Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (636)

Search Parameters:
Keywords = ultra-high-performance liquid chromatography tandem mass spectrometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1929 KiB  
Article
Emerging Contaminants in Coastal Landscape Park, South Baltic Sea Region: Year-Round Monitoring of Treated Wastewater Discharge into Czarna Wda River
by Emilia Bączkowska, Katarzyna Jankowska, Wojciech Artichowicz, Sylwia Fudala-Ksiazek and Małgorzata Szopińska
Resources 2025, 14(8), 123; https://doi.org/10.3390/resources14080123 - 29 Jul 2025
Viewed by 266
Abstract
In response to the European Union’s revised Urban Wastewater Treatment Directive, which mandates enhanced monitoring and advanced treatment of micropollutants, this study was conducted. It took place within the Coastal Landscape Park (CLP), a Natura 2000 protected area in northern Poland. The focus [...] Read more.
In response to the European Union’s revised Urban Wastewater Treatment Directive, which mandates enhanced monitoring and advanced treatment of micropollutants, this study was conducted. It took place within the Coastal Landscape Park (CLP), a Natura 2000 protected area in northern Poland. The focus was on the municipal wastewater treatment plant in Jastrzębia Góra, located in a region exposed to seasonal tourist pressure and discharging effluent into the Czarna Wda River. A total of 90 wastewater samples were collected during five monitoring campaigns (July, September 2021; February, May, July 2022) and analysed for 13 pharmaceuticals and personal care products (PPCPs) using ultra-high-performance liquid chromatography tandem mass spectrometry with electrospray ionisation (UHPLC-ESI-MS/MS). The monitoring included both untreated (UTWW) and treated wastewater (TWW) to assess the PPCP removal efficiency and persistence. The highest concentrations in the treated wastewater were observed for metoprolol (up to 472.9 ng/L), diclofenac (up to 3030 ng/L), trimethoprim (up to 603.6 ng/L) and carbamazepine (up to 2221 ng/L). A risk quotient (RQ) analysis identified diclofenac and LI-CBZ as priority substances for monitoring. Multivariate analyses (PCA, HCA) revealed co-occurrence patterns and seasonal trends. The results underline the need for advanced treatment solutions and targeted monitoring, especially in sensitive coastal catchments with variable micropollutant presence. Full article
Show Figures

Figure 1

21 pages, 1784 KiB  
Article
Toxic Threats from the Fern Pteridium aquilinum: A Multidisciplinary Case Study in Northern Spain
by L. María Sierra, Isabel Feito, Mª Lucía Rodríguez, Ana Velázquez, Alejandra Cué, Jaime San-Juan-Guardado, Marta Martín, Darío López, Alexis E. Peña, Elena Canga, Guillermo Ramos, Juan Majada, José Manuel Alvarez and Helena Fernández
Int. J. Mol. Sci. 2025, 26(15), 7157; https://doi.org/10.3390/ijms26157157 - 24 Jul 2025
Viewed by 242
Abstract
Pteridium aquilinum (bracken fern) poses a global threat to biodiversity and to the health of both animals and humans due to its toxic metabolites and aggressive ecological expansion. In northern Spain, particularly in regions of intensive livestock farming, these risks may be exacerbated, [...] Read more.
Pteridium aquilinum (bracken fern) poses a global threat to biodiversity and to the health of both animals and humans due to its toxic metabolites and aggressive ecological expansion. In northern Spain, particularly in regions of intensive livestock farming, these risks may be exacerbated, calling for urgent assessment and monitoring strategies. In this study, we implemented a multidisciplinary approach to evaluate the toxicological and ecological relevance of P. aquilinum through four key actions: (a) quantification of pterosins A and B in young fronds (croziers) using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS); (b) analysis of in vivo genotoxicity of aqueous extracts using Drosophila melanogaster as a model organism; (c) a large-scale survey of local livestock farmers to assess awareness and perceived impact of bracken; and (d) the development and field application of a drone-based mapping tool to assess the spatial distribution of the species at the regional level. Our results confirm the consistent presence of pterosins A and B in croziers, with concentrations ranging from 0.17 to 2.20 mg/g dry weight for PtrB and 13.39 to 257 µg/g for PtrA. Both metabolite concentrations and genotoxicity levels were found to correlate with latitude and, importantly, with each other. All tested samples exhibited genotoxic activity, with notable differences among them. The farmer survey (n = 212) revealed that only 50% of respondents were aware of the toxic risks posed by bracken, indicating a need for targeted outreach. The drone-assisted mapping approach proved to be a promising tool for identifying bracken-dominated areas and provides a scalable foundation for future ecological monitoring and land management strategies. Altogether, our findings emphasize that P. aquilinum is not merely a local concern but a globally relevant toxic species whose monitoring and control demand coordinated scientific and policy-based efforts. Full article
(This article belongs to the Special Issue The Transcendental World of Plant Toxic Compounds)
Show Figures

