Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (168)

Search Parameters:
Keywords = tunnel seismic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7100 KiB  
Article
Simulation of Strata Failure and Settlement in the Mining Process Using Numerical and Physical Methods
by Xin Wang, Wenshuai Li and Zhijie Zhang
Appl. Sci. 2025, 15(15), 8706; https://doi.org/10.3390/app15158706 (registering DOI) - 6 Aug 2025
Abstract
Coal mining can cause the rupture of the overlying strata, and the energy released by large-scale fractures can therefore induce earthquake disasters, which in turn can cause more secondary disasters. In the past 50 years, countless earthquakes induced by coal mining have been [...] Read more.
Coal mining can cause the rupture of the overlying strata, and the energy released by large-scale fractures can therefore induce earthquake disasters, which in turn can cause more secondary disasters. In the past 50 years, countless earthquakes induced by coal mining have been reported. In this paper, the main factors relating to the mining-induced seismicity, including the mechanical properties, geometry of the space, excavation advance, and excavation rate, are investigated using both experimental and numerical methods. The sensitivity of these factors behaves differently with regard to the stress distribution and failure mode. Space geometry and excavation advances have the highest impact on the surface settlement and the failure, while the excavation rate in practical engineering projects has the least impact on the failure mode. The numerical study coincides well with the experimental observation. The result indicates that the mechanical properties given by the geological survey report can be effectively used to assess the risk of mining-induced seismicity, and the proper adjustment of the tunnel geