Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,307)

Search Parameters:
Keywords = ultraviolet test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1726 KiB  
Article
The Effects of Artificial UV-B Provision on Positional Sleeping Behaviour and Vitamin D3 Metabolites of Captive Aye-Ayes (Daubentonia madagascariensis)
by Danielle Walker, Paige Bwye and Sarah Richdon
J. Zool. Bot. Gard. 2025, 6(3), 39; https://doi.org/10.3390/jzbg6030039 - 6 Aug 2025
Abstract
Zoological environments aim to promote natural behaviours and optimal welfare conditions. Over the past decade, research on the use of artificial ultraviolet-B (UV-B) exposure has improved vitamin D3 levels and reduced incidences of metabolic bone disease in diurnal primates; however, this has [...] Read more.
Zoological environments aim to promote natural behaviours and optimal welfare conditions. Over the past decade, research on the use of artificial ultraviolet-B (UV-B) exposure has improved vitamin D3 levels and reduced incidences of metabolic bone disease in diurnal primates; however, this has not been investigated in nocturnals. Aye-ayes (Daubentonia madagascariensis), nocturnal lemurs often housed indoors in zoos with little to no exposure to natural sunlight, have been reported to have low vitamin D3 levels. This study aims to investigate the impacts of artificial UV-B as a supplemental healthcare strategy for aye-ayes, examining its influences on vitamin D3 levels and positional sleeping behaviour. The 25-hydroxy-vitamin D3 (25OHD3) blood levels were tested before and after exposure to different levels of artificial UV-B and heat sources. Statistical analysis showed no correlation between UV-B and 25OHD3 at group parameter levels. However, one individual showed a positive correlation. Sleeping position duration analysis showed a potential basking behaviour with the use of increased ear exposure and other thermoregulatory responses. Despite representing 8.06% of the European captive aye-aye population, these findings highlight the need for further research on vitamin D3 parameters and responses to UV-B to optimise captive conditions and support the species’ long-term health. Full article
Show Figures

Figure 1

23 pages, 4361 KiB  
Article
Novel Visible Light-Driven Ho2InSbO7/Ag3PO4 Photocatalyst for Efficient Oxytetracycline Contaminant Degradation
by Jingfei Luan and Tiannan Zhao
Molecules 2025, 30(15), 3289; https://doi.org/10.3390/molecules30153289 - 6 Aug 2025
Abstract
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by [...] Read more.
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by a series of techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. A comprehensive array of analytical techniques, including ultraviolet-visible diffuse reflectance absorption spectra, photoluminescence spectroscopy, time-resolved photoluminescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, electron paramagnetic resonance, and ultraviolet photoelectron spectroscopy, was employed to systematically investigate the optical, chemical, and photoelectronic properties of the materials. Using oxytetracycline (OTC), a representative tetracycline antibiotic, as the target substrate, the photocatalytic activity of the HAO composite was assessed under visible light irradiation. Comparative analyses demonstrated that the photocatalytic degradation capability of the HAO composite surpassed those of its individual components. Notably, during the degradation process, the application of the HAO composite resulted in an impressive removal efficiency of 99.89% for OTC within a span of 95 min, along with a total organic carbon mineralization rate of 98.35%. This outstanding photocatalytic performance could be ascribed to the efficient Z-scheme electron-hole separation system occurring between Ho2InSbO7 and Ag3PO4. Moreover, the adaptability and stability of the HAO heterojunction were thoroughly validated. Through experiments involving the capture of reactive species and electron paramagnetic resonance analysis, the active species generated by HAO were identified as hydroxyl radicals (•OH), superoxide anions (•O2), and holes (h+). This identification provides valuable insights into the mechanisms and pathways associated with the photodegradation of OTC. In conclusion, this research not only elucidates the potential of HAO as an efficient Z-scheme heterojunction photocatalyst but also marks a significant contribution to the advancement of sustainable remediation strategies for OTC contamination. Full article
(This article belongs to the Special Issue Nanomaterials in Photochemical Devices: Advances and Applications)
Show Figures

Figure 1

16 pages, 2239 KiB  
Article
Synthesis of Silver Nanoparticles from Bitter Melon (Momordica charantia) Extracts and Their Antibacterial Effect
by Nanh Lovanh, Getahun Agga, Graciela Ruiz-Aguilar, John Loughrin and Karamat Sistani
Microorganisms 2025, 13(8), 1809; https://doi.org/10.3390/microorganisms13081809 - 2 Aug 2025
Viewed by 192
Abstract
We utilized silver nanoparticles synthesized from bitter melon (Momordica charantia) extracts for testing against the common agricultural pathogen Escherichia coli. The synthesized nanoparticles were characterized and confirmed as silver nanoparticles by using ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and scanning [...] Read more.
We utilized silver nanoparticles synthesized from bitter melon (Momordica charantia) extracts for testing against the common agricultural pathogen Escherichia coli. The synthesized nanoparticles were characterized and confirmed as silver nanoparticles by using ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy analysis. The results show that AgNPs were effective against E. coli ATCC25922 strain. The AgNPs had an increased potency against the E. coli strain in optimum culture media compared to silver ions alone. AgNP-treated cultures achieved a kill percentage of 100% in less incubation time and at a lower dosage than those treated with silver ions alone. The powder form of the AgNPs also showed remarkable potency against E. coli in solution. Based on these findings, the current method is suitable for the industrial-scale production of AgNPs from a commonly available edible plant with known medicinal benefits in the fight against foodborne pathogens, including antibiotic-resistant strains. Full article
Show Figures

Figure 1

15 pages, 6769 KiB  
Article
Pine Cones in Plantations as Refuge and Substrate of Lichens and Bryophytes in the Tropical Andes
by Ángel Benítez
Diversity 2025, 17(8), 548; https://doi.org/10.3390/d17080548 - 1 Aug 2025
Viewed by 176
Abstract
Deforestation driven by plantations, such as Pinus patula Schiede ex Schltdl. et Cham., is a major cause of biodiversity and functional loss in tropical ecosystems. We assessed the diversity and composition of lichens and bryophytes in four size categories of pine cones, small [...] Read more.
Deforestation driven by plantations, such as Pinus patula Schiede ex Schltdl. et Cham., is a major cause of biodiversity and functional loss in tropical ecosystems. We assessed the diversity and composition of lichens and bryophytes in four size categories of pine cones, small (3–5 cm), medium (5.1–8 cm), large (8.1–10 cm), and very large (10.1–13 cm), with a total of 150 pine cones examined, where the occurrence and cover of lichen and bryophyte species were recorded. Identification keys based on morpho-anatomical features were used to identify lichens and bryophytes. In addition, for lichens, secondary metabolites were tested using spot reactions with potassium hydroxide, commercial bleach, and Lugol’s solution, and by examining the specimens under ultraviolet light. To evaluate the effect of pine cone size on species richness, the Kruskal–Wallis test was conducted, and species composition among cones sizes was compared using multivariate analysis. A total of 48 taxa were recorded on cones, including 41 lichens and 7 bryophytes. A total of 39 species were found on very large cones, 37 species on large cones, 35 species on medium cones, and 24 species on small cones. This is comparable to the diversity found in epiphytic communities of pine plantations. Species composition was influenced by pine cone size, differing from small in comparison with very large ones. The PERMANOVA analyses revealed that lichen and bryophyte composition varied significantly among the pine cone categories, explaining 21% of the variance. Very large cones with specific characteristics harbored different communities than those on small pine cones. The presence of lichen and bryophyte species on the pine cones from managed Ecuadorian P. patula plantations may serve as refugia for the conservation of biodiversity. Pine cones and their scales (which range from 102 to 210 per cone) may facilitate colonization of new areas by dispersal agents such as birds and rodents. The scales often harbor lichen and bryophyte propagules as well as intact thalli, which can be effectively dispersed, when the cones are moved. The prolonged presence of pine cones in the environment further enhances their role as possible dispersal substrates over extended periods. To our knowledge, this is the first study worldwide to examine pine cones as substrates for lichens and bryophytes, providing novel insights into their potential role as microhabitats within P. patula plantations and forest landscapes across both temperate and tropical zones. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

16 pages, 4320 KiB  
Article
Effect of Thermo-Oxidative, Ultraviolet and Ozone Aging on Mechanical Property Degradation of Carbon Black-Filled Rubber Materials
by Bo Zhou, Wensong Liu, Youjian Huang, Jun Luo and Boyuan Yin
Buildings 2025, 15(15), 2705; https://doi.org/10.3390/buildings15152705 - 31 Jul 2025
Viewed by 156
Abstract
Carbon black (CB)-filled rubber materials are extensively used in civil engineering seismic isolation. However, CB-filled rubber materials often experience mechanical property degradation because of exposure to environmental factors. To better understand the influences of thermo-oxidative, ultraviolet and ozone aging on mechanical property degradation, [...] Read more.
Carbon black (CB)-filled rubber materials are extensively used in civil engineering seismic isolation. However, CB-filled rubber materials often experience mechanical property degradation because of exposure to environmental factors. To better understand the influences of thermo-oxidative, ultraviolet and ozone aging on mechanical property degradation, uniaxial tension and dynamic mechanical analysis (DMA) tests were carried out. In the uniaxial tension tests, the stress strength and elongation decreased with an increase in aging time. In the DMA tests, the effective temperature ranges decreased by 3.4–14%. And the neo-Hookean model was applied to simulate the hyperelasticity of CB-filled rubber materials. The relationship between the elastic modulus (a constant of the neo-Hookean model) and aging time was established, which provided a qualitative relationship between crosslink density and aging time. In addition, the dispersion of the CB aggregate was investigated using an atomic force microscope (AFM). The results indicated that the mechanical property degradation might be closely related to the aggregate diameter. This paper establishes a bridge between the microstructure and mechanical properties of CB-filled rubber materials, which can improve the understanding of the mechanical property degradation mechanisms of rubber materials and the fabrication of rubber components. Full article
(This article belongs to the Special Issue Studies on the Durability of Building Composite Materials)
Show Figures

Figure 1

15 pages, 2263 KiB  
Article
Comparison of the Trueness of Complete Dentures Fabricated Using Liquid Crystal Display 3D Printing According to Build Angle and Natural Light Exposure
by Haeri Kim, KeunBaDa Son, So-Yeun Kim and Kyu-Bok Lee
J. Funct. Biomater. 2025, 16(8), 277; https://doi.org/10.3390/jfb16080277 - 30 Jul 2025
Viewed by 305
Abstract
The dimensional accuracy of the intaglio surface of complete dentures fabricated using liquid crystal display (LCD) three-dimensional (3D) printing might be influenced by the build angle and post-processing storage conditions. This study evaluated the effect of build angle and natural light exposure duration [...] Read more.
The dimensional accuracy of the intaglio surface of complete dentures fabricated using liquid crystal display (LCD) three-dimensional (3D) printing might be influenced by the build angle and post-processing storage conditions. This study evaluated the effect of build angle and natural light exposure duration on the intaglio surface trueness of maxillary complete denture bases. Standardized denture base designs (2 mm uniform thickness) were fabricated using an LCD 3D printer (Lilivis Print; Huvitz, Seoul, Republic of Korea) at build angles of 0°, 45°, and 90° (n = 7 per group). All specimens were printed using the same photopolymer resin (Tera Harz Denture; Graphy, Seoul, Republic of Korea) and identical printing parameters, followed by ultrasonic cleaning and ultraviolet post-curing. Specimens were stored under controlled light-emitting diode lighting and exposed to natural light (400–800 lux) for 0, 14, or 30 days. The intaglio surfaces were scanned and superimposed on the original design data, following the International Organization for Standardization 12836. Quantitative assessment included root mean square deviation, mean deviation, and tolerance percentage. Statistical analyses were performed using one-way analysis of variance and paired t-tests (α = 0.05). Build angle and light exposure duration significantly affected surface trueness (p < 0.05). The 90° build angle group exhibited the highest accuracy and dimensional stability, while the 0° group showed the greatest deviations (p < 0.05). These findings underscore the importance of optimizing build orientation and storage conditions in denture 3D printing. Full article
(This article belongs to the Special Issue Bio-Additive Manufacturing in Materials Science)
Show Figures

Figure 1

17 pages, 3206 KiB  
Article
Inverse Punicines: Isomers of Punicine and Their Application in LiAlO2, Melilite and CaSiO3 Separation
by Maximilian H. Fischer, Ali Zgheib, Iliass El Hraoui, Alena Schnickmann, Thomas Schirmer, Gunnar Jeschke and Andreas Schmidt
Separations 2025, 12(8), 202; https://doi.org/10.3390/separations12080202 - 30 Jul 2025
Viewed by 147
Abstract
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. [...] Read more.
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. These amphoteric molecules were synthesized via a straightforward four-step route and structurally tuned for hydrophobization by alkylation. Their performance as collectors was evaluated in microflotation experiments of lithium aluminate (LiAlO2) and silicate matrix minerals such as melilite and calcium silicate. Characterization techniques including ultraviolet-visible (UV-Vis), nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy as well as contact angle, zeta potential (ζ potential) and microflotation experiments revealed strong pH- and structure-dependent interactions with mineral surfaces. Notably, N-alkylated inverse Punicine derivatives showed high flotation yields for LiAlO2 at pH of 11, with a derivative possessing a dodecyl group attached to the nitrogen as collector achieving up to 86% recovery (collector conc. 0.06 mmol/L). Preliminary separation tests showed Li upgrading from 5.27% to 6.95%. Radical formation and light-response behavior were confirmed by ESR and flotation tests under different illumination conditions. These results demonstrate the potential of inverse Punicines as tunable, sustainable flotation reagents for advanced lithium recycling from complex slag systems. Full article
(This article belongs to the Special Issue Application of Green Flotation Technology in Mineral Processing)
Show Figures

Graphical abstract

19 pages, 4270 KiB  
Article
Viral Inactivation by Light-Emitting Diodes: Action Spectra Reveal Genomic Damage as the Primary Mechanism
by Kazuaki Mawatari, Yasuko Kadomura-Ishikawa, Takahiro Emoto, Yushi Onoda, Kai Ishida, Sae Toda, Takashi Uebanso, Toshihiko Aizawa, Shigeharu Yamauchi, Yasuo Fujikawa, Tomotake Tanaka, Xing Li, Eduardo Suarez-Lopez, Richard J. Kuhn, Ernest R. Blatchley III and Akira Takahashi
Viruses 2025, 17(8), 1065; https://doi.org/10.3390/v17081065 - 30 Jul 2025
Viewed by 288
Abstract
Irradiation with ultraviolet light-emitting diodes (UV-LEDs) represents a promising method for viral inactivation, but a detailed understanding of the wavelength-dependent action spectra remains limited, particularly across different viral components. In this study, we established standardized UV action spectra for infectivity reduction in pathogenic [...] Read more.
Irradiation with ultraviolet light-emitting diodes (UV-LEDs) represents a promising method for viral inactivation, but a detailed understanding of the wavelength-dependent action spectra remains limited, particularly across different viral components. In this study, we established standardized UV action spectra for infectivity reduction in pathogenic viruses using a system equipped with interchangeable LEDs at 13 different peak wavelengths (250–365 nm). The reduction in viral infectivity induced by UV-LED exposure was strongly related to viral genome damage, whereas no significant degradation of viral structural proteins was detected. Peak virucidal efficiency was observed at 267–270 nm across all tested viruses, representing a slight shift from the traditionally expected 260 nm nucleic acid absorption peak. Enveloped RNA viruses, including influenza A virus, respiratory syncytial virus, and coronavirus, exhibited greater UV sensitivity than nonenveloped viruses such as feline calicivirus and adenovirus. These observations indicate that structural characteristics, such as the presence of an envelope and genome organization, influence UV susceptibility. The wavelength-specific action spectra established in this study provide critical data for optimizing UV-LED disinfection systems to achieve efficient viral inactivation while minimizing energy consumption in healthcare, food safety, and environmental sanitation. Full article
Show Figures

Graphical abstract

9 pages, 211 KiB  
Communication
Prevention Works Best in Pairs: An Observational Study on Connubial Melanoma
by Alessandra Iorio, Maria Concetta Fargnoli, Francesca Sperati, Pasquale Frascione and Paola De Simone
Diagnostics 2025, 15(15), 1869; https://doi.org/10.3390/diagnostics15151869 - 25 Jul 2025
Viewed by 204
Abstract
Background: Connubial melanoma, the occurrence of melanoma in non-consanguineous spouses, is rarely described in the literature. This study aimed to evaluate the prevalence of shared risk factors, preventive behaviors, and the influence of couple dynamics on the early diagnosis of cutaneous melanoma (CM). [...] Read more.
Background: Connubial melanoma, the occurrence of melanoma in non-consanguineous spouses, is rarely described in the literature. This study aimed to evaluate the prevalence of shared risk factors, preventive behaviors, and the influence of couple dynamics on the early diagnosis of cutaneous melanoma (CM). Methods: We conducted a retrospective observational study at the San Gallicano Dermatological Institute IRCCS, Rome, enrolling 52 heterosexual couples diagnosed with CM between 2010 and 2023. Clinical and anamnestic data, including phototype, history of sun exposure, use of tanning devices, and reason for dermatological evaluation, were collected. Dermatological assessments included dermoscopy, total body photography, and histological examination of excised lesions. Statistical analyses were performed using chi-square and Student’s t-tests. Results: Women reported significantly higher use of artificial ultraviolet sources (51.9% vs. 19.2%, p < 0.001) and more frequent histories of sunburn. Phototype II was associated with higher use of tanning devices and a greater prevalence of sunburns. Although the CM stage did not significantly differ between sexes, husbands exhibited a greater Breslow thickness. Melanoma localization differed by sex, with lower limbs more often affected in women and the trunk in men (p < 0.001). In 86.5% of cases, wives initiated their husband’s dermatological evaluation, leading to earlier diagnosis. Conclusions: Despite shared environmental exposures, men and women differ in preventive behaviors and risk profiles. Women play a crucial role in promoting early detection among couples. Couple-based preventive strategies may be instrumental in improving early melanoma diagnosis and outcomes. Full article
(This article belongs to the Special Issue New Developments in the Diagnosis of Skin Tumors)
16 pages, 4296 KiB  
Article
Enhanced Photocathodic Protection Performance of TiO2/NiCo2S4 Composites for 304 Stainless Steel
by Honggang Liu, Hong Li, Xuan Zhang, Baizhao Xing, Zhuangzhuang Sun and Yanhui Li
Coatings 2025, 15(8), 874; https://doi.org/10.3390/coatings15080874 - 25 Jul 2025
Viewed by 324
Abstract
To address the corrosion of 304 stainless steel in marine environments, TiO2/NiCo2S4 composite photoanodes were fabricated via anodic oxidation and hydrothermal methods. X-ray diffraction, scanning electron microscope, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy analyses indicated the growth [...] Read more.
To address the corrosion of 304 stainless steel in marine environments, TiO2/NiCo2S4 composite photoanodes were fabricated via anodic oxidation and hydrothermal methods. X-ray diffraction, scanning electron microscope, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy analyses indicated the growth of hexagonal NiCo2S4 particles on anatase TiO2 nanotube arrays, forming a type-II heterojunction. Spectroscopy of ultraviolet-visible diffuse reflectance absorption showed that NiCo2S4 extended TiO2’s light absorption into the visible region. Electrochemical tests revealed that under visible light, the composite photoanode decreased the corrosion potential of 304ss to −0.7 V vs. SCE and reduced charge transfer resistance by 20% compared to pure TiO2. The enhanced performance stemmed from efficient electron-hole separation and transport enabled by the type-II heterojunction. Cyclic voltammetry tests indicated the composite’s electrochemical active surface area increased 1.8-fold, demonstrating superior catalytic activity. In conclusion, the TiO2/NiCo2S4 composite photoanode offers an effective approach for marine corrosion protection of 304ss. Full article
Show Figures

