Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,280)

Search Parameters:
Keywords = typhoons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3354 KiB  
Article
Hydrological Modeling of the Chikugo River Basin Using SWAT: Insights into Water Balance and Seasonal Variability
by Francis Jhun Macalam, Kunyang Wang, Shin-ichi Onodera, Mitsuyo Saito, Yuko Nagano, Masatoshi Yamazaki and Yu War Nang
Sustainability 2025, 17(15), 7027; https://doi.org/10.3390/su17157027 - 2 Aug 2025
Viewed by 212
Abstract
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the [...] Read more.
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the performance of the Soil and Water Assessment Tool (SWAT) in simulating streamflow, water balance, and seasonal hydrological dynamics in the Chikugo River Basin, Kyushu Island, Japan. The basin, originating from Mount Aso and draining into the Ariake Sea, is subject to frequent typhoons and intense rainfall, making it a critical case for sustainable water governance. Using the Sequential Uncertainty Fitting Version 2 (SUFI-2) approach, we calibrated the SWAT model over the period 2007–2021. Water balance analysis revealed that baseflow plays dominant roles in basin hydrology which is essential for agricultural and domestic water needs by providing a stable groundwater contribution despite increasing precipitation and varying water demand. These findings contribute to a deeper understanding of hydrological behavior in temperate catchments and offer a scientific foundation for sustainable water allocation, planning, and climate resilience strategies. Full article
Show Figures

Figure 1

18 pages, 6642 KiB  
Article
Flood Impact and Evacuation Behavior in Toyohashi City, Japan: A Case Study of the 2 June 2023 Heavy Rain Event
by Masaya Toyoda, Reo Minami, Ryoto Asakura and Shigeru Kato
Sustainability 2025, 17(15), 6999; https://doi.org/10.3390/su17156999 - 1 Aug 2025
Viewed by 156
Abstract
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community [...] Read more.
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community resilience, this study contributes to sustainability-focused risk reduction through integrated analysis. This study focuses on the 2 June 2023 heavy rain disaster in Toyohashi City, Japan, which caused extensive damage due to flooding from the Yagyu and Umeda Rivers. Using numerical models, this study accurately reproduces flooding patterns, revealing that high tides amplified the inundation area by 1.5 times at the Yagyu River. A resident questionnaire conducted in collaboration with Toyohashi City identifies key trends in evacuation behavior and disaster information usage. Traditional media such as TV remain dominant, but younger generations leverage electronic devices for disaster updates. These insights emphasize the need for targeted information dissemination and enhanced disaster preparedness strategies, including online materials and flexible training programs. The methods and findings presented in this study can inform local and regional governments in building adaptive disaster management policies, which contribute to a more sustainable society. Full article
Show Figures

Figure 1

18 pages, 3114 KiB  
Article
Heavy Rainfall Induced by Typhoon Yagi-2024 at Hainan and Vietnam, and Dynamical Process
by Venkata Subrahmanyam Mantravadi, Chen Wang, Bryce Chen and Guiting Song
Atmosphere 2025, 16(8), 930; https://doi.org/10.3390/atmos16080930 (registering DOI) - 1 Aug 2025
Viewed by 219
Abstract
Typhoon Yagi (2024) was a rapidly moving storm that lasted for eight days and made landfall in three locations, producing heavy rainfall over Hainan and Vietnam. This study aims to investigate the dynamical processes contributing to the heavy rainfall, concentrating on enthalpy flux [...] Read more.
Typhoon Yagi (2024) was a rapidly moving storm that lasted for eight days and made landfall in three locations, producing heavy rainfall over Hainan and Vietnam. This study aims to investigate the dynamical processes contributing to the heavy rainfall, concentrating on enthalpy flux (EF) and moisture flux (MF). The results indicate that both EF and MF increased significantly during the typhoon’s intensification stage and were high at the time of landfall. Before landfalling at Hainan, latent heat flux (LHF) reached 600 W/m2, while sensible heat flux (SHF) was recorded as 80 W/m2. Landfall at Hainan resulted in a decrease in LHF and SHF. LHF and SHF subsequently increased to 700 W/m2 and 100 W/m2, respectively, as noted prior to the landfall in Vietnam. The increased LHF led to higher evaporation, which subsequently elevated moisture flux (MF) following the landfall in Vietnam, while the region’s topography further intensified the rainfall. The mean daily rainfall observed over Philippines is 75 mm on 2 September (landfall and passing through), 100 mm over Hainan (landfall and passing through) on 6 September, and 95 mm at over Vietnam on 7 September (landfall and after), respectively. Heavy rainfall was observed over the land while the typhoon was passing and during the landfall. This research reveals that Typhoon Yagi’s intensity was maintained by a well-organized and extensive circulation system, supported by favorable weather conditions, including high sea surface temperatures (SST) exceeding 30.5 °C, substantial low-level moisture convergence, and elevated EF during the landfall in Vietnam. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

18 pages, 1738 KiB  
Article
Extreme Wind Speed Prediction Based on a Typhoon Straight-Line Path Model and the Monte Carlo Simulation Method: A Case for Guangzhou
by Zhike Lu, Xinrui Zhang, Junling Hong and Wanhai Xu
Appl. Sci. 2025, 15(15), 8486; https://doi.org/10.3390/app15158486 (registering DOI) - 31 Jul 2025
Viewed by 124
Abstract
The southeastern coastal region of China has long been affected by typhoon disasters, which pose significant threats to the safety of offshore structures. Therefore, predicting extreme wind speeds corresponding to various return periods on the basis of limited typhoon samples is particularly important [...] Read more.
The southeastern coastal region of China has long been affected by typhoon disasters, which pose significant threats to the safety of offshore structures. Therefore, predicting extreme wind speeds corresponding to various return periods on the basis of limited typhoon samples is particularly important for wind-resistant design. This study systematically predicts extreme typhoon wind speeds for various return periods and quantitatively assesses the sensitivity of key parameters by employing a Monte Carlo stochastic simulation framework integrated with a typhoon straight-line trajectory model and the Yan Meng wind field model. Focusing on Guangzhou (23.13° N, 113.28 °E), a representative coastal city in southeastern China, this research establishes a modular analytical framework that provides generalizable solutions for typhoon disaster assessment in coastal regions. The probabilistic wind load data generated by this framework significantly increases the cost-effectiveness and safety of wind-resistant structural design. Full article
(This article belongs to the Special Issue Transportation and Infrastructures Under Extreme Weather Conditions)
Show Figures

Figure 1

29 pages, 16630 KiB  
Article
Impact of Radar Data Assimilation on the Simulation of Typhoon Morakot
by Lingkun Ran and Cangrui Wu
Atmosphere 2025, 16(8), 910; https://doi.org/10.3390/atmos16080910 - 28 Jul 2025
Viewed by 213
Abstract
The high spatial resolution of radar data enables the detailed resolution of typhoon vortices and their embedded structures; the assimilation of radar data in the initialization of numerical weather prediction exerts an important influence on the forecasting of typhoon track, intensity, and structures [...] Read more.
The high spatial resolution of radar data enables the detailed resolution of typhoon vortices and their embedded structures; the assimilation of radar data in the initialization of numerical weather prediction exerts an important influence on the forecasting of typhoon track, intensity, and structures up to at least 12 h. For the case of typhoon Morakot (2009), Taiwan radar data was assimilated to adjust the dynamic and thermodynamic structures of the vortex in the model initialization by the three-dimensional variation data assimilation system in the Advanced Region Prediction System (ARPS). The radial wind was directly assimilated to tune the original unbalanced velocity fields through a 3-dimensional variation method, and complex cloud analysis was conducted by using the reflectivity data. The influence of radar data assimilation on typhoon prediction was examined at the stages of Morakot landing on Taiwan Island and subsequently going inland. The results showed that the assimilation made some improvement in the prediction of vortex intensity, track, and structures in the initialization and subsequent forecast. For example, besides deepening the central sea level pressure and enhancing the maximum surface wind speed, the radar data assimilation corrected the typhoon center movement to the best track and adjusted the size and inner-core structure of the vortex to be close to the observations. It was also shown that the specific humidity adjustment in the cloud analysis procedure during the assimilation time window played an important role, producing more hydrometeors and tuning the unbalanced moisture and temperature fields. The neighborhood-based ETS revealed that the assimilation with the specific humidity adjustment was propitious in improving forecast skill, specifically for smaller-scale reflectivity at the stage of Morakot landing, and for larger-scale reflectivity at the stage of Morakot going inland. The calculation of the intensity-scale skill score of the hourly precipitation forecast showed the assimilation with the specific humidity adjustment performed skillful forecasting for the spatial forecast-error scales of 30–160 km. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

22 pages, 17693 KiB  
Article
Mooring Observations of Typhoon Trami (2024)-Induced Upper-Ocean Variability: Diapycnal Mixing and Internal Wave Energy Characteristics
by Letian Chen, Xiaojiang Zhang, Ze Zhang and Weimin Zhang
Remote Sens. 2025, 17(15), 2604; https://doi.org/10.3390/rs17152604 - 27 Jul 2025
Viewed by 180
Abstract
High-resolution mooring observations captured diverse upper-ocean responses during typhoon passage, showing strong agreement with satellite-derived sea surface temperature and salinity. Analysis indicates that significant wind-induced mixing drove pronounced near-surface cooling and salinity increases at the mooring site. This mixing enhancement was predominantly governed [...] Read more.
High-resolution mooring observations captured diverse upper-ocean responses during typhoon passage, showing strong agreement with satellite-derived sea surface temperature and salinity. Analysis indicates that significant wind-induced mixing drove pronounced near-surface cooling and salinity increases at the mooring site. This mixing enhancement was predominantly governed by rapid intensification of near-inertial shear in the surface layer, revealed by mooring observations. Unlike shear instability, near-inertial horizontal kinetic energy displays a unique vertical distribution, decreasing with depth before rising again. Interestingly, the subsurface peak in diurnal tidal energy coincides vertically with the minimum in near-inertial energy. While both barotropic tidal forcing and stratification changes negligibly influence diurnal tidal energy emergence, significant energy transfer occurs from near-inertial internal waves to the diurnal tide. This finding highlights a critical tide–wave interaction process and demonstrates energy cascading within the oceanic internal wave spectrum. Full article
(This article belongs to the Special Issue Remote Sensing for Ocean-Atmosphere Interaction Studies)
Show Figures

Figure 1

23 pages, 5397 KiB  
Article
A Systematic Analysis of Influencing Factors on Wind Resilience in a Coastal Historical District of China
by Bo Huang, Zhenmin Ou, Gang Zhao, Junwu Wang, Lanjun Liu, Sijun Lv, Bin Huang and Xueqi Liu
Appl. Sci. 2025, 15(14), 8116; https://doi.org/10.3390/app15148116 - 21 Jul 2025
Viewed by 274
Abstract
Historical districts are the mark of the continuity of urban history and are non-renewable. Typhoon disasters rank among the most serious and frequent natural threats to China’s coastal regions. Improving the wind resilience of China’s coastal historical districts is of great significance for [...] Read more.
Historical districts are the mark of the continuity of urban history and are non-renewable. Typhoon disasters rank among the most serious and frequent natural threats to China’s coastal regions. Improving the wind resilience of China’s coastal historical districts is of great significance for their protection and inheritance. Accurately analyzing the different characteristics of the influencing factors of wind resilience in China’s coastal historical districts can provide a theoretical basis for alleviating the damage caused by typhoons and formulating disaster prevention measures. This paper accurately identifies the main influencing factors of wind resilience in China’s coastal historical districts and constructs an influencing factor system from four aspects: block level, building level, typhoon characteristics, and emergency management. An IIM model for the systematic analysis of influencing factors of wind resilience in China’s coastal historical districts based on the Improved Decision Making Trial and Evaluation Laboratory (IDEMATEL), Interpretive Structural Modeling (ISM), and Matrices Impacts Croises-Multiplication Appliance Classement (MICMAC) methods is established. This allows us to explore the mechanism of action of internal influencing factors of typhoon disasters and construct an influencing factor system, in order to propose prevention measures from the perspective of typhoon disaster characteristics and the overall perspective of China’s coastal historical districts. The results show that the driving force of a building’s windproof design in China’s coastal historical districts is low, but its dependence is strong; the driving forces of block morphology, typhoon level, and emergency plan are strong, but their dependence is low. A building’s windproof design is a direct influencing factor of the wind resilience of China’s coastal historical districts; block morphology, typhoon level, and emergency plan are the most fundamental and key influencing factors of the wind resilience of China’s coastal historical districts. Full article
Show Figures

Figure 1

32 pages, 2992 KiB  
Article
An Inter-Regional Lateral Transshipment Model to Massive Relief Supplies with Deprivation Costs
by Shuanglin Li, Na Zhang and Jin Qin
Mathematics 2025, 13(14), 2298; https://doi.org/10.3390/math13142298 - 17 Jul 2025
Viewed by 343
Abstract
Massive relief supplies inter-regional lateral transshipment (MRSIRLT) can significantly enhance the efficiency of disaster response, meet the needs of affected areas (AAs), and reduce deprivation costs. This paper develops an integrated allocation and intermodality optimization model (AIOM) to address the MRSIRLT challenge. A [...] Read more.
Massive relief supplies inter-regional lateral transshipment (MRSIRLT) can significantly enhance the efficiency of disaster response, meet the needs of affected areas (AAs), and reduce deprivation costs. This paper develops an integrated allocation and intermodality optimization model (AIOM) to address the MRSIRLT challenge. A phased interactive framework incorporating adaptive differential evolution (JADE) and improved adaptive large neighborhood search (IALNS) is designed. Specifically, JADE is employed in the first stage to allocate the volume of massive relief supplies, aiming to minimize deprivation costs, while IALNS optimizes intermodal routing in the second stage to minimize the weighted sum of transportation time and cost. A case study based on a typhoon disaster in the Chinese region of Bohai Rim demonstrates and verifies the effectiveness and applicability of the proposed model and algorithm. The results and sensitivity analysis indicate that reducing loading and unloading times and improving transshipment efficiency can effectively decrease transfer time. Additionally, the weights assigned to total transfer time and costs can be balanced depending on demand satisfaction levels. Full article
Show Figures

Figure 1

37 pages, 7235 KiB  
Article
New Challenges for Tropical Cyclone Track and Intensity Forecasting in an Unfavorable External Environment in the Western North Pacific—Part II: Intensifications near and North of 20° N
by Russell L. Elsberry, Hsiao-Chung Tsai, Wen-Hsin Huang and Timothy P. Marchok
Atmosphere 2025, 16(7), 879; https://doi.org/10.3390/atmos16070879 - 17 Jul 2025
Viewed by 272
Abstract
Part I of this two-part documentation of the ECMWF ensemble (ECEPS) new tropical cyclone track and intensity forecasting challenges during the 2024 western North Pacific season described four typhoons that started well to the south of an unfavorable external environment north of 20° [...] Read more.
Part I of this two-part documentation of the ECMWF ensemble (ECEPS) new tropical cyclone track and intensity forecasting challenges during the 2024 western North Pacific season described four typhoons that started well to the south of an unfavorable external environment north of 20° N. In this Part II, five other 2024 season typhoons that formed and intensified near and north of 20° N are documented. One change is that the Cooperative Institute for Meteorological Satellite Studies ADT + AIDT intensities derived from the Himawari-9 satellite were utilized for initialization and validation of the ECEPS intensity forecasts. Our first objective of providing earlier track and intensity forecast guidance than the Joint Typhoon Warning Center (JTWC) five-day forecasts was achieved for all five typhoons, although the track forecast spread was large for the early forecasts. For Marie (06 W) and Ampil (08 W) that formed near 25° N, 140° E in the middle of the unfavorable external environment, the ECEPS intensity forecasts accurately predicted the ADT + AIDT intensities with the exception that the rapid intensification of Ampil over the Kuroshio ocean current was underpredicted. Shanshan (11 W) was a challenging forecast as it intensified to a typhoon while being quasi-stationary near 17° N, 142° E before turning to the north to cross 20° N into the unfavorable external environment. While the ECEPS provided accurate guidance as to the timing and the longitude of the 20° N crossing, the later recurvature near Japan timing was a day early and 4 degrees longitude to the east. The ECEPS provided early, accurate track forecasts of Jebi’s (19 W) threat to mainland Japan. However, the ECEPS was predicting extratropical transition with Vmax ~35 kt when the JTWC was interpreting Jebi’s remnants as a tropical cyclone. The ECEPS predicted well the unusual southward track of Krathon (20 W) out of the unfavorable environment to intensify while quasi-stationary near 18.5° N, 125.6° E. However, the rapid intensification as Krathon moved westward along 20° N was underpredicted. Full article
(This article belongs to the Special Issue Typhoon/Hurricane Dynamics and Prediction (2nd Edition))
Show Figures

Figure 1

20 pages, 3380 KiB  
Article
Resilience of Mangrove Carbon Sequestration Under Typhoon Disturbance: Insights from Different Restoration Ages
by Youwei Lin, Ruina Liu, Yunfeng Shi, Shengjie Han, Huaibao Zhao and Zongbo Peng
Forests 2025, 16(7), 1165; https://doi.org/10.3390/f16071165 - 15 Jul 2025
Viewed by 308
Abstract
Typhoons are major climate disturbances that significantly impact coastal ecosystems, particularly mangrove forests. This study examines the effects of typhoons on mangrove communities at different stages of recovery, focusing on how environmental factors influence carbon storage and net ecosystem exchange (NEE). Three mangrove [...] Read more.
Typhoons are major climate disturbances that significantly impact coastal ecosystems, particularly mangrove forests. This study examines the effects of typhoons on mangrove communities at different stages of recovery, focusing on how environmental factors influence carbon storage and net ecosystem exchange (NEE). Three mangrove sites were selected based on their recovery age: young, moderately restored, and mature. The results revealed that typhoons had the most pronounced effect on young mangroves, resulting in significant reductions in both above-ground and soil carbon storage. In contrast, mid-aged and mature mangroves demonstrated greater resilience, with mature mangroves recovering most rapidly in terms of community structure and carbon storage. Key factors such as wind speed, heavy rainfall, and changes in photosynthetically active radiation (PAR) contributed to carbon storage losses, particularly in young mangrove forests. This study underscores the importance of recovery age in determining mangrove resilience to extreme weather events and offers insights for enhancing restoration and conservation strategies to mitigate the impacts of climate change on coastal carbon sequestration. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

14 pages, 3647 KiB  
Article
The Characteristics of the Aeolian Environment in the Coastal Sandy Land of Boao Jade Belt Beach, Hainan Island
by Shuai Zhong, Jianjun Qu, Zhizhong Zhao and Penghua Qiu
Atmosphere 2025, 16(7), 845; https://doi.org/10.3390/atmos16070845 - 11 Jul 2025
Viewed by 202
Abstract
Boao Jade Beach, on the east coast of Hainan Island, is a typical sandy beach and is one of the areas where typhoons frequently land in Hainan. This study examined wind speed, wind direction, and sediment transport data obtained from field meteorological stations [...] Read more.
Boao Jade Beach, on the east coast of Hainan Island, is a typical sandy beach and is one of the areas where typhoons frequently land in Hainan. This study examined wind speed, wind direction, and sediment transport data obtained from field meteorological stations and omnidirectional sand accumulation instruments from 2020 to 2024 to study the coastal aeolian environment and sediment transport distribution characteristics in the region. The findings provide a theoretical basis for comprehensive analyses of the evolution of coastal aeolian landforms and the evaluation and control of coastal aeolian hazards. The research results showed the following: (1) The annual average threshold wind velocity for sand movement in the study area was 6.13 m/s, and the wind speed frequency was 20.97%, mainly dominated by easterly winds (NNE, NE) and southerly winds (S). (2) The annual drift potential (DP) and resultant drift potential (RDP) of Boao Jade Belt Beach from 2020 to 2024 were 125.99 VU and 29.59 VU, respectively, indicating a low-energy wind environment. The yearly index of directional wind variability (RDP/DP) was 0.23, which is classified as a small ratio and indicates blunt bimodal wind conditions. The yearly resultant drift direction (RDD) was 329.41°, corresponding to the NNW direction, indicating that the sand on Boao Jade Belt Beach is generally transported in the southwest direction. (3) When the measured data from the sand accumulation instrument in the study area from 2020 to 2024 were used for a statistical analysis, the results showed that the total sediment transport rate in the study area was 39.97 kg/m·a, with the maximum sediment transport rate in the S direction being 17.74 kg/m·a. These results suggest that, when sand fixation systems are constructed for relevant infrastructure in the region, the direction of protective forests and other engineering measures should be perpendicular to the net direction of sand transport. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

29 pages, 672 KiB  
Article
Configuring Supply Chain Resilience Under Natural Disaster Risk
by Jiaqi Cheng and Peng Shan
Sustainability 2025, 17(14), 6346; https://doi.org/10.3390/su17146346 - 10 Jul 2025
Viewed by 362
Abstract
In recent years, the intensifying frequency of natural disasters such as floods and typhoons has brought severe disruptions to the global supply chain system, making supply chain resilience an important academic research and practical application topic. This study explores the influencing factors and [...] Read more.
In recent years, the intensifying frequency of natural disasters such as floods and typhoons has brought severe disruptions to the global supply chain system, making supply chain resilience an important academic research and practical application topic. This study explores the influencing factors and allocation effects of supply chain resilience under the risk of natural disasters, with a particular focus on its impact on sustainability. This paper conducts an empirical study on supply chain resilience in the context of natural disasters by using the Structural Equation Model (SEM) and Fuzzy Set Qualitative Comparative Analysis (fsQCA). Based on 407 valid questionnaires, the study found that supply chain flexibility, foresight, visibility, cooperation, and support significantly positively affected the enhancement of supply chain resilience. Furthermore, through the fsQCA method, this study identified a single configuration approach that leads to high supply chain resilience and clarified the complexity of resilience formation under different conditions. This research not only enriches the theoretical framework of supply chain resilience but also provides targeted strategies for enterprises and governments to enhance their resilience to natural disasters, thereby suggesting potential pathways to support economic stability, social well-being, and environmental protection, though further empirical validation is needed. Full article
Show Figures

Figure 1

23 pages, 4870 KiB  
Article
Dynamic Identification Method of Distribution Network Weak Links Considering Disaster Emergency Scheduling
by Wenlu Ji, Lan Lan, Lu Shen, Dahang Shi and Chong Wang
Energies 2025, 18(13), 3519; https://doi.org/10.3390/en18133519 - 3 Jul 2025
Viewed by 267
Abstract
With the deterioration of the global climate, the losses caused by distribution network failures during natural disasters such as typhoons have become increasingly serious. In the whole process of disaster resistance, it is very important to effectively identify the weak links in distribution [...] Read more.
With the deterioration of the global climate, the losses caused by distribution network failures during natural disasters such as typhoons have become increasingly serious. In the whole process of disaster resistance, it is very important to effectively identify the weak links in distribution networks during typhoon disasters. In this paper, the weak links in distribution networks during typhoons are identified dynamically from four indexes: real-time failure rate, load loss caused by line disconnection, line degree, and line betweenness. First, the Batts typhoon model is established to simulate the whole process of the typhoon and obtain the real-time failure rate of the distribution network. Secondly, the distribution network is powered by distributed generators when there are line disconnections, and a mixed integer linear programming model is established to solve the problem. Then, the line degrees and the line betweenness are calculated to obtain the structure indexes of the line, both of which are dynamically related to the power flow and the loads of the distribution network. Finally, the four indexes are comprehensively analyzed, and the dynamic identification of the weak links in the distribution network are realized by the analytic hierarchy process (AHP)—entropy weight (EW)—technique for order preference by similarity to an ideal solution (TOPSIS) method. The results of the case study show that the proposed method can effectively identify the weak links in a distribution network during a typhoon and provide a reference to resist extreme disasters. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

24 pages, 3084 KiB  
Article
Overall Design and Performance Analysis of the Semi-Submersible Platform for a 10 MW Vertical-Axis Wind Turbine
by Qun Cao, Xinyu Zhang, Ying Chen, Xinxin Wu, Kai Zhang and Can Zhang
Energies 2025, 18(13), 3488; https://doi.org/10.3390/en18133488 - 2 Jul 2025
Viewed by 379
Abstract
This study presents a novel semi-submersible platform design for 10 MW vertical-axis wind turbines (VAWTs), specifically engineered to address the compounded challenges of China’s intermediate-depth (40 m), typhoon-prone maritime environment. Unlike conventional horizontal-axis configurations, VAWTs impose unique demands due to omnidirectional wind reception, [...] Read more.
This study presents a novel semi-submersible platform design for 10 MW vertical-axis wind turbines (VAWTs), specifically engineered to address the compounded challenges of China’s intermediate-depth (40 m), typhoon-prone maritime environment. Unlike conventional horizontal-axis configurations, VAWTs impose unique demands due to omnidirectional wind reception, high aerodynamic load fluctuations, and substantial self-weight—factors exacerbated by short installation windows and complex hydrodynamic interactions. Through systematic scheme demonstration, we establish the optimal four-column configuration, resolving critical limitations of existing concepts in terms of water depth adaptability, stability, and fabrication economics. The integrated design features central turbine mounting, hexagonal pontoons for enhanced damping, and optimized ballast distribution, achieving a 3400-tonne steel mass (29% reduction vs. benchmarks). Comprehensive performance validation confirms exceptional survivability under 50-year typhoon conditions (Hs = 4.42 m, Uw = 54 m/s), limiting platform tilt to 8.02° (53% of allowable) and nacelle accelerations to 0.10 g (17% of structural limit). Hydrodynamic analysis reveals heave/pitch natural periods > 20 s, avoiding wave resonance (Tp = 7.64 s), while comparative assessment demonstrates 33% lower pitch RAOs than leading horizontal-axis platforms. The design achieves unprecedented synergy of typhoon resilience, motion performance, and cost-efficiency—validated by 29% steel savings—providing a technically and economically viable solution for megawatt-scale VAWT deployment in challenging seas. Full article
Show Figures

Figure 1

22 pages, 3989 KiB  
Article
Enhancing Typhoon Doksuri (2023) Forecasts via Radar Data Assimilation: Evaluation of Momentum Control Variable Schemes with Background-Dependent Hydrometeor Retrieval in WRF-3DVAR
by Xinyi Wang, Feifei Shen, Shen Wan, Jing Liu, Haiyan Fei, Changliang Shao, Song Yuan, Jiajun Chen and Xiaolin Yuan
Atmosphere 2025, 16(7), 797; https://doi.org/10.3390/atmos16070797 - 30 Jun 2025
Viewed by 295
Abstract
This research investigates how incorporating both radar radial velocity (Vr) and radar reflectivity influences the accuracy of tropical cyclone (TC) prediction. Different control variables are introduced to analyze their roles in Vr data assimilation, while background-dependent radar reflectivity assimilation [...] Read more.
This research investigates how incorporating both radar radial velocity (Vr) and radar reflectivity influences the accuracy of tropical cyclone (TC) prediction. Different control variables are introduced to analyze their roles in Vr data assimilation, while background-dependent radar reflectivity assimilation methods are also applied. Using Typhoon “Doksuri” (2023) as a primary case study and Typhoon “Kompasu” (2021) as a supplementary case, the Weather Research and Forecasting (WRF) model’s three-dimensional variational assimilation (3DVAR) is utilized to assimilate Vr and reflectivity observations to improve TC track, intensity, and precipitation forecasts. Three experiments were conducted for each typhoon: one with no assimilation, one with Vr assimilation using ψχ control variables and background-dependent radar reflectivity assimilation, and one with Vr assimilation using UV control variables and background-dependent radar reflectivity assimilation. The results show that assimilating Vr enhances small-scale dynamics in the TC core, leading to a more organized and stronger wind field. The experiment involving UV control variables consistently showed advantages over the ψχ scheme in aspects such as overall track prediction, initial intensity representation, and producing more stable or physically plausible intensity trends, particularly evident when comparing both typhoon events. These findings highlight the importance of optimizing control variables and assimilation methods to enhance the prediction of TCs. Full article
Show Figures

Figure 1

Back to TopTop