements in educational access and completion remains limited. The analysis employs fixed effects and difference-in-differences estimation strategies using an unbalanced panel dataset comprising 435 country-year observations. The research investigates how OER policies associate with primary completion rates and out-of-school rates while testing whether these relationships depend on countries’ technological and institutional capacity for advanced technology deployment. The findings reveal that AI readiness demonstrates consistent positive associations with educational outcomes, with a ten-point increase in the readiness index corresponding to approximately 0.46 percentage point improvements in primary completion rates and 0.31 percentage point reductions in out-of-school rates across fixed effects specifications. The difference-in-differences analysis indicates that OER-adopting countries experienced completion rate increases averaging 0.52 percentage points relative to non-adopting countries in the post-2020 period, though this estimate remains statistically imprecise (p equals 0.440), preventing definitive causal conclusions. Interaction effects between policies and readiness yield consistently positive coefficients across specifications, but these associations similarly fail to achieve conventional significance thresholds given sample size constraints and limited within-country variation. While the directional patterns align with theoretical expectations that policy effectiveness depends on digital capacity, the evidence should be characterized as suggestive rather than conclusive. These findings represent preliminary assessment of policies in early implementation stages. Most frameworks were adopted between 2019 and 2022, providing observation windows of two to five years before data collection ended in 2024. This timeline proves insufficient for educational system transformations to fully materialize in aggregate indicators, as primary education cycles span six to eight years and implementation processes operate gradually through sequential stages of content development, teacher training, and institutional adaptation. The analysis captures policy impacts during formation rather than at equilibrium, establishing baseline patterns that require extended longitudinal observation for definitive evaluation. High-income countries demonstrate interaction coefficients between policies and readiness that approach marginal statistical significance (p less than 0.10), while low-income subsamples show coefficients near zero with wide confidence intervals. These patterns suggest that OER frameworks function as complementary interventions whose effectiveness depends critically on enabling infrastructure including digital connectivity, governance quality, technical workforce capacity, and innovation ecosystems. The results carry important implications for how countries sequence educational technology reforms and how international development organizations design technical assistance programs. The evidence cautions against uniform policy recommendations across diverse contexts, indicating that countries at different stages of digital development require fundamentally different strategies that coordinate policy adoption with foundational capacity building. However, the modest short-term effects and statistical imprecision observed here should not be interpreted as evidence of policy ineffectiveness, but rather as confirmation that immediate transformation is unlikely given implementation complexities and temporal constraints. The study contributes systematic cross-national evidence on aggregate policy associations while highlighting the conditional nature of educational technology effectiveness and establishing the need for continued longitudinal research as policies mature beyond the early implementation phase captured in this analysis. Full article
(This article belongs to the Special Issue Sustainable Education in the Age of Artificial Intelligence (AI))
19 pages, 371 KB  
Article
Adjoint Bernoulli’s Kantorovich–Schurer-Type Operators: Univariate Approximations in Functional Spaces
by Harun Çiçek, Nadeem Rao, Mohammad Ayman-Mursaleen and Sunny Kumar
Mathematics 2026, 14(2), 276; https://doi.org/10.3390/math14020276 - 12 Jan 2026
Abstract
In this work, we first establish a new connection between adjoint Bernoulli’s polynomials and gamma function as a new sequence of linear positive operators denoted by Sr,ς,λ(.;.). Further, convergence results for these [...] Read more.
In this work, we first establish a new connection between adjoint Bernoulli’s polynomials and gamma function as a new sequence of linear positive operators denoted by Sr,ς,λ(.;.). Further, convergence results for these sequences of operators, i.e., Sr,ς,λ(.;.) are derived in various functional spaces with the aid of the Korovkin theorem, the Voronovskaja-type theorem, the first order of the modulus of continuity, the second order of the modulus of continuity, Peetre’s K-functional, the Lipschitz condition, etc. In the last section, we focus our research on the bivariate extension of these sequences of operators; their uniform rate of approximation and order of approximation are investigated in different functional spaces. Full article
(This article belongs to the Special Issue Numerical Analysis and Scientific Computing for Applied Mathematics)
Show Figures

Figure 1

17 pages, 2734 KB  
Article
Turning CO2 into Ethanol: Enhancing Electrochemical Reduction Through Cu-Doped Electrodes
by Jose Antonio Abarca, Ana M. Ferraria, Ana M. Botelho do Rego, Sara Realista, Paulo N. Martinho, Angel Irabien and Guillermo Díaz-Sainz
Energies 2026, 19(2), 354; https://doi.org/10.3390/en19020354 - 11 Jan 2026
Viewed by 83
Abstract
The electrochemical reduction of CO2 to ethanol represents a sustainable alternative to recycle CO2 into a value-added product, yet achieving high selectivity and efficiency remains a challenge. This work explores Cu-based catalysts supported on SiO2 and ZrO2, with [...] Read more.
The electrochemical reduction of CO2 to ethanol represents a sustainable alternative to recycle CO2 into a value-added product, yet achieving high selectivity and efficiency remains a challenge. This work explores Cu-based catalysts supported on SiO2 and ZrO2, with and without ZnO doping, for ethanol production in a continuous flow-cell system. Gas diffusion electrodes are fabricated using commercial catalysts with varying Cu loadings (5–10%) and ZnO contents (2–3.5%). Comprehensive characterization by XPS confirms the presence of Cu2+ and Zn2+ species, while SEM reveals that ZnO incorporation improves surface uniformity and aggregate distribution compared to undoped samples. Electrochemical tests demonstrate that 10% Cu on SiO2 achieves a Faradaic efficiency of 96% for ethanol at −3 mA cm−2, outperforming both doped catalysts and previously reported materials. However, efficiency declines at higher current densities, indicating a trade-off between selectivity and productivity. ZnO doping enhances C2+ product formation but does not surpass the undoped catalyst in ethanol selectivity. These results underline the importance of catalyst composition, support interactions, and operating conditions, and point to further optimization of electrode architecture and cell configuration to sustain high ethanol yields under industrially relevant conditions. Full article
16 pages, 7616 KB  
Article
Weighted Sampling Enclosing Subgraphs-Based Link Prediction in Attributed Graphs
by Ganglin Hu
Information 2026, 17(1), 66; https://doi.org/10.3390/info17010066 - 11 Jan 2026
Viewed by 32
Abstract
Link prediction is a fundamental problem for graphs, which can reveal the potential relationships between users. Graph embedding can easily encode graph structural relations, and heterogeneous attribute features in a continuous vector space, which is effective in link prediction. However, graph embedding methods [...] Read more.
Link prediction is a fundamental problem for graphs, which can reveal the potential relationships between users. Graph embedding can easily encode graph structural relations, and heterogeneous attribute features in a continuous vector space, which is effective in link prediction. However, graph embedding methods for large-scale graphs suffer high computation and space costs, and sampling enclosing subgraphs is a practical yet efficient way to obtain the most features at the least cost. Nevertheless, the existing sampling techniques may lose essential features when the random sampling number of nodes is not large, as node features are assumed to follow a uniform distribution. In this paper, we propose a novel large-scale graph sampling strategy for link prediction named Weighted Sampling Enclosing subgraphs-based Link prediction (WSEL ) to resolve this issue, which maximumly preserves the structural and attribute features of enclosing subgraphs with less sampling. More specifically, we first extract the feature importance of each node in an enclosing subgraph and then take the node importance as node weight. Then, random walk node sequences are obtained by multiple weighted random walks from a target pair of nodes, generating a weighted sampling of enclosing subgraphs. By leveraging the weighted sampling enclosing subgraphs, WSEL can scale to larger graphs with much less overhead while maintaining some essential information of the original graph. Experiments on real-world datasets demonstrate that our model can scale to larger graphs while maintaining competitive link prediction performance under substantially reduced computational cost. Full article
16 pages, 879 KB  
Article
Moments of Real, Respectively of Complex Valued Functions, Approximation and Applications
by Cristian Octav Olteanu
Mathematics 2026, 14(2), 272; https://doi.org/10.3390/math14020272 - 10 Jan 2026
Viewed by 84
Abstract
The first aim of this study is to point out new aspects of approximation theory applied to a few classes of holomorphic functions via Vitali’s theorem. The approximation is made with the aid of the complex moments of the involved functions, which are [...] Read more.
The first aim of this study is to point out new aspects of approximation theory applied to a few classes of holomorphic functions via Vitali’s theorem. The approximation is made with the aid of the complex moments of the involved functions, which are defined similarly to the moments of a real-valued continuous function. By applying uniform approximation of continuous functions on compact intervals via Korovkin’s theorem, the hard part concerning uniform approximation on compact subsets of the complex plane follows according to Vitali’s theorem. The theorem on the set of zeros of a holomorphic function is also applied. In the end, the existence and uniqueness of the solution for a multidimensional moment problem are characterized in terms of limits of sums of quadratic expressions. This is the application appearing at the end of the title. Consequences resulting from the first part of the paper are pointed out with the aid of functional calculus for self-adjoint operators. Full article
(This article belongs to the Special Issue Nonlinear Approximation Theory in Banach Spaces)
14 pages, 2314 KB  
Article
Influence of Mo and Ni Alloying on Recrystallization Kinetics and Phase Transformation in Quenched and Tempered Thick Steel Plates
by Xabier Azpeitia, Unai Mayo, Nerea Isasti, Eric Detemple, Hardy Mohrbacher and Pello Uranga
Materials 2026, 19(2), 290; https://doi.org/10.3390/ma19020290 - 10 Jan 2026
Viewed by 78
Abstract
The production of heavy gauge quenched and tempered steel plates requires alloying strategies that ensure adequate hardenability and microstructural uniformity under limited cooling rates. Molybdenum (Mo) and nickel (Ni) are key elements in this context, as they influence both hot-working behavior and phase [...] Read more.
The production of heavy gauge quenched and tempered steel plates requires alloying strategies that ensure adequate hardenability and microstructural uniformity under limited cooling rates. Molybdenum (Mo) and nickel (Ni) are key elements in this context, as they influence both hot-working behavior and phase transformation kinetics. This study investigates the effect of Mo (0.25–0.50 wt%) and Ni (0–1.00 wt%) additions on static recrystallization and transformation behavior using laboratory thermomechanical simulations representative of thick plate rolling conditions. Multipass and double-hit torsion tests were performed to determine the non-recrystallization temperature (Tnr) and quantify softening kinetics, while dilatometry was employed to construct Continuous Cooling Transformation (CCT) diagrams and assess hardenability. Results indicate that Mo significantly increases Tnr and delays recrystallization through a solute drag mechanism, whereas Ni exerts a minor but measurable effect, likely associated with stacking fault energy rather than classical solute drag. Both elements reduce ferrite and bainite transformation temperatures, enhancing hardenability; however, Mo alone cannot suppress ferrite formation at practical cooling rates, requiring combined Mo–Ni additions to achieve fully martensitic microstructures. These findings provide insight into alloy design for thick plate applications and highlight the limitations of existing predictive models for Ni-containing steels. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

17 pages, 2421 KB  
Article
SEM-Based Evaluation and Quantitative Validation of ICON Resin Infiltration in Sound Enamel: A Microinvasive Preventive Strategy in Orthodontics
by Alexandra Ecaterina Saveanu, Catalina Iulia Saveanu, Oana Dragos, Maria Sophia Saveanu and Daniela Anistoroaei
Prosthesis 2026, 8(1), 8; https://doi.org/10.3390/prosthesis8010008 - 9 Jan 2026
Viewed by 87
Abstract
Background: Resin infiltration has emerged as a micro-invasive strategy for managing enamel porosities, offering both therapeutic and aesthetic benefits. ICON® (DMG, Hamburg, Germany) is the most widely used system; however, evidence on its penetration behavior in sound enamel remains limited. Objectives: This [...] Read more.
Background: Resin infiltration has emerged as a micro-invasive strategy for managing enamel porosities, offering both therapeutic and aesthetic benefits. ICON® (DMG, Hamburg, Germany) is the most widely used system; however, evidence on its penetration behavior in sound enamel remains limited. Objectives: This in vitro study aimed to evaluate the penetration depth and morphological pattern of ICON resin infiltration in sound human enamel, using quantitative morphometric analysis and scanning electron microscopy (SEM). Methods: Fourteen freshly extracted, caries-free anterior teeth were sectioned longitudinally. ICON® resin infiltrate was applied to the buccal enamel surfaces according to the manufacturer’s protocol, while the lingual/palatal surfaces served as internal controls. Penetration depth was measured quantitatively on both mesial (surface A) and distal (surface B) halves, and SEM was used to assess resin–enamel interface morphology. Statistical analysis included the Shapiro–Wilk test, paired t-test, Pearson correlation, and percentage difference calculation. Results: The mean difference in penetration depth between surfaces A and B was −21.29 µm (p = 0.525), indicating no statistically significant variation. A strong positive correlation was observed between surfaces (r = 0.783, p = 0.001). The mean percentage difference was −3.57% (SD = 18.61%), suggesting minimal directional bias. SEM images confirmed continuous and homogeneous resin infiltration within enamel prisms. Post-hoc power analysis indicated 15.2% power, reflecting the impact of the limited sample size typical for SEM-based exploratory studies. Conclusions: Within the limitations of this in vitro investigation, ICON resin infiltration demonstrated uniform and consistent penetration in sound enamel, supported by both quantitative and SEM analyses. These findings validate its potential as a reliable preventive and micro-invasive biomaterial in dental practice, particularly for protecting enamel surfaces prior to orthodontic bracket bonding. Further clinical research with larger cohorts is recommended to confirm its long-term stability and prophylactic performance. Full article
Show Figures

Figure 1

17 pages, 11668 KB  
Article
Can the Spatial Heterogeneity in the Epiligament Explain the Differential Healing Capacities of the ACL and MCL?
by Lyubomir Gaydarski, Boycho Landzhov, Richard Shane Tubbs and Georgi P. Georgiev
J. Clin. Med. 2026, 15(2), 510; https://doi.org/10.3390/jcm15020510 - 8 Jan 2026
Viewed by 162
Abstract
Background: The anterior cruciate ligament (ACL) and medial collateral ligament (MCL) display strikingly different healing behaviors, despite their similar structural roles within the knee. The epiligament (EL)—a vascular and cellular envelope surrounding each ligament—has emerged as a critical determinant of repair capacity. The [...] Read more.
Background: The anterior cruciate ligament (ACL) and medial collateral ligament (MCL) display strikingly different healing behaviors, despite their similar structural roles within the knee. The epiligament (EL)—a vascular and cellular envelope surrounding each ligament—has emerged as a critical determinant of repair capacity. The aim of this study was to perform a region-specific, comparative analysis of EL molecular profiles in the ACL and MCL to elucidate the mechanisms underlying their contrasting reparative outcomes. Methods: Human ACL and MCL specimens were obtained from 12 fresh knee joints. Immunohistochemical labeling for CD34, α-smooth muscle actin (α-SMA), and vascular endothelial growth factor (VEGF) was performed across proximal, mid-substance, and distal EL regions. Quantitative image analysis using IHC Profiler for ImageJ generated semiquantitative (negative, low-positive, positive) distributions, and inter-ligament comparisons were quantified using t-tests (p  <  0.05). Results: Distinct, region-specific EL signatures were identified. The ACL EL exhibited strong proximal α-SMA expression (0% neg/66.8% low+/33.2%+) and notable distal CD34 positivity (0% neg/83.3% low+/16.7%+), while VEGF expression was confined to the mid-substance (≈55% low+/26%+). In contrast, the MCL EL was largely negative for CD34 and VEGF across all regions, showing a homogeneous but functionally oriented α-SMA profile: proximally negative, sparse mid positivity, and high distal low-positive staining (93.4% low+). Differences in proximal and distal CD34 and α-SMA expression between the ACL and MCL were highly significant (p  <  0.0001–0.001), confirming a mechanistic divergence in EL organization. Conclusions: The ACL EL is regionally heterogeneous, vascularly biased, and enriched in contractile α-SMA+ cells, suggesting localized but poorly coordinated reparative potential. In contrast, the MCL EL is structurally uniform, with distributed α-SMA activity supporting stable wound contraction and tissue continuity, despite limited angiogenic signaling. These findings indicate that the ACL’s failure to heal is not attributable to the absence of progenitor or angiogenic factors, but rather to its fragmented spatial organization and dominant contractile phenotype. Therapeutically, preserving and modulating the EL, particularly its CD34+ and α-SMA+ compartments, could be key to enhancing intrinsic ACL repair and improving outcomes in ligament reconstruction and regeneration. Full article
(This article belongs to the Special Issue Acute Trauma and Trauma Care in Orthopedics: 2nd Edition)
Show Figures

Figure 1

20 pages, 8216 KB  
Article
Urban Oases: The Critical Role of Green and Blue Spaces in Mental Well-Being
by Oluwaseun Ipede, Meimei Lin, Christine Hladik and Wei Tu
Sustainability 2026, 18(2), 642; https://doi.org/10.3390/su18020642 - 8 Jan 2026
Viewed by 117
Abstract
Urbanization has significantly affected the availability and quality of urban green and blue spaces (UGBSs), which may affect mental health. In the United States, rates of anxiety and depression continue to rise, particularly in urban regions. This study examined the relationship between UGBS [...] Read more.
Urbanization has significantly affected the availability and quality of urban green and blue spaces (UGBSs), which may affect mental health. In the United States, rates of anxiety and depression continue to rise, particularly in urban regions. This study examined the relationship between UGBS exposure and mental health, measured by Frequent Mental Distress (FMD), across major cities in the contiguous United States (CONUS) from 2015 to 2017. UGBS exposure was estimated using remote sensing and GIS, and its association with FMD was assessed using Ordinary Least Squares (OLS) regression and Geographically Weighted Regression (GWR). The analyses also included smoking, binge drinking, median income, and educational attainment as covariates. OLS results indicated statistically significant but spatially uniform associations, whereas GWR revealed considerable spatial variation in UGBS and covariate effects across cities. Median income and educational attainment consistently showed inverse relationships with FMD, while smoking showed direct relationships across all years. Binge drinking exhibited both direct and inverse relationships. Additionally, both green space and blue space showed different relationships with FMD depending on location and year. The beneficial effect of UGBS on FMD was not observed in every instance. These findings help clarify the relationship between environmental, behavioral, and socioeconomic factors and mental health in urban settings, providing information that may support informed urban planning and public health decisions. Full article
Show Figures

Figure 1

20 pages, 3725 KB  
Article
Evolution Pattern of Hydraulic Characteristics at a Bridge Site: The Influence of Key Flood Factors
by Zhenchuan Li, Wanheng Li, Pengfei Li, Xuanji Jin and Yao Liu
Water 2026, 18(2), 155; https://doi.org/10.3390/w18020155 - 7 Jan 2026
Viewed by 185
Abstract
Flood factors are key parameters affecting the hydraulic characteristics at a bridge site. Clarifying the development patterns and impacts of flood factors at a bridge site is of great significance for the stability assessment and service safety of bridges. Therefore, the impact analysis [...] Read more.
Flood factors are key parameters affecting the hydraulic characteristics at a bridge site. Clarifying the development patterns and impacts of flood factors at a bridge site is of great significance for the stability assessment and service safety of bridges. Therefore, the impact analysis of flood factors, i.e., the initial flow velocity, scour angle, scour depth, on the evolution pattern of hydraulic characteristics at a bridge site is numerically conducted in this research. The structural model and hydraulic model are first established for numerical analysis. The correctness of models is verified through the existing analytical formula and experimental result. The evolution patterns of hydraulic characteristics at a bridge site are systematically evaluated. The results show that the flow velocity at the upstream side of the bridge exhibits relatively uniform and continuous distribution in both transverse and vertical directions, primarily caused by the obstruction of bridge piers. At the downstream side of the bridge, the flow velocity presents non-uniform development, induced by the horseshoe vortex and flow disturbance near the upstream pier. The coupling effect of the lateral flow velocity component suppressing vertical vortices and complex flow separation induces the distinct flow velocity distributions. Scour depth alters the flow field patterns, thereby influencing the flow’s resistance and acceleration properties. The above development pattern of hydraulic characteristics at the bridge site holds practical significance for conducting detailed analyses of flood impacts on bridges. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

14 pages, 5202 KB  
Article
Flexible Electrospun PVDF/PAN/Graphene Nanofiber Piezoelectric Sensors for Passive Human Motion Monitoring
by Hasan Cirik, Yasemin Gündoğdu Kabakci, M. A. Basyooni-M. Kabatas and Hamdi Şükür Kiliç
Sensors 2026, 26(2), 391; https://doi.org/10.3390/s26020391 - 7 Jan 2026
Viewed by 187
Abstract
Flexible piezoelectric sensors based on electrospun poly(vinylidene fluoride) (PVDF)/polyacrylonitrile (PAN)/graphene nanofibers were fabricated and evaluated for passive human body motion detection. Optimized electrospinning yielded smooth, continuous fibers with diameters of 200–250 nm and uniform films with thicknesses of 20–25 µm. Fourier transform infrared [...] Read more.
Flexible piezoelectric sensors based on electrospun poly(vinylidene fluoride) (PVDF)/polyacrylonitrile (PAN)/graphene nanofibers were fabricated and evaluated for passive human body motion detection. Optimized electrospinning yielded smooth, continuous fibers with diameters of 200–250 nm and uniform films with thicknesses of 20–25 µm. Fourier transform infrared (FTIR) spectroscopy confirmed a high fraction of the piezoelectrically active β-phase in PVDF, which was further enhanced by post-deposition thermal treatment. Graphene and lithium phosphate were incorporated to improve electrical conductivity, β-phase nucleation, and piezoelectric response, while PAN provided mechanical reinforcement and flexibility. Custom test platforms were developed to simulate low-amplitude mechanical stimuli, including finger bending and pulsatile pressure. Under applied pressures of 40, 80, and 120 mmHg, the sensors generated stable millivolt-level outputs with average peak voltages of 25–30 mV, 53–60 mV, and 80–90 mV, respectively, with good repeatability and an adequate signal-to-noise ratio. These results demonstrate that PVDF/PAN/graphene nanofiber films are promising candidates for flexible, wearable piezoelectric sensors capable of detecting subtle physiological signals, and highlight the critical roles of electrospinning conditions, functional additives, and post-processing treatments in tuning their electromechanical performance. Full article
(This article belongs to the Special Issue Advanced Flexible Electronics for Sensing Application)
Show Figures

Graphical abstract

11 pages, 10990 KB  
Case Report
Tracheal External Support Using a Polypropylene Linear Prosthesis for Tracheal Stent Fracture in a Dog: A Case Report
by Tomohiro Yoshida, Ryou Tanaka, Kazuyuki Terai, Aki Takeuchi, Akari Hatanaka, Daisuke Ito and Takashi Tanaka
Animals 2026, 16(2), 171; https://doi.org/10.3390/ani16020171 - 7 Jan 2026
Viewed by 157
Abstract
Tracheal stent fracture is a major complication of endoluminal tracheal stent (ELS) for canine tracheal collapse, and optimal management strategies remain unclear. A 4-year-old Yorkshire Terrier presented with respiratory distress caused by complete ELS fracture. Imaging and bronchoscopy revealed intraluminal protrusion of fractured [...] Read more.
Tracheal stent fracture is a major complication of endoluminal tracheal stent (ELS) for canine tracheal collapse, and optimal management strategies remain unclear. A 4-year-old Yorkshire Terrier presented with respiratory distress caused by complete ELS fracture. Imaging and bronchoscopy revealed intraluminal protrusion of fractured stent segments, ventral tracheal cartilage invagination, and marked luminal deformation. A polypropylene linear prosthesis (PLLP) was selected as an external tracheal support. Its continuous band-like structure allowed broad and uniform reinforcement of the tracheal wall and redistribution of mechanical stress. PLLP placement successfully restored a near-normal tracheal contour and stabilized the fractured stent without introducing additional intraluminal material. Postoperative bronchoscopy confirmed improved tracheal patency, and no further deformation or stent damage was observed despite several months of altered airway dynamics associated with laryngeal paralysis. This case suggests that PLLP may represent a valid surgical option for managing tracheal stent fracture in dogs. Full article
(This article belongs to the Special Issue Surgical Procedures and Postoperative Complications in Animals)
Show Figures

Figure 1

34 pages, 9553 KB  
Article
Research on Multi-Stage Optimization for High-Precision Digital Surface Model and True Digital Orthophoto Map Generation Methods
by Yingwei Ge, Renke Ji, Bingxuan Guo, Qinsi Wang, Xiao Jiang and Mofei Chen
Remote Sens. 2026, 18(2), 197; https://doi.org/10.3390/rs18020197 - 7 Jan 2026
Viewed by 113
Abstract
To enhance the overall quality and consistency of depth maps, Digital Surface Models (DSM), and True Digital Orthophoto Map (TDOM) in UAV image reconstruction, this paper proposes a multi-stage adaptive optimization generation method. First, to address the noise and outlier issues in depth [...] Read more.
To enhance the overall quality and consistency of depth maps, Digital Surface Models (DSM), and True Digital Orthophoto Map (TDOM) in UAV image reconstruction, this paper proposes a multi-stage adaptive optimization generation method. First, to address the noise and outlier issues in depth maps, an adaptive joint bilateral filtering-based optimization method is introduced. This method repairs anomalous depth values using a four-directional filling strategy, incorporates image-guided joint bilateral filtering to enhance edge structure representation, effectively improving the accuracy and continuity of the depth map. Next, during the DSM generation stage, a method based on depth value voting space and elevation anomaly detection is proposed. A joint mechanism of elevation calculation and anomaly point detection is used to suppress noise and errors, while a height value completion strategy significantly enhances the geometric accuracy and integrity of the DSM. Finally, in the TDOM generation process, occlusion detection and gap-line generation techniques are introduced. Together with uniform lighting, color adjustment, and image gap optimization strategies, this improves texture stitching continuity and brightness consistency, effectively reducing artifacts caused by gaps, blurriness, and lighting differences. Experimental results show that the proposed method significantly improves depth map smoothness, DSM geometric accuracy, and TDOM visual consistency compared to traditional methods, providing a complete and efficient technical pathway for high-quality surface reconstruction. Full article
(This article belongs to the Special Issue Remote Sensing for 2D/3D Mapping)
Show Figures

Figure 1

24 pages, 5203 KB  
Article
Biodegradable Antibacterial Nanostructured Coatings on Polypropylene Substrates for Reduction in Hospital Infections from High-Touch Surfaces
by Mariamelia Stanzione, Ilaria Improta, Maria Grazia Raucci, Alessandra Soriente, Marino Lavorgna, Giovanna Giuliana Buonocore, Roberto Spogli, Anna Maria Marcelloni, Anna Rita Proietto, Ilaria Amori and Antonella Mansi
Nanomaterials 2026, 16(2), 80; https://doi.org/10.3390/nano16020080 - 6 Jan 2026
Viewed by 207
Abstract
Healthcare-associated infections (HCAIs) remain a significant global challenge, as pathogenic microorganisms can persist on hospital surfaces and medical equipment, contributing to severe infections and epidemic outbreaks. Conventional preventive measures, including disinfection procedures and personal protective equipment, are often insufficient to ensure complete microbial [...] Read more.
Healthcare-associated infections (HCAIs) remain a significant global challenge, as pathogenic microorganisms can persist on hospital surfaces and medical equipment, contributing to severe infections and epidemic outbreaks. Conventional preventive measures, including disinfection procedures and personal protective equipment, are often insufficient to ensure complete microbial control, prompting interest in innovative antimicrobial surface technologies. This study reports the design, preparation, and comprehensive characterization of chitosan- and poly(ε-caprolactone)-based antibacterial coatings incorporating chlorhexidine-loaded zirconium phosphate (ZrPCHX) nanoparticles. Coatings were deposited by optimized spray and brush techniques to obtain uniform, adherent, and well-defined films. Their morphological, physicochemical, mechanical, and cytocompatibility properties were systematically evaluated, and antibacterial efficacy was assessed against clinically relevant pathogens following ISO 22196:2011 and additional protocols simulating realistic hospital conditions. Both coating systems demonstrated pronounced antibacterial activity, with the PCL-based formulation exhibiting a faster and broader bactericidal effect while maintaining good cytocompatibility. These findings support the potential of the developed nanostructured coatings as sustainable and scalable materials for the active decontamination of high-touch hospital surfaces, offering continuous antimicrobial protection and contributing to a reduction in HCAI incidence. Full article
(This article belongs to the Special Issue Nanocoating for Antibacterial Applications)
Show Figures

Figure 1

15 pages, 2531 KB  
Article
Amorphous Anodized Porous Titania as IrO2 Substrate for the Electrochemical Oxygen Evolution Reaction
by Effrosyni Mitrousi, Triantafyllia Kokkinou, Maria Zografaki, Maria Nikopoulou, Angeliki Banti, Dimitra A. Lambropoulou and Sotiris Sotiropoulos
Sustain. Chem. 2026, 7(1), 2; https://doi.org/10.3390/suschem7010002 - 6 Jan 2026
Viewed by 137
Abstract
This study investigates amorphous anodized porous TiO2 (a-TiO2) as a substrate for iridium-based oxygen evolution catalysts. The substrates were prepared via anodization of Ti foil in a glycerol-based solution for 15 min @ 60 V. Nickel was subsequently electrodeposited to [...] Read more.
This study investigates amorphous anodized porous TiO2 (a-TiO2) as a substrate for iridium-based oxygen evolution catalysts. The substrates were prepared via anodization of Ti foil in a glycerol-based solution for 15 min @ 60 V. Nickel was subsequently electrodeposited to act both as a conductive and sacrificial layer for the galvanic deposition of iridium from an Ir(IV) chloro-complex solution. Electrochemical anodization resulted in a uniform IrOx layer on the a-TiO2 substrate, featuring Ir aggregates ~250 nm in size and an Ir:Ni atomic ratio of ca. 7, as determined by EDS analysis. The quantity of Ni determined by ICP-MS bulk analysis indicated that Ni resided also within the porous matrix. Varying the Ni deposition charge density (qNi) revealed that an intermediate loading (1463 mC cm−2) provided the best balance between Ir accessibility during the galvanic replacement step and electronic continuity. The optimized IrOx/Ir-Ni/a-TiO2 electrode achieved excellent OER performance (η = 344 mV @ 10 mA cm−2; 1.68 mA μgIr−1 @ η = 300 mV) at an ultra-low Ir loading of 2.15 μgIr cm−2 and demonstrated good short-term stability, with only a 20 mV potential increase over 4 h of continuous operation at 5.5 mA cm−2. Overall, this strategy offers a scalable pathway for producing efficient OER electrodes with minimal noble metal loading. Full article
Show Figures

Figure 1

Back to TopTop