Figure 1

20 pages, 8392 KiB  
Article
Annual Dynamic Changes in Lignin Synthesis Metabolites in Catalpa bungei ‘Jinsi’
by Chenxia Song, Yan Wang, Tao Sun, Yi Han, Yanjuan Mu, Xinyue Ji, Shuxin Zhang, Yanguo Sun, Fusheng Wu, Tao Liu, Ningning Li, Qingjun Han, Boqiang Tong, Xinghui Lu and Yizeng Lu
Metabolites 2025, 15(8), 493; https://doi.org/10.3390/metabo15080493 - 22 Jul 2025
Viewed by 326
Abstract
Background: Catalpa bungei ‘Jinsi’ has excellent wood properties and golden texture, which is widely used in producing furniture and crafts. The lignin content and structural composition often determine the use and value of wood. Hence, investigating the characteristics of the annual dynamics [...] Read more.
Background: Catalpa bungei ‘Jinsi’ has excellent wood properties and golden texture, which is widely used in producing furniture and crafts. The lignin content and structural composition often determine the use and value of wood. Hence, investigating the characteristics of the annual dynamics of lignin anabolic metabolites in C. bungei ‘Jinsi’ and analyzing their synthesis pathways are particularly important. Methods: We carried out targeted metabolomics analysis of lignin synthesis metabolites using ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) on the xylem samples of C. bungei ‘Jinsi’ in February, April, July, October 2022, and January 2023. Results: A total of 10 lignin synthesis–related metabolites were detected: L-phenylalanine, cinnamic acid, p-coumaraldehyde, sinapic acid, p-coumaric acid, coniferaldehyde, ferulic acid, sinapaldehyde, caffeic acid, and sinapyl alcohol (annual total content from high to low). These metabolites were mainly annotated to the synthesis of secondary metabolites and phenylpropane biosynthesis. The annual total content of the 10 metabolites showed the tendency of “decreasing, then increasing, and then decreasing”. Conclusions: C. bungei ‘Jinsi’ is a typical G/S-lignin tree species, and the synthesis of G-lignin occurs earlier than that of S-lignin. The total metabolite content decreased rapidly, and the lignin anabolism process was active from April to July; the metabolites were accumulated, and the lignin anabolism process slowed down from July to October; the total metabolite content remained basically unchanged, and lignin synthesis slowed down or stagnated from October to January of the following year. This reveals the annual dynamic pattern of lignin biosynthesis, which contributes to improving the wood quality and yield of C. bungei ‘Jinsi’ and provides a theoretical basis for its targeted breeding. Full article
(This article belongs to the Special Issue Phenological Regulation of Secondary Metabolism)
Show Figures

Figure 1

23 pages, 10386 KiB  
Article
Hair Metabolomic Profiling of Diseased Forest Musk Deer (Moschus berezovskii) Using Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry (UHPLC-MS/MS)
by Lina Yi, Han Jiang, Yajun Li, Zongtao Xu, Haolin Zhang and Defu Hu
Animals 2025, 15(14), 2155; https://doi.org/10.3390/ani15142155 - 21 Jul 2025
Viewed by 447
Abstract
Hair, as a non-invasive biospecimen, retains metabolic deposits from sebaceous glands and capillaries, reflecting substances from the peripheral circulation, and provides valuable biochemical information linked to phenotypes, yet its application in animal disease research remains limited. This work applied ultra-high-performance liquid chromatography–tandem mass [...] Read more.
Hair, as a non-invasive biospecimen, retains metabolic deposits from sebaceous glands and capillaries, reflecting substances from the peripheral circulation, and provides valuable biochemical information linked to phenotypes, yet its application in animal disease research remains limited. This work applied ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) to compare the hair metabolomic characteristics of healthy forest musk deer (FMD, Moschus berezovskii) and those diagnosed with hemorrhagic pneumonia (HP), phytobezoar disease (PD), and abscess disease (AD). A total of 2119 metabolites were identified in the FMD hair samples, comprising 1084 metabolites in positive ion mode and 1035 metabolites in negative ion mode. Differential compounds analysis was conducted utilizing the orthogonal partial least squares–discriminant analysis (OPLS-DA) model. In comparison to the healthy control group, the HP group displayed 85 upregulated and 92 downregulated metabolites, the PD group presented 124 upregulated and 106 downregulated metabolites, and the AD group exhibited 63 upregulated and 62 downregulated metabolites. Functional annotation using the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that the differential metabolites exhibited significant enrichment in pathways associated with cancer, parasitism, energy metabolism, and stress. Receiver operating characteristic (ROC) analysis revealed that both the individual and combined panels of differential metabolites exhibited area under the curve (AUC) values exceeding 0.7, demonstrating good sample discrimination capability. This research indicates that hair metabolomics can yield diverse biochemical insights and facilitate the development of non-invasive early diagnostic techniques for diseases in captive FMD. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

15 pages, 1629 KiB  
Article
Exploring the Proteomic Landscape of Cochlear Implant Trauma: An iTRAQ-Based Quantitative Analysis Utilizing an Ex Vivo Model
by Jake Langlie, Rahul Mittal, David H. Elisha, Jaimee Cooper, Hannah Marwede, Julian Purrinos, Maria-Pia Tuset, Keelin McKenna, Max Zalta, Jeenu Mittal and Adrien A. Eshraghi
J. Clin. Med. 2025, 14(14), 5115; https://doi.org/10.3390/jcm14145115 - 18 Jul 2025
Viewed by 342
Abstract
Background: Cochlear implantation is widely used to provide auditory rehabilitation to individuals with severe-to-profound sensorineural hearing loss. However, electrode insertion during cochlear implantation leads to inner ear trauma, damage to sensory structures, and consequently, loss of residual hearing. There is very limited information [...] Read more.
Background: Cochlear implantation is widely used to provide auditory rehabilitation to individuals with severe-to-profound sensorineural hearing loss. However, electrode insertion during cochlear implantation leads to inner ear trauma, damage to sensory structures, and consequently, loss of residual hearing. There is very limited information regarding the target proteins involved in electrode insertion trauma (EIT) following cochlear implantation. Methods: The aim of our study was to identify target proteins and host molecular pathways involved in cochlear damage following EIT utilizing the iTRAQ™ (isobaric tags for relative and absolute quantification) technique using our ex vivo model. The organ of Corti (OC) explants were dissected from postnatal day 3 rats and subjected to EIT or left untreated (control). The proteins were extracted, labelled, and subjected to ultra-high performance liquid chromatography–tandem mass spectrometry. Results: We identified distinct molecular pathways involved in EIT-induced cochlear damage. Confocal microscopy confirmed the expression of these identified proteins in OC explants subjected to EIT. By separating the apical, middle, and basal cochlear turns, we deciphered a topographic array of host molecular pathways that extend from the base to the apex of the cochlea, which are activated post-trauma following cochlear implantation. Conclusions: The identification of target proteins involved in cochlear damage will provide novel therapeutic targets for the development of effective treatment modalities for the preservation of residual hearing in implanted individuals. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

46 pages, 3177 KiB  
Review
Recent Advancements in Lateral Flow Assays for Food Mycotoxin Detection: A Review of Nanoparticle-Based Methods and Innovations
by Gayathree Thenuwara, Perveen Akhtar, Bilal Javed, Baljit Singh, Hugh J. Byrne and Furong Tian
Toxins 2025, 17(7), 348; https://doi.org/10.3390/toxins17070348 - 11 Jul 2025
Viewed by 666
Abstract
Mycotoxins are responsible for a multitude of diseases in both humans and animals, resulting in significant medical and economic burdens worldwide. Conventional detection methods, such as enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS), are highly effective, [...] Read more.
Mycotoxins are responsible for a multitude of diseases in both humans and animals, resulting in significant medical and economic burdens worldwide. Conventional detection methods, such as enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS), are highly effective, but they are generally confined to laboratory settings. Consequently, there is a growing demand for point-of-care testing (POCT) solutions that are rapid, sensitive, portable, and cost-effective. Lateral flow assays (LFAs) are a pivotal technology in POCT due to their simplicity, rapidity, and ease of use. This review synthesizes data from 78 peer-reviewed studies published between 2015 and 2024, evaluating advances in nanoparticle-based LFAs for detection of singular or multiplex mycotoxin types. Gold nanoparticles (AuNPs) remain the most widely used, due to their favorable optical and surface chemistry; however, significant progress has also been made with silver nanoparticles (AgNPs), magnetic nanoparticles, quantum dots (QDs), nanozymes, and hybrid nanostructures. The integration of multifunctional nanomaterials has enhanced assay sensitivity, specificity, and operational usability, with innovations including smartphone-based readers, signal amplification strategies, and supplementary technologies such as surface-enhanced Raman spectroscopy (SERS). While most singular LFAs achieved moderate sensitivity (0.001–1 ng/mL), only 6% reached ultra-sensitive detection (<0.001 ng/mL), and no significant improvement was evident over time (ρ = −0.162, p = 0.261). In contrast, multiplex assays demonstrated clear performance gains post-2022 (ρ = −0.357, p = 0.0008), largely driven by system-level optimization and advanced nanomaterials. Importantly, the type of sample matrix (e.g., cereals, dairy, feed) did not significantly influence the analytical sensitivity of singular or multiplex lateral LFAs (Kruskal–Wallis p > 0.05), confirming the matrix-independence of these optimized platforms. While analytical challenges remain for complex targets like fumonisins and deoxynivalenol (DON), ongoing innovations in signal amplification, biorecognition chemistry, and assay standardization are driving LFAs toward becoming reliable, ultra-sensitive, and field-deployable platforms for high-throughput mycotoxin screening in global food safety surveillance. Full article
Show Figures

Graphical abstract

22 pages, 3291 KiB  
Article
Matrix Interference Removal Using Fe3O4@SiO2-PSA-Based Magnetic Dispersive Solid-Phase Extraction for UPLC-MS/MS Analysis of Diazepam in Aquatic Products
by Mengqiong Yang, Guangming Mei, Daoxiang Huang, Xiaojun Zhang, Pengfei He and Si Chen
Foods 2025, 14(14), 2421; https://doi.org/10.3390/foods14142421 - 9 Jul 2025
Viewed by 310
Abstract
A sensitive method was developed for detecting diazepam residues in aquatic products using magnetic dispersive solid-phase extraction (MDSPE) coupled with ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Samples extracted with 1% ammonia–acetonitrile were purified using synthesized Fe3O4@SiO2-PSA nanoparticles [...] Read more.
A sensitive method was developed for detecting diazepam residues in aquatic products using magnetic dispersive solid-phase extraction (MDSPE) coupled with ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Samples extracted with 1% ammonia–acetonitrile were purified using synthesized Fe3O4@SiO2-PSA nanoparticles via MDSPE before UPLC-MS/MS analysis. Separation was performed on a C18 column with gradient elution using 0.1% formic acid–2 mM ammonium acetate/methanol. Detection employed positive electrospray ionization (ESI+) in multiple reaction monitoring (MRM) mode. Characterization confirmed Fe3O4@SiO2-PSA’s mesoporous structure with excellent adsorption capacity and magnetic properties. The method showed good linearity (0.1–10 μg/L, r > 0.99) with an LOD and LOQ of 0.20 μg/kg and 0.50 μg/kg, respectively. Recoveries at 0.5–15.0 µg/kg spiking levels were 74.9–109% (RSDs 1.24–11.6%). This approach provides rapid, accurate, and high-precision analysis of diazepam in aquatic products, meeting regulatory requirements. Full article
Show Figures

Figure 1

15 pages, 4009 KiB  
Article
Metabolomic Profiling and Anti-Helicobacter pylori Activity of Caulerpa lentillifera (Sea Grape) Extract
by Chananchida Thacharoen, Thisirak Inkaewwong, Watthanachai Jumpathong, Pornchai Kaewsapsak, Thiravat Rattanapot and Tippapha Pisithkul
Mar. Drugs 2025, 23(7), 282; https://doi.org/10.3390/md23070282 - 7 Jul 2025
Viewed by 710
Abstract
Helicobacter pylori is a gastric pathogen implicated in peptic ulcer disease and gastric cancer. The increasing prevalence of antibiotic-resistant strains underscores the urgent need for alternative therapeutic strategies. In this study, we investigated the chemical composition and antibacterial activity of an aqueous extract [...] Read more.
Helicobacter pylori is a gastric pathogen implicated in peptic ulcer disease and gastric cancer. The increasing prevalence of antibiotic-resistant strains underscores the urgent need for alternative therapeutic strategies. In this study, we investigated the chemical composition and antibacterial activity of an aqueous extract from Caulerpa lentillifera (sea grape), a farm-cultivated edible green seaweed collected from Krabi Province, Thailand. Ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) revealed that the extract was enriched in bioactive nucleosides and phenolic compounds. In vitro assays demonstrated dose-dependent inhibition of H. pylori growth following exposure to sea grape extract. Furthermore, untargeted intracellular metabolomic profiling of H. pylori cells treated with the extract uncovered significant perturbations in central carbon and nitrogen metabolism, including pathways associated with the tricarboxylic acid (TCA) cycle, one-carbon metabolism, and alanine, aspartate, and glutamate metabolism. Pyrimidine biosynthesis was selectively upregulated, indicating a potential stress-induced shift toward nucleotide salvage and DNA repair. Of particular note, succinate levels were markedly reduced despite accumulation of other TCA intermediates, suggesting disruption of electron transport-linked respiration. These findings suggest that bioactive metabolites from C. lentillifera impair essential metabolic processes in H. pylori, highlighting its potential as a natural source of antimicrobial agents targeting bacterial physiology. Full article
(This article belongs to the Special Issue Marine Omics for Drug Discovery and Development, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 3303 KiB  
Article
Crucian Carp-Derived ACE-Inhibitory Peptides with In Vivo Antihypertensive Activity: Insights into Bioactivity, Mechanism, and Safety
by Runxi Han, Jingshan Tian, Yingge Han, Guoxiang Wang, Guanghong Zhou, Chen Dai and Chong Wang
Molecules 2025, 30(13), 2812; https://doi.org/10.3390/molecules30132812 - 30 Jun 2025
Cited by 1 | Viewed by 399
Abstract
This study explores the identification, characterization, and biological evaluation of angiotensin I-converting enzyme (ACE)-inhibitory peptides derived from enzymatic hydrolysates of crucian carp swim bladders. Following sequential purification by size-exclusion and reversed-phase chromatography, two bioactive peptides—Hyp-Gly-Ala-Arg (Hyp-GAR) and Gly-Ala-Hyp-Gly-Ala-Arg (GA-Hyp-GAR)—were identified using ultra-high-performance liquid [...] Read more.
This study explores the identification, characterization, and biological evaluation of angiotensin I-converting enzyme (ACE)-inhibitory peptides derived from enzymatic hydrolysates of crucian carp swim bladders. Following sequential purification by size-exclusion and reversed-phase chromatography, two bioactive peptides—Hyp-Gly-Ala-Arg (Hyp-GAR) and Gly-Ala-Hyp-Gly-Ala-Arg (GA-Hyp-GAR)—were identified using ultra-high-performance liquid chromatography coupled with linear ion trap–Orbitrap tandem mass spectrometry. The synthetic peptides demonstrated potent ACE-inhibitory activity in vitro, with IC₅₀ values of 12.2 μM (Hyp-GAR) and 4.00 μM (GA-Hyp-GAR). Molecular docking and enzyme kinetics confirmed competitive inhibition through key interactions with ACE active site residues and zinc coordination. In vivo antihypertensive activity was evaluated in spontaneously hypertensive rats, revealing that GA-Hyp-GAR significantly reduced systolic blood pressure in a dose-dependent manner. At a dose of 36 mg/kg, GA-Hyp-GAR reduced systolic blood pressure by 60 mmHg—an effect comparable in magnitude and timing to that of captopril. Mechanistically, GA-Hyp-GAR modulated levels of angiotensin II, bradykinin, endothelial nitric oxide synthase, and nitric oxide. A 90-day subchronic oral toxicity study in mice indicated no significant hematological, biochemical, or histopathological alterations, supporting the peptide’s safety profile. These findings suggest that GA-Hyp-GAR is a promising natural ACE inhibitor with potential application in functional foods or as a nutraceutical for hypertension management. Full article
Show Figures

Graphical abstract

13 pages, 4302 KiB  
Article
Analysis of Processing Impact on Raspberries Based on Broad-Spectrum Metabolomics
by Xiaoge Wang, Qiyuan Liao, Fan Wang, Xuelin Rui, Yushan Liu and Rui Wang
Metabolites 2025, 15(7), 435; https://doi.org/10.3390/metabo15070435 - 26 Jun 2025
Viewed by 376
Abstract
Objective: Our objective was to explore the regulatory mechanism of salt processing on the metabolome of the raspberry and its potential efficacy against diabetic nephropathy (DN), providing metabolomic and network pharmacological evidence for the scientific connotation of traditional Chinese medicine processing. Methods: Ultra-high-performance [...] Read more.
Objective: Our objective was to explore the regulatory mechanism of salt processing on the metabolome of the raspberry and its potential efficacy against diabetic nephropathy (DN), providing metabolomic and network pharmacological evidence for the scientific connotation of traditional Chinese medicine processing. Methods: Ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS)-based metabolomics was used to compare the metabolic profiles between raw and salt-processed raspberries. Network pharmacology was applied to screen the common targets of the active components in the salt-processed raspberry and DN-related pathways, followed by in vitro cell experiments to validate the regulation of the MAPK signaling pathway. Results: The metabolomic analysis identified 80 differentially expressed metabolites, among which 13 key components (VIP ≥ 1, FC ≥ 2) were significantly altered, including enriched flavonoids (e.g., luteolin-7-O-glucoside), triterpenoid saponins (Raspberryides H/F), and phenolic acids (ellagic acid). The network pharmacology revealed that the salt-processed raspberries regulated the DN-related pathways through 122 common targets, with the core nodes focusing on the signaling molecules (e.g., AKT1, EGFR) involved in the MAPK signaling pathway and apoptosis regulation. The in vitro experiments confirmed that the salt-processed raspberry extract (160–640 μg/mL) significantly inhibited the phosphorylation levels of p38/ERK/JNK in high-glucose-induced renal cells. Conclusions: This study firstly combines metabolomics and network pharmacology to reveal the regulatory mechanism of salt processing on the active components of raspberries. The salt-processing technology enhanced the inhibitory effect of raspberries on the MAPK signaling pathway, thereby ameliorating the progression of DN. These findings provide scientific support for establishing a metabolomics-based quality control system for traditional Chinese medicine processing. The current findings are primarily based on in vitro models, and in vivo validation using DN animal models is essential to confirm the therapeutic efficacy and safety of salt-processed raspberries. Full article
Show Figures

Figure 1

19 pages, 1135 KiB  
Article
A Comparison of the QUECHERSER Mega-Method for Pesticide Determination in Loamy-Clayed Soil and the Effect of Organic Amendments on Pendimethalin, Oxyfluorfen, and Trifloxystrobin Soil Persistence
by Rafael Boluda, Alejandro Alejos-Campo, Eva Fernández-Gómez, Miguel Gamón, Luis Roca-Pérez and Oscar Andreu-Sánchez
J. Xenobiot. 2025, 15(4), 98; https://doi.org/10.3390/jox15040098 - 26 Jun 2025
Viewed by 562
Abstract
The intensive use of pesticides has raised environmental concerns due to their persistence and slow degradation, posing ecotoxicological risks. Despite regulatory measures, pesticide application remains high, leading to soil and water contamination. To effectively monitor and mitigate these impacts, selecting an appropriate and [...] Read more.
The intensive use of pesticides has raised environmental concerns due to their persistence and slow degradation, posing ecotoxicological risks. Despite regulatory measures, pesticide application remains high, leading to soil and water contamination. To effectively monitor and mitigate these impacts, selecting an appropriate and efficient extraction method for detecting pesticides in soil is critical. This study evaluated the effectiveness of two extraction methods in soil—QuEChERS and QuEChERSER—and assessed the persistence of three commonly used pesticides. A test was conducted using 13 pesticide standards, representing a wide variety of functional groups, to compare the two extraction methods. For the persistence study, a microcosm experiment was performed with three selected pesticides: pendimethalin, oxyfluorfen, and trifloxystrobin. These were chosen due to their agricultural relevance, potential human toxicity, and persistence in various environmental compartments. The impact of two organic amendments on their dissipation was also evaluated. The microcosms were incubated in dark chambers at room temperature for 21 days, and pesticide concentrations were analyzed using ultra-high-performance liquid chromatography–tandem mass spectrometry. Both methods were effective, though performance varied depending on the compound. QuEChERSER proved to be more efficient, requiring less time and fewer resources than the traditional QuEChERS method. Among the three pesticides tested, the herbicide oxyfluorfen was the most persistent, while the fungicide trifloxystrobin showed the least persistence. The application of organic amendments enhanced the dissipation of all three pesticides. These findings highlight the importance of selecting appropriate extraction techniques and adopting sustainable agricultural practices to mitigate pesticide residues in the environment. Full article
Show Figures

Graphical abstract

16 pages, 1025 KiB  
Article
Comprehensive Analysis of Mycotoxins in Green Coffee Food Supplements: Method Development, Occurrence, and Health Risk Assessment
by Laura Carbonell-Rozas, Octavian Augustin Mihalache, Renato Bruni and Chiara Dall’Asta
Toxins 2025, 17(7), 316; https://doi.org/10.3390/toxins17070316 - 21 Jun 2025
Viewed by 724
Abstract
This study investigates the presence of mycotoxins in green coffee-based dietary supplements to ensure their safety, given the potential risks of contamination and the growing interest in them among consumers. A sample treatment based on a salting-out assisted liquid–liquid extraction (SALLE) followed by [...] Read more.
This study investigates the presence of mycotoxins in green coffee-based dietary supplements to ensure their safety, given the potential risks of contamination and the growing interest in them among consumers. A sample treatment based on a salting-out assisted liquid–liquid extraction (SALLE) followed by one-step solid-phase extraction (SPE) was selected for the extraction and clean-up of 15 mycotoxins followed by ultra-high performance chromatography–tandem mass spectrometry detection (UHPLC-MS/MS). The target mycotoxins included aflatoxins (AFG1, AFG2, AFB1, AFB2), Alternaria toxins (AOH, AME, TEN), ochratoxin A (OTA), fumonisins (FB1, FB2), zearalenone (ZEN), trichothecenes (T-2, HT-2), enniatin B1 (ENNB1), and beauvericin (BEA). The proposed method was successfully characterized, obtaining high recoveries, a satisfactory precision, and low detection limits. Subsequently, the method was applied for the analysis of 16 commercial food supplements. The analysis revealed the presence of mycotoxins in all samples investigated with Fusarium mycotoxins as the most prevalent. The dietary exposure and risk characterization revealed a low level of risk, except for AFs where chronic exposure in adults may lead to potential health concerns. Full article
Show Figures

Graphical abstract

12 pages, 861 KiB  
Article
Impact of Cooking Procedures on Coccidiostats in Poultry Muscle
by Rui R. Martins, André M. P. T. Pereira, Liliana J. G. Silva, Sofia C. Duarte, Andreia Freitas and Angelina Pena
Antibiotics 2025, 14(6), 586; https://doi.org/10.3390/antibiotics14060586 - 7 Jun 2025
Viewed by 606
Abstract
Background/Objectives: Poultry meat is a popular and nutritious food, valued for its high protein content and healthy fat profile. However, like other animal products, it can contain pharmaceutical residues, including coccidiostats, antimicrobials commonly used to prevent parasitic infections caused by Eimeria species. While [...] Read more.
Background/Objectives: Poultry meat is a popular and nutritious food, valued for its high protein content and healthy fat profile. However, like other animal products, it can contain pharmaceutical residues, including coccidiostats, antimicrobials commonly used to prevent parasitic infections caused by Eimeria species. While most monitoring focuses on raw meat, it is important to understand how these compounds behave during cooking to assess potential health risks better and ensure food safety. Methods: This study examined how five different cooking methods (roasting, grilling, and microwaving, beer and wine marinating) affect the levels of eight coccidiostat residues in 45 samples of poultry muscle collected from a supermarket located in the center of mainland Portugal from May to July 2024. After applying different cooking procedures, ionophore and synthetic coccidiostat residue levels were measured using solid–liquid extraction followed by ultrahigh-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS). Results are expressed as percentages of the original concentrations: 100% indicates stability, values above 100% suggest a relative increase (often due to moisture loss), and values below 100% reflect a decrease, likely from heat degradation. Results: Roasting, grilling, and microwaving all increased residue concentrations—up to 198.5%, 180.1%, and 158.4%, respectively. In contrast, marinating meat in wine or beer before cooking reduced residues to 73.1% and 72.0%, suggesting a mitigating effect. The initial concentration also influenced the outcome: samples fortified at the maximum residue limit (MRL) had an overall higher mean concentration after cooking (148.3%,) than those fortified at twice the MRL (2 MRL), which averaged 124.5%. Conclusions: These results show that cooking can significantly alter coccidiostat residue levels depending on the cooking procedures and initial concentration. Ongoing monitoring and further research are essential to better understand how cooking affects these residues and their by-products. This knowledge is key to improving food safety practices and refining consumer health risk assessments. Full article
Show Figures

