Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,881)

Search Parameters:
Keywords = uncertainty control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1040 KiB  
Systematic Review
A Systematic Review on Risk Management and Enhancing Reliability in Autonomous Vehicles
by Ali Mahmood and Róbert Szabolcsi
Machines 2025, 13(8), 646; https://doi.org/10.3390/machines13080646 - 24 Jul 2025
Abstract
Autonomous vehicles (AVs) hold the potential to revolutionize transportation by improving safety, operational efficiency, and environmental impact. However, ensuring reliability and safety in real-world conditions remains a major challenge. Based on an in-depth examination of 33 peer-reviewed studies (2015–2025), this systematic review organizes [...] Read more.
Autonomous vehicles (AVs) hold the potential to revolutionize transportation by improving safety, operational efficiency, and environmental impact. However, ensuring reliability and safety in real-world conditions remains a major challenge. Based on an in-depth examination of 33 peer-reviewed studies (2015–2025), this systematic review organizes advancements across five key domains: fault detection and diagnosis (FDD), collision avoidance and decision making, system reliability and resilience, validation and verification (V&V), and safety evaluation. It integrates both hardware- and software-level perspectives, with a focus on emerging techniques such as Bayesian behavior prediction, uncertainty-aware control, and set-based fault detection to enhance operational robustness. Despite these advances, this review identifies persistent challenges, including limited cross-layer fault modeling, lack of formal verification for learning-based components, and the scarcity of scenario-driven validation datasets. To address these gaps, this paper proposes future directions such as verifiable machine learning, unified fault propagation models, digital twin-based reliability frameworks, and cyber-physical threat modeling. This review offers a comprehensive reference for developing certifiable, context-aware, and fail-operational autonomous driving systems, contributing to the broader goal of ensuring safe and trustworthy AV deployment. Full article
Show Figures

Figure 1

23 pages, 999 KiB  
Article
Unmanned Aerial Vehicle Position Tracking Using Nonlinear Autoregressive Exogenous Networks Learned from Proportional-Derivative Model-Based Guidance
by Wilson Pavon, Jorge Chavez, Diego Guffanti and Ama Baduba Asiedu-Asante
Math. Comput. Appl. 2025, 30(4), 78; https://doi.org/10.3390/mca30040078 - 24 Jul 2025
Abstract
The growing demand for agile and reliable Unmanned Aerial Vehicles (UAVs) has spurred the advancement of advanced control strategies capable of ensuring stability and precision under nonlinear and uncertain flight conditions. This work addresses the challenge of accurately tracking UAV position by proposing [...] Read more.
The growing demand for agile and reliable Unmanned Aerial Vehicles (UAVs) has spurred the advancement of advanced control strategies capable of ensuring stability and precision under nonlinear and uncertain flight conditions. This work addresses the challenge of accurately tracking UAV position by proposing a neural-network-based approach designed to replicate the behavior of classical control systems. A complete nonlinear model of the quadcopter was derived and linearized around a hovering point to design a traditional proportional derivative (PD) controller, which served as a baseline for training a nonlinear autoregressive exogenous (NARX) artificial neural network. The NARX model, selected for its feedback structure and ability to capture temporal dynamics, was trained to emulate the control signals of the PD controller under varied reference trajectories, including step, sinusoidal, and triangular inputs. The trained networks demonstrated performance comparable to the PD controller, particularly in the vertical axis, where the NARX model achieved a minimal Mean Squared Error (MSE) of 7.78×105 and an R2 value of 0.9852. These results confirm that the NARX neural network, trained via supervised learning to emulate a PD controller, can replicate and even improve classical control strategies in nonlinear scenarios, thereby enhancing robustness against dynamic changes and modeling uncertainties. This research contributes a scalable approach for integrating neural models into UAV control systems, offering a promising path toward adaptive and autonomous flight control architectures that maintain stability and accuracy in complex environments. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