Figure 1

15 pages, 2230 KiB  
Article
Exploring the Rheological Properties of 3D Bioprinted Alginate-Based Hydrogels for Tissue Engineering
by R. Palacín-García, L. Goñi and T. Gómez-del Río
Biomimetics 2025, 10(8), 491; https://doi.org/10.3390/biomimetics10080491 - 24 Jul 2025
Viewed by 439
Abstract
The development of alginate/polyacrylamide hydrogels for various biomedical applications has attracted significant interest, particularly due to their potential use in wound healing and tissue engineering. This study explores the fabrication of these hydrogels via 3D bioprinting with ultraviolet light curing, focusing on how [...] Read more.
The development of alginate/polyacrylamide hydrogels for various biomedical applications has attracted significant interest, particularly due to their potential use in wound healing and tissue engineering. This study explores the fabrication of these hydrogels via 3D bioprinting with ultraviolet light curing, focusing on how the alginate concentration and curing speed impact their mechanical properties. Rheological testing was employed to examine the viscoelastic behavior of alginate/polyacrylamide hydrogels manufactured using a 3D bioprinting technique. The relaxation behavior and dynamic response of these hydrogels were analyzed under torsional stress, with relaxation curves fitted using a two-term Prony series. Fourier Transform Infrared (FTIR) spectroscopy was also employed to assess biocompatibility and the conversion of acrylamide. This study successfully demonstrated the printability of alginate/polyacrylamide hydrogels with varying alginate contents. The rheological results indicated that 3D bioprinted hydrogels exhibited significantly high stiffness, viscoelasticity, and long relaxation times. The curing speed had a minimal impact on these properties. Additionally, the FTIR analysis confirmed the complete conversion of polyacrylamide, ensuring no harmful effects in biological applications. The study concludes that 3D bioprinting significantly enhances the mechanical properties of alginate/polyacrylamide hydrogels, with the alginate concentration playing a key role in the shear modulus. These hydrogels show promising potential for biocompatible applications such as wound healing dressings. Full article
(This article belongs to the Special Issue Biological and Bioinspired Materials and Structures: 2nd Edition)
Show Figures

Figure 1

15 pages, 7165 KiB  
Article
Structural and Performance Studies of Lanthanum–Nitrogen Co-Doped Titanium Dioxide Thin Films Under UV Aging
by Pengcheng Cao, Li Zhang and Yanbo Yuan
Micromachines 2025, 16(8), 842; https://doi.org/10.3390/mi16080842 - 23 Jul 2025
Viewed by 400
Abstract
In this study, lanthanum–nitrogen co-doped titanium dioxide (La-N-TiO2) thin films were fabricated using Ion Beam Assisted Deposition (IBAD) and subjected to accelerated ultraviolet (UV) aging experiments to systematically investigate the impact of co-doping on the films’ resistance to UV aging. X-ray [...] Read more.
In this study, lanthanum–nitrogen co-doped titanium dioxide (La-N-TiO2) thin films were fabricated using Ion Beam Assisted Deposition (IBAD) and subjected to accelerated ultraviolet (UV) aging experiments to systematically investigate the impact of co-doping on the films’ resistance to UV aging. X-ray diffraction (XRD) analysis revealed that La-N co-doping inhibits the phase transition from anatase to rutile, significantly enhancing the phase stability of the films. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) characterizations indicated that co-doping increased the density and surface uniformity of the films, thereby delaying the expansion of cracks and increase in roughness induced by UV exposure. Energy-dispersive X-ray spectroscopy (EDS) results confirmed the successful incorporation of La and N into the TiO2 lattice, enhancing the chemical stability of the films. Contact angle tests demonstrated that La-N co-doping markedly improved the hydrophobicity of the films, inhibiting the rapid decay of hydrophilicity during UV aging. After three years of UV aging, the co-doped films maintained high structural integrity and photocatalytic performance, exhibiting excellent resistance to UV aging. These findings offer new insights into the long-term stability of photovoltaic self-cleaning materials. Full article
Show Figures

Figure 1

14 pages, 7022 KiB  
Article
Sensitive and Facile Detection of Aloin via N,F-CD-Coated Test Strips Coupled with a Miniaturized Fluorimeter
by Guo Wei, Chuanliang Wang, Rui Wang, Peng Zhang, Xuhui Geng, Jinhua Li, Abbas Ostovan, Lingxin Chen and Zhihua Song
Biomolecules 2025, 15(7), 1052; https://doi.org/10.3390/biom15071052 - 21 Jul 2025
Viewed by 294
Abstract
Aloin, a kind of active phenolic component, is sourced from Aloe vera. Recently, the determination of aloin has received enormous attention, owing to its positive performance (including anti-tumor, antibacterial, detoxification, liver protection, anti-stomach damage, and skin protection activities) and painful side effects [...] Read more.
Aloin, a kind of active phenolic component, is sourced from Aloe vera. Recently, the determination of aloin has received enormous attention, owing to its positive performance (including anti-tumor, antibacterial, detoxification, liver protection, anti-stomach damage, and skin protection activities) and painful side effects (increased carcinogenicity caused by excessive use of aloin) impacting human health. This investigation was inspired by the good fluorescence properties of carbon dots (CDs); CD-based sensors have aroused a great deal of interest due to their excellent sensitivity and selectivity. Thus, it is of great significance to develop novel CD-based sensors for aloin determination. Herein, N,F-CDs were designed and synthesized through a convenient hydrothermal strategy; the synthesized N,F-CDs possessed good fluorescence performance and a small particle size (near 4.3 nm), which demonstrated the successful preparation of N,F-CDs. The resulting N,F-CDs possessed a large Stokes shift and could emit a highly stable green fluorescence. The fluorescence of the N,F-CDs could be effectively quenched by aloin through the inner filter effect. Furthermore, the synthesis procedure was easy to operate. Finally, the N,F-CD-coated test strips were fabricated and combined with a miniaturized fluorimeter for the fluorescence detection of aloin via the inner filter effect for the first time. The N,F-CD-coated test strips were fabricated and used for the fluorescence sensing of aloin, and the results were compared with a typical ultraviolet (UV) method. The N,F-CD-coated test strips exhibited high recovery (96.9~106.1%) and sensitivity (31.8 nM, n = 3), good selectivity, low sample consumption (1 μL), high speed (5 min), good stability, and anti-interference properties. The results indicate that N,F-CD-coated test strips are applicable for the quantitative determination of aloin in bovine serum, orange juice, and urine samples. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

