remotesensing-logo

Journal Browser

Journal Browser

Remote Sensing for Ocean-Atmosphere Interaction Studies

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Ocean Remote Sensing".

Deadline for manuscript submissions: 28 September 2025 | Viewed by 963

Special Issue Editor


E-Mail Website
Guest Editor
Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, CA, USA
Interests: land–atmosphere–ocean interaction; monsoons; seamless prediction/projection/verification; climate services; satellite data analysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Recent advancements have significantly enhanced the understanding and predictive capabilities of air–sea interaction processes. Improved observational infrastructures, including advanced satellite systems and expanded in situ networks, now provide more precise and realistic measurements, leading to substantial progress in capturing air–sea interactions and refining model evaluations. However, integrating detailed air–sea interaction processes at regional and local scales introduces uncertainties, emphasizing the need for balanced approaches that effectively manage the trade-off between predictive accuracy and forecast uncertainty.

This Special Issue invites contributions that advance measurement techniques, satellite retrieval algorithms, numerical modeling frameworks, data assimilation methods, and integrated observational strategies related to air–sea interactions. Studies leveraging data mining, machine learning, and other analytical approaches to extract deeper insights from observational and model datasets are encouraged. Additionally, research focusing on reducing uncertainties in lower-tropospheric processes, particularly their influence on high-impact weather events in the context of air–sea interactions, is highly welcomed.

Dr. Shakeel Asharaf
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • air–sea interactions
  • satellite oceanography
  • ocean surface wind/heat fluxes
  • satellite/in situ data validation
  • high-impact weather events
  • impact studies
  • uncertainty quantification

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 4791 KB  
Article
Satellite-Measured Suspended Particulate Matter Flux and Freshwater Flux in the Yellow Sea and East China Sea
by Wei Shi and Menghua Wang
Remote Sens. 2025, 17(15), 2726; https://doi.org/10.3390/rs17152726 - 6 Aug 2025
Viewed by 387
Abstract
Traditionally, the surface suspended particulate matter (SPM) and freshwater fluxes have been computed using in situ SPM, salinity, and current measurements or through the numerical modeling. In this study, satellite-derived SPM concentration, ocean current, and sea surface salinity (SSS) are used to demonstrate [...] Read more.
Traditionally, the surface suspended particulate matter (SPM) and freshwater fluxes have been computed using in situ SPM, salinity, and current measurements or through the numerical modeling. In this study, satellite-derived SPM concentration, ocean current, and sea surface salinity (SSS) are used to demonstrate the capability to characterize and quantify the surface SPM flux and freshwater flux in the Yellow Sea (YS) and East China Sea (ECS). The different routes for SPM and freshwater to transport from the coastal region to the interior ECS are identified. The seasonal and interannual SPM and freshwater fluxes from the coastal region of the ECS are further characterized and quantified. The average SPM flux reaches ~0.3–0.4 g m−2 s−1 along the route. The SPM and the freshwater fluxes in the region show different seasonality. The intensified SPM flux from the ECS coast to the offshore in winter is one order higher than the SPM flux in summer, while the offshore freshwater flux peaks in summer and weakens significantly in winter. Particularly, we found that the SPM and SSS features in the ECS changed in response to the 2020 summer Yangtze River flood event. These spatial and temporal changes for SPM and SSS in the ECS in the 2020 summer and early autumn were attributed to the anomalous surface SPM and freshwater fluxes in the same period. Full article
(This article belongs to the Special Issue Remote Sensing for Ocean-Atmosphere Interaction Studies)
Show Figures

Figure 1

22 pages, 17693 KB  
Article
Mooring Observations of Typhoon Trami (2024)-Induced Upper-Ocean Variability: Diapycnal Mixing and Internal Wave Energy Characteristics
by Letian Chen, Xiaojiang Zhang, Ze Zhang and Weimin Zhang
Remote Sens. 2025, 17(15), 2604; https://doi.org/10.3390/rs17152604 - 27 Jul 2025
Viewed by 315
Abstract
High-resolution mooring observations captured diverse upper-ocean responses during typhoon passage, showing strong agreement with satellite-derived sea surface temperature and salinity. Analysis indicates that significant wind-induced mixing drove pronounced near-surface cooling and salinity increases at the mooring site. This mixing enhancement was predominantly governed [...] Read more.
High-resolution mooring observations captured diverse upper-ocean responses during typhoon passage, showing strong agreement with satellite-derived sea surface temperature and salinity. Analysis indicates that significant wind-induced mixing drove pronounced near-surface cooling and salinity increases at the mooring site. This mixing enhancement was predominantly governed by rapid intensification of near-inertial shear in the surface layer, revealed by mooring observations. Unlike shear instability, near-inertial horizontal kinetic energy displays a unique vertical distribution, decreasing with depth before rising again. Interestingly, the subsurface peak in diurnal tidal energy coincides vertically with the minimum in near-inertial energy. While both barotropic tidal forcing and stratification changes negligibly influence diurnal tidal energy emergence, significant energy transfer occurs from near-inertial internal waves to the diurnal tide. This finding highlights a critical tide–wave interaction process and demonstrates energy cascading within the oceanic internal wave spectrum. Full article
(This article belongs to the Special Issue Remote Sensing for Ocean-Atmosphere Interaction Studies)
Show Figures

Figure 1

Back to TopTop