Figure 1

12 pages, 1811 KiB  
Article
Norsesquiterpenes from Lolium perenne and Their Replacement Control of an Invasive Plant, Ageratina adenophora, Through Allelopathy
by Wenbo Shi, Tong An, Xiaomin Yang, Youlin Li, Amanula Yimingniyazi, Zhixiang Liu and Yulong Feng
Molecules 2025, 30(11), 2384; https://doi.org/10.3390/molecules30112384 - 29 May 2025
Viewed by 371
Abstract
Lolium perenne (Poaceae), a perennial forage, has high economic and nutritional value. It is often used as a replacement control for some invasive plants, as it has achieved good ecological and economic effects. However, its control effects, allelochemicals, allelopathic effects, release pathways, and [...] Read more.
Lolium perenne (Poaceae), a perennial forage, has high economic and nutritional value. It is often used as a replacement control for some invasive plants, as it has achieved good ecological and economic effects. However, its control effects, allelochemicals, allelopathic effects, release pathways, and contents are still unclear in the process of L. perenne replacement control of an invasive plant, Ageratina adenophora (Asteraceae). Therefore, it is necessary to reveal the mechanism of L. perenne replacement control of A. adenophora from the perspective of allelopathy. In this study, L. perenne could effectively inhibit the growth of A. adenophora in the competition assay. In addition, seven norsesquiterpenes (17) were isolated and identified from the whole plant of L. perenne, and most of the compounds exhibited potent allelopathic effects on the growth of A. adenophora and one model plant (Lactuca sativa, Asteraceae). Moreover, some active compounds were released into the environment through root secretion and rainwater leaching, and their contents were determined by UPLC-MS/MS (Ultra Performance Liquid Chromatography Tandem Mass Spectrometry). Our results elucidated the allelopathic mechanism of L. perenne’s replacement control, A. adenophora, and provided a theoretical basis for the development of norsesquiterpenes from L. perenne. Full article
Show Figures

Graphical abstract

21 pages, 2666 KiB  
Article
Metabolites from the Dendrobium Endophyte Pseudomonas protegens CM-YJ44 Alleviate Insulin Resistance in HepG2 Cells via the IRS1/PI3K/Akt/GSK3β/GLUT4 Pathway
by Luqi Qin, Yixia Zhou, Bei Fan, Jiahuan Zheng, Rao Diao, Jiameng Liu and Fengzhong Wang
Pharmaceuticals 2025, 18(6), 817; https://doi.org/10.3390/ph18060817 - 29 May 2025
Viewed by 485
Abstract
Background/Objectives: Endophytes can produce bioactive metabolites similar to their host plants. CM-YJ44 (Pseudomonas protegens CHA0, 99.24% similarity), an endophyte from Dendrobium officinale, has not yet validated hypoglycemic potential. This study aimed to evaluate its anti-insulin resistance (IR) activity and metabolite profile. [...] Read more.
Background/Objectives: Endophytes can produce bioactive metabolites similar to their host plants. CM-YJ44 (Pseudomonas protegens CHA0, 99.24% similarity), an endophyte from Dendrobium officinale, has not yet validated hypoglycemic potential. This study aimed to evaluate its anti-insulin resistance (IR) activity and metabolite profile. Methods: The fermentation broth of CM-YJ44 was separated into three fractions (CM-YJ44-1, -2, and -3) using semi-preparative high-performance liquid chromatography (pre-HPLC). An IR HepG2 cell model was constructed to evaluate their glucose uptake capacity. CM-YJ44-3 was further tested for oxidative stress, inflammatory, and insulin signaling pathway activation. Metabolites in CM-YJ44-3 were preliminarily identified using the Q Exactive Focus LC-MS system (QE), and the dendrobine content was quantified by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Molecular docking was performed to predict the binding affinities between dendrobine and target proteins. Results: Among the three fractions, CM-YJ44-3 significantly reduced nitric oxide (NO) and reactive oxygen species (ROS) levels in IR cells, enhanced glycogen synthesis, upregulated the activities of pyruvate kinase (PK) and hexokinase (HK), and suppressed the expression of inflammatory factors. Its mechanism of action was mainly through activation of the IRS1/PI3K/Akt/GSK3β/GLUT4 signaling pathway. QE analysis preliminarily identified 24 metabolites in CM-YJ44-3. Quantitative analysis by UPLC-MS/MS showed that the dendrobine content was 78.73 ± 4.29 ng/mL. Molecular docking results indicated that dendrobine exhibited binding energies below −5 kcal/mol with multiple target proteins involved in this signaling pathway, suggesting it may be a key bioactive component responsible for the anti-IR effect. Conclusions: This study provides the first evidence of hypoglycemic bioactive metabolite production by strain CM-YJ44, indicating its potential as a novel microbial candidate for alleviating IR. Full article
Show Figures

Graphical abstract

Back to TopTop