26 pages, 4992 KiB  
Article
Composites from Recycled HDPE and ZnO Nanopowder with Improved Insulation and Weathering Features for Cable Jacketing Applications
by Alina Ruxandra Caramitu, Magdalena Valentina Lungu, Romeo Cristian Ciobanu, Ioana Ion, Eduard Marius Lungulescu, Gabriela Beatrice Sbarcea, Virgil Emanuel Marinescu, Sebastian Aradoaei, Mihaela Aradoaei and Raducu Machidon
Polymers 2025, 17(14), 1987; https://doi.org/10.3390/polym17141987 - 20 Jul 2025
Viewed by 387
Abstract
In this study, polymer matrix composites based on high-density polyethylene (HDPE) and recycled HDPE (HDPEr) were reinforced with zinc oxide nanoparticles (ZnO NPs). Four formulations (M1-M4) with HDPE/HDPEr/ZnO NP mass ratios of 50/50/0, 48/47/5, 45/45/10, and 43/42/15 were produced via melt injection molding. [...] Read more.
In this study, polymer matrix composites based on high-density polyethylene (HDPE) and recycled HDPE (HDPEr) were reinforced with zinc oxide nanoparticles (ZnO NPs). Four formulations (M1-M4) with HDPE/HDPEr/ZnO NP mass ratios of 50/50/0, 48/47/5, 45/45/10, and 43/42/15 were produced via melt injection molding. Disc-shaped samples (Ø30 ± 0.1 mm × 2 ± 0.1 mm) were evaluated in unaged and aged states (840 h at 100% humidity and 100 °C) using scanning electron microscopy, X-ray diffraction, ultraviolet–visible and Fourier-transform infrared spectroscopy, water absorption, thermal resistance, and mechanical and dielectric testing. Among all composites, M2 showed the best performance, with the highest aging resistance (estimated lifetime of 3891 h in humidity and 2361 h in heat). It also exhibited superior mechanical properties, with the highest indentation hardness, Vickers hardness, and elastic modulus before (0.042 GPa, 3.846 HV, and 0.732 GPa) and after aging under humidity (0.042 GPa, 3.932 HV, 0.706 GPa) and elevated temperature (0.085 GPa, 7.818 HV, 1.871 GPa). Although ZnO NPs slightly reduced electrical resistivity, M2 showed the most stable dielectric properties. In its unaged state, M2 had 22%, 30%, and 3% lower surface resistivity, volume resistivity, and dielectric strength, respectively, than M1 polymer. M2 was identified as the optimal formulation, combining mechanical strength, dielectric stability, and resistance to moisture and heat. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

24 pages, 3928 KiB  
Article
Performance Degradation and Fatigue Life Prediction of Hot Recycled Asphalt Mixture Under the Coupling Effect of Ultraviolet Radiation and Freeze–Thaw Cycle
by Tangxin Xie, Zhongming He, Yuetan Ma, Huanan Yu, Zhichen Wang, Chao Huang, Feiyu Yang and Pengxu Wang
Coatings 2025, 15(7), 849; https://doi.org/10.3390/coatings15070849 - 19 Jul 2025
Viewed by 500
Abstract
In actual service, asphalt pavement is subjected to freeze–thaw cycles and ultraviolet radiation (UV) over the long term, which can easily lead to mixture aging, enhanced brittleness, and structural damage, thereby reducing pavement durability. This study focuses on the influence of freeze–thaw cycles [...] Read more.
In actual service, asphalt pavement is subjected to freeze–thaw cycles and ultraviolet radiation (UV) over the long term, which can easily lead to mixture aging, enhanced brittleness, and structural damage, thereby reducing pavement durability. This study focuses on the influence of freeze–thaw cycles and ultraviolet aging on the performance of recycled asphalt mixtures. Systematic indoor road performance tests were carried out, and a fatigue prediction model was established to explore the comprehensive effects of recycled asphalt pavement (RAP) content, environmental action (ultraviolet radiation + freeze–thaw cycle), and other factors on the performance of recycled asphalt mixtures. The results show that the high-temperature stability of recycled asphalt mixtures decreases with the increase in environmental action days, while higher RAP content contributes to better high-temperature stability. The higher the proportion of old materials, the more significant the environmental impact on the mixture; both the flexural tensile strain and flexural tensile strength decrease with the increase in environmental action time. When the RAP content increased from 30% to 50%, the bending strain continued to decline. With the extension of environmental action days, the decrease in the immersion Marshall residual stability and the freeze–thaw splitting strength became more pronounced. Although the increase in RAP content can improve the forming stability, the residual stability decreases, and the freeze–thaw splitting strength is lower than that before the freeze–thaw. Based on the fatigue test results, a fatigue life prediction model with RAP content and freeze–thaw cycles as independent variables was constructed using the multiple nonlinear regression method. Verification shows that the established prediction model is basically consistent with the change trend of the test data. The research results provide a theoretical basis and optimization strategy for the performance improvement and engineering application of recycled asphalt materials. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

Back to TopTop