19 pages, 2887 KiB  
Article
Reactive Power Optimization of a Distribution Network Based on Graph Security Reinforcement Learning
by Xu Zhang, Xiaolin Gui, Pei Sun, Xing Li, Yuan Zhang, Xiaoyu Wang, Chaoliang Dang and Xinghua Liu
Appl. Sci. 2025, 15(15), 8209; https://doi.org/10.3390/app15158209 - 23 Jul 2025
Abstract
With the increasing integration of renewable energy, the secure operation of distribution networks faces significant challenges, such as voltage limit violations and increased power losses. To address the issue of reactive power and voltage security under renewable generation uncertainty, this paper proposes a [...] Read more.
With the increasing integration of renewable energy, the secure operation of distribution networks faces significant challenges, such as voltage limit violations and increased power losses. To address the issue of reactive power and voltage security under renewable generation uncertainty, this paper proposes a graph-based security reinforcement learning method. First, a graph-enhanced neural network is designed, to extract both topological and node-level features from the distribution network. Then, a primal-dual approach is introduced to incorporate voltage security constraints into the agent’s critic network, by constructing a cost critic to guide safe policy learning. Finally, a dual-critic framework is adopted to train the actor network and derive an optimal policy. Experiments conducted on real load profiles demonstrated that the proposed method reduced the voltage violation rate to 0%, compared to 4.92% with the Deep Deterministic Policy Gradient (DDPG) algorithm and 5.14% with the Twin Delayed DDPG (TD3) algorithm. Moreover, the average node voltage deviation was effectively controlled within 0.0073 per unit. Full article
(This article belongs to the Special Issue IoT Technology and Information Security)
35 pages, 1752 KiB  
Review
Recent Advances in Biodegradable Magnesium Alloys for Medical Implants: Evolution, Innovations, and Clinical Translation
by Mykyta Aikin, Vadim Shalomeev, Volodymyr Kukhar, Andrii Kostryzhev, Ihor Kuziev, Viktoriia Kulynych, Oleksandr Dykha, Volodymyr Dytyniuk, Oleksandr Shapoval, Alvydas Zagorskis, Vadym Burko, Olha Khliestova, Viacheslav Titov and Oleksandr Hrushko
Crystals 2025, 15(8), 671; https://doi.org/10.3390/cryst15080671 - 23 Jul 2025
Abstract
Biodegradable magnesium alloys have emerged as promising alternatives to permanent metallic implants due to their unique combination of mechanical compatibility with bone and complete resorption, addressing the persistent issues of stress shielding and secondary removal surgeries. This review critically examines the historical development [...] Read more.
Biodegradable magnesium alloys have emerged as promising alternatives to permanent metallic implants due to their unique combination of mechanical compatibility with bone and complete resorption, addressing the persistent issues of stress shielding and secondary removal surgeries. This review critically examines the historical development of magnesium-based biomaterials, highlighting advances in alloy design, manufacturing processes, and surface engineering that now enable tailored degradation and improved clinical performance. Drawing on recent clinical and preclinical studies, we summarize improvements in corrosion resistance, mechanical properties, and biocompatibility that have supported the clinical translation of magnesium alloys across a variety of orthopedic and emerging medical applications. However, challenges remain, including unpredictable in vivo degradation kinetics, limited long-term safety data, lack of standardized testing protocols, and ongoing regulatory uncertainties. We conclude that while magnesium-based biomaterials have advanced from experimental concepts to clinically validated solutions, further progress in personalized degradation control, real-time monitoring, and harmonized regulatory frameworks is needed to fully realize their transformative clinical potential. Full article
(This article belongs to the Special Issue Development of Light Alloys and Their Applications)
Show Figures

Figure 1

23 pages, 811 KiB  
Article
Backstepping-Based Finite-Horizon Optimization for Pitching Attitude Control of Aircraft
by Ang Li, Yaohua Shen and Bin Du
Aerospace 2025, 12(8), 653; https://doi.org/10.3390/aerospace12080653 - 23 Jul 2025
Abstract
In this paper, the problem of pitching attitude finite-horizon optimization for aircraft is posed with system uncertainties, external disturbances, and input constraints. First, a neural network (NN) and a nonlinear disturbance observer (NDO) are employed to estimate the value of system uncertainties and [...] Read more.
In this paper, the problem of pitching attitude finite-horizon optimization for aircraft is posed with system uncertainties, external disturbances, and input constraints. First, a neural network (NN) and a nonlinear disturbance observer (NDO) are employed to estimate the value of system uncertainties and external disturbances. Taking input constraints into account, an auxiliary system is designed to compensate for the constrained input. Subsequently, the backstepping control containing NN and NDO is used to ensure the stability of systems and suppress the adverse effects caused by the system uncertainties and external disturbances. In order to avoid the derivation operation in the process of backstepping, a dynamic surface control (DSC) technique is utilized. Simultaneously, the estimations of the NN and NDO are applied to derive the backstepping control law. For the purpose of achieving finite-horizon optimization for pitching attitude control, an adaptive method termed adaptive dynamic programming (ADP) with a single NN-termed critic is applied to obtain the optimal control. Time-varying feature functions are applied to construct the critic NN in order to approximate the value function in the Hamilton–Jacobi–Bellman (HJB) equation. Furthermore, a supplementary term is added to the weight update law to minimize the terminal constraint. Lyapunov stability theory is used to prove that the signals in the control system are uniformly ultimately bounded (UUB). Finally, simulation results illustrate the effectiveness of the proposed finite-horizon optimal attitude control method. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

30 pages, 6810 KiB  
Article
Interpretable Machine Learning Framework for Non-Destructive Concrete Strength Prediction with Physics-Consistent Feature Analysis
by Teerapun Saeheaw
Buildings 2025, 15(15), 2601; https://doi.org/10.3390/buildings15152601 - 23 Jul 2025
Abstract
Non-destructive concrete strength prediction faces limitations in validation scope, methodological comparison, and interpretability that constrain deployment in safety-critical construction applications. This study presents a machine learning framework integrating polynomial feature engineering, AdaBoost ensemble regression, and Bayesian optimization to achieve both predictive accuracy and [...] Read more.
Non-destructive concrete strength prediction faces limitations in validation scope, methodological comparison, and interpretability that constrain deployment in safety-critical construction applications. This study presents a machine learning framework integrating polynomial feature engineering, AdaBoost ensemble regression, and Bayesian optimization to achieve both predictive accuracy and physics-consistent interpretability. Eight state-of-the-art methods were evaluated across 4420 concrete samples, including statistical significance testing, scenario-based assessment, and robustness analysis under measurement uncertainty. The proposed PolyBayes-ABR methodology achieves R2 = 0.9957 (RMSE = 0.643 MPa), showing statistical equivalence to leading ensemble methods, including XGBoost (p = 0.734) and Random Forest (p = 0.888), while outperforming traditional approaches (p < 0.001). Scenario-based validation across four engineering applications confirms robust performance (R2 > 0.93 in all cases). SHAP analysis reveals that polynomial features capture physics-consistent interactions, with the Curing_age × Er interaction achieving dominant importance (SHAP value: 4.2337), aligning with established hydration–microstructure relationships. When accuracy differences fall within measurement uncertainty ranges, the framework provides practical advantages through enhanced uncertainty quantification (±1.260 MPa vs. ±1.338 MPa baseline) and actionable engineering insights for quality control and mix design optimization. This approach addresses the interpretability challenge in concrete engineering applications where both predictive performance and scientific understanding are essential for safe deployment. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

14 pages, 4599 KiB  
Article
Predictive Flood Uncertainty Associated with the Overtopping Rates of Vertical Seawall on Coral Reef Topography
by Hongqian Zhang, Bin Lu, Yumei Geng and Ye Liu
Water 2025, 17(15), 2186; https://doi.org/10.3390/w17152186 - 22 Jul 2025
Abstract
Accurate prediction of wave overtopping rates is essential for flood risk assessment along coral reef coastlines. This study quantifies the uncertainty sources affecting overtopping rates for vertical seawalls on reef flats, using ensemble simulations with a validated non-hydrostatic SWASH model. By generating extensive [...] Read more.
Accurate prediction of wave overtopping rates is essential for flood risk assessment along coral reef coastlines. This study quantifies the uncertainty sources affecting overtopping rates for vertical seawalls on reef flats, using ensemble simulations with a validated non-hydrostatic SWASH model. By generating extensive random wave sequences, we identify spectral resolution, wave spectral width, and wave groupiness as the dominant controls on the uncertainty. Statistical metrics, including the Coefficient of Variation (CV) and Range Uncertainty Level (RUL), demonstrate that overtopping rates exhibit substantial variability under randomized wave conditions, with CV exceeding 40% for low spectral resolutions (50–100 bins), while achieving statistical convergence (CV around 20%) requires at least 700 frequency bins, far surpassing conventional standards. The RUL, which describes the ratio of extreme to minimal overtopping rates, also decreases markedly as the number of frequency bins increases from 50 to 700. It is found that the overtopping rate follows a normal distribution with 700 frequency bins in wave generation. Simulations further demonstrate that overtopping rates increase by a factor of 2–4 as the JONSWAP spectrum peak enhancement factor (γ) increases from 1 to 7. The wave groupiness factor (GF) emerges as a predictor of overtopping variability, enabling a more efficient experimental design through reduction in groupiness-guided replication. These findings establish practical thresholds for experimental design and highlight the critical role of spectral parameters in hazard assessment. Full article
Show Figures

Figure 1

22 pages, 4190 KiB  
Article
Calibration of Building Performance Simulations for Zero Carbon Ready Homes: Two Open Access Case Studies Under Controlled Conditions
by Christopher Tsang, Richard Fitton, Xinyi Zhang, Grant Henshaw, Heidi Paola Díaz-Hernández, David Farmer, David Allinson, Anestis Sitmalidis, Mohamed Dgali, Ljubomir Jankovic and William Swan
Sustainability 2025, 17(15), 6673; https://doi.org/10.3390/su17156673 - 22 Jul 2025
Viewed by 51
Abstract
This study provides a detailed dataset from two modern homes constructed inside an environmentally controlled chamber. These data are used to carefully calibrate a dynamic thermal simulation model of these homes. The calibrated models show good agreement with measurements taken under controlled conditions. [...] Read more.
This study provides a detailed dataset from two modern homes constructed inside an environmentally controlled chamber. These data are used to carefully calibrate a dynamic thermal simulation model of these homes. The calibrated models show good agreement with measurements taken under controlled conditions. The two case study homes, “The Future Home” and “eHome2”, were constructed within the University of Salford’s Energy House 2.0, and high-quality data were collected over eight days. The calibration process involved updating U-values, air permeability rates, and modelling refinements, such as roof ventilation, ground temperatures, and sub-floor void exchange rates, set as boundary conditions. Results demonstrated a high level of accuracy, with performance gaps in whole-house heat transfer coefficient reduced to 0.5% for “The Future Home” and 0.6% for “eHome2”, falling within aggregate heat loss test uncertainty ranges by a significant amount. The study highlights the improved accuracy of calibrated dynamic thermal simulation models, compared to results from the steady-state Standard Assessment Procedure model. By providing openly accessible calibrated models and a clearly defined methodology, this research presents valuable resources for future building performance modelling studies. The findings support the UK’s transition to dynamic modelling approaches proposed in the recently introduced Home Energy Model approach, contributing to improved prediction of energy efficiency and aligning with goals for zero carbon ready and sustainable housing development. Full article
Show Figures

Figure 1

22 pages, 5966 KiB  
Article
Road-Adaptive Precise Path Tracking Based on Reinforcement Learning Method
by Bingheng Han and Jinhong Sun
Sensors 2025, 25(15), 4533; https://doi.org/10.3390/s25154533 - 22 Jul 2025
Viewed by 31
Abstract
This paper proposes a speed-adaptive autonomous driving path-tracking framework based on the soft actor–critic (SAC) and pure pursuit (PP) methods, named the SACPP controller. The framework first analyzes the obstacles around the vehicle and plans an obstacle-free reference path with the minimum curvature [...] Read more.
This paper proposes a speed-adaptive autonomous driving path-tracking framework based on the soft actor–critic (SAC) and pure pursuit (PP) methods, named the SACPP controller. The framework first analyzes the obstacles around the vehicle and plans an obstacle-free reference path with the minimum curvature using the hybrid A* algorithm. Next, based on the generated reference path, the current state of the vehicle, and the vehicle motor energy efficiency diagram, the optimal speed is calculated in real time, and the vehicle dynamics preview point at the future moment—specifically, the look-ahead distance—is predicted. This process relies on the learning of the SAC network structure. Finally, PP is used to generate the front wheel angle control value by combining the current speed and the predicted preview point. In the second layer, we carefully designed the evaluation function in the tracking process based on the uncertainties and performance requirements that may occur during vehicle driving. This design ensures that the autonomous vehicle can not only quickly and accurately track the path, but also effectively avoid surrounding obstacles, while keeping the motor running in the high-efficiency range, thereby reducing energy loss. In addition, since the entire framework uses a lightweight network structure and a geometry-based method to generate the front wheel angle, the computational load is significantly reduced, and computing resources are saved. The actual running results on the i7 CPU show that the control cycle of the control framework exceeds 100 Hz. Full article
(This article belongs to the Special Issue AI-Driving for Autonomous Vehicles)
Show Figures

Figure 1

18 pages, 1696 KiB  
Article
Concurrent Adaptive Control for a Robotic Leg Prosthesis via a Neuromuscular-Force-Based Impedance Method and Human-in-the-Loop Optimization
by Ming Pi
Appl. Sci. 2025, 15(15), 8126; https://doi.org/10.3390/app15158126 - 22 Jul 2025
Viewed by 108
Abstract
This paper proposes an adaptive human–robot concurrent control scheme that achieves the appropriate gait trajectory for a robotic leg prosthesis to improve the wearer’s comfort in various tasks. To accommodate different wearers, a neuromuscular-force-based impedance method was developed using muscle activation to reshape [...] Read more.
This paper proposes an adaptive human–robot concurrent control scheme that achieves the appropriate gait trajectory for a robotic leg prosthesis to improve the wearer’s comfort in various tasks. To accommodate different wearers, a neuromuscular-force-based impedance method was developed using muscle activation to reshape gait trajectory. To eliminate the use of sensors for torque measurement, a disturbance observer was established to estimate the interaction force between the human residual limb and the prosthetic receptacle. The cost function was combined with the interaction force and tracking errors of the joints. We aim to reduce the cost function by minimally changing the control weight of the gait trajectory generated by the Central Pattern Generator (CPG). The control scheme was primarily based on human-in-the-loop optimization to search for a suitable control weight to regenerate the appropriate gait trajectory. To handle the uncertainties and unknown coupling of the motors, an adaptive law was designed to estimate the unknown parameters of the system. Through a stability analysis, the control framework was verified by semi-globally uniformly ultimately bounded stability. Experimental results are discussed, and the effectiveness of the adaptive control framework is demonstrated. In Case 1, the mean error (MEAN) of the tracking performance was 3.6° and 3.3°, respectively. And the minimized mean square errors (MSEs) of the tracking performance were 2.3° and 2.8°, respectively. In Case 2, the mean error (MEAN) of the tracking performance is 2.7° and 3.1°, respectively. And the minimized mean square errors (MSEs) of the tracking performance are 1.8° and 2.4°, respectively. In Case 3, the mean errors (MEANs) of the tracking performance for subject1 and 2 are 2.4°, 2.9°, 3.4°, and 2.2°, 2.8°, 3.1°, respectively. The minimized mean square errors (MSEs) of the tracking performance for subject1 and 2 were 1.6°, 2.3°, 2.6°, and 1.3°, 1.7°, 2.2°, respectively. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

20 pages, 1848 KiB  
Article
Integrated Intelligent Control for Trajectory Tracking of Nonlinear Hydraulic Servo Systems Under Model Uncertainty
by Haoren Zhou, Jinsheng Zhang and Heng Zhang
Actuators 2025, 14(8), 359; https://doi.org/10.3390/act14080359 - 22 Jul 2025
Viewed by 170
Abstract
To address the challenges of model uncertainty, strong nonlinearities, and controller tuning in high-precision trajectory tracking for hydraulic servo systems, this paper proposes a hierarchical GA-PID-MPC fusion strategy. The architecture integrates three functional layers: a Genetic Algorithm (GA) for online parameter optimization, a [...] Read more.
To address the challenges of model uncertainty, strong nonlinearities, and controller tuning in high-precision trajectory tracking for hydraulic servo systems, this paper proposes a hierarchical GA-PID-MPC fusion strategy. The architecture integrates three functional layers: a Genetic Algorithm (GA) for online parameter optimization, a Model Predictive Controller (MPC) for future-oriented planning, and a Proportional–Integral–Derivative (PID) controller for fast feedback correction. These modules are dynamically coordinated through an adaptive cost-aware blending mechanism based on real-time performance evaluation. The MPC module operates on a linearized state–space model and performs receding-horizon control with weights and horizon length θ=[q,r,Tp] tuned by GA. In parallel, the PID controller is enhanced with online gain projection to mitigate nonlinear effects. The blending coefficient σ(t) is adaptively updated to balance predictive accuracy and real-time responsiveness, forming a robust single-loop controller. Rigorous theoretical analysis establishes global input-to-state stability and H performance under average dwell-time constraints. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

18 pages, 4221 KiB  
Article
Dynamics Modeling and Control Method for Non-Cooperative Target Capture with a Space Netted Pocket System
by Wenyu Wang, Huibo Zhang, Jinming Yao, Wenbo Li, Zhuoran Huang, Chao Tang and Yang Zhao
Actuators 2025, 14(7), 358; https://doi.org/10.3390/act14070358 - 21 Jul 2025
Viewed by 93
Abstract
The space flexible netted pocket capture system provides a flexible and stable solution for capturing non-cooperative space objects. This paper investigates the control problem for the capture of non-cooperative targets undergoing motion. A dynamic model of the capturing net is established based on [...] Read more.
The space flexible netted pocket capture system provides a flexible and stable solution for capturing non-cooperative space objects. This paper investigates the control problem for the capture of non-cooperative targets undergoing motion. A dynamic model of the capturing net is established based on the absolute nodal coordinate formulation (ANCF) and equivalent plate–shell theory. A contact collision force model is developed using a spring–damper model. Subsequently, a feedforward controller is designed based on the estimated collision force from the dynamic model, aiming to compensate for the collision effects between the target and the net. By incorporating the collision estimation data, an extended state observer is designed, taking into account the collision estimation errors and the flexible uncertainties. A sliding mode feedback controller is then designed using the fast terminal sliding mode control method. Finally, simulation analysis of target capture under different motion states is conducted. The results demonstrate that the spacecraft system’s position and attitude average flutter amplitudes are less than 102 m and 102 deg. In comparison to standard sliding mode control, the designed controller reduces the attitude jitter amplitude by an order of magnitude, thus demonstrating its effectiveness and superiority. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

9 pages, 221 KiB  
Perspective
Definitions of, Advances in, and Treatment Strategies for Breast Cancer Oligometastasis
by Tadahiko Shien, Shogo Nakamoto, Yuki Fujiwara, Maya Kosaka, Yuki Narahara, Kento Fujii, Reina Maeda, Shutaro Kato, Asuka Mimata, Ryo Yoshioka, Chihiro Kuwahara, Takahiro Tsukioki, Yuko Takahashi, Tsuguo Iwatani and Maki Tanioka
Cancers 2025, 17(14), 2406; https://doi.org/10.3390/cancers17142406 - 21 Jul 2025
Viewed by 123
Abstract
Oligometastasis represents a clinically relevant state of limited metastatic disease that could be amenable to selected local therapies in carefully chosen patients. Although initial trials such as SABR-COMET demonstrated a survival benefit with aggressive local treatment, breast cancer was underrepresented. Subsequent breast cancer-specific [...] Read more.
Oligometastasis represents a clinically relevant state of limited metastatic disease that could be amenable to selected local therapies in carefully chosen patients. Although initial trials such as SABR-COMET demonstrated a survival benefit with aggressive local treatment, breast cancer was underrepresented. Subsequent breast cancer-specific trials, including NRG-BR002, failed to show a clear survival benefit, highlighting uncertainties and the need for further refinement in patient selection and integration with systemic approaches. The definitions of oligometastasis continue to evolve, incorporating radiological, clinical, and biological features. Advances in imaging and molecular profiling suggest that oligometastatic breast cancer might represent a distinct biological subtype, with potential biomarkers including PIK3CA mutations and YAP/TAZ expression. Organ-specific strategies using stereotactic radiotherapy, surgery, and proton therapy have shown favorable local control in certain settings, though their impact on the overall survival remains under investigation. Emerging techniques, including circulating tumor DNA (ctDNA) analysis, are being explored to improve patient selection and disease monitoring. Ongoing trials may provide further insight into the role of local therapy, particularly in hormone receptor-positive or HER2-positive subtypes. Local and systemic strategies need to be carefully coordinated to optimize the outcomes. This review summarizes the current definitions of and evidence and therapeutic considerations for oligometastatic breast cancer and outlines potential future directions. Full article
(This article belongs to the Special Issue New Insights into Oligo-Recurrence of Various Cancers (2nd Edition))
24 pages, 4970 KiB  
Article
A Perturbation and Symmetry-Based Analysis of Mobile Malware Dynamics in Smartphone Networks
by Mohammad Ababneh, Yousef AbuHour and Ammar Elhassan
Appl. Sci. 2025, 15(14), 8086; https://doi.org/10.3390/app15148086 - 21 Jul 2025
Viewed by 74
Abstract
In this paper, we present a mathematical model, Msiqr, to analyze the dynamics of mobile malware propagation in smartphone networks. The model segments the mobile device population into susceptible, exposed, infected, quarantined, and recovered compartments, integrating critical control [...] Read more.
In this paper, we present a mathematical model, Msiqr, to analyze the dynamics of mobile malware propagation in smartphone networks. The model segments the mobile device population into susceptible, exposed, infected, quarantined, and recovered compartments, integrating critical control parameters such as infection and quarantine rates. The analytical results include the derivation of the basic reproduction number, R0, along with equilibrium and stability analyses that provide insights into long-term system behavior. A focused scenario analysis compares the baseline dynamics with a more aggressive malware variant and a more effective quarantine response. The results show that increased infectivity sharply escalates the peak of infection, while enhanced quarantine measures effectively suppress it. This highlights the importance of prompt containment strategies even under more virulent conditions. The sensitivity analysis identifies the infection rate as the most influential parameter driving peak infection, while the quarantine rate exerts the most significant dampening effect. Monte Carlo simulations of parameter uncertainty reveal a consistently high epidemic potential across varied conditions. A parameter sweep across the infection–quarantine space further maps out the conditions under which malware outbreaks can be mitigated or prevented. Overall, the model demonstrates that mobile malware poses sustained epidemic risk under uncertainty, but effective control parameters—particularly quarantine—can drastically alter outbreak trajectories. Full article
Show Figures

Figure 1

12 pages, 3174 KiB  
Article
Modeling and Control for an Aerial Work Quadrotor with a Robotic Arm
by Wenwu Zhu, Fanzeng Wu, Haibo Du, Lei Li and Yao Zhang
Actuators 2025, 14(7), 357; https://doi.org/10.3390/act14070357 - 21 Jul 2025
Viewed by 125
Abstract
This paper focuses on the integrated modeling and disturbance rejection of the aerial work quadrotor with a robotic arm. First, to address the issues of model incompleteness and parameter uncertainty commonly encountered in traditional Newton–Euler-based modeling approaches for such a system, the Lagrangian [...] Read more.
This paper focuses on the integrated modeling and disturbance rejection of the aerial work quadrotor with a robotic arm. First, to address the issues of model incompleteness and parameter uncertainty commonly encountered in traditional Newton–Euler-based modeling approaches for such a system, the Lagrangian energy conservation principle is adopted. By treating the quadrotor and robotic arm as a unified system, an integrated dynamic model is developed, which accurately captures the coupled dynamics between the aerial platform and the manipulator. The innovative approach fills the gap in existing research where model expressions are incomplete and parameters are ambiguous. Next, to reduce the adverse effects of the robotic arm’s motion on the entire system stability, a finite-time disturbance observer and a fast non-singular terminal sliding mode controller (FNTSMC) are designed. Lyapunov theory is used to prove the finite-time stability of the closed-loop system. It breaks through the limitations of the traditional Lipschitz framework and, for the first time at both the theoretical and methodological levels, achieves finite-time convergence control for the aerial work quadrotor with a robotic arm system. Finally, comparative simulations with the integral sliding mode controller (ISMC), sliding mode controller (SMC), and PID controller demonstrate that the proposed algorithm reduces the regulation time by more than 45% compared to ISMC and SMC, and decreases the overshoot by at least 68% compared to the PID controller, which improves the convergence performance and disturbance rejection capability of the closed-loop system. Full article
(This article belongs to the Special Issue Advanced Learning and Intelligent Control Algorithms for Robots)
Show Figures

Figure 1

Back to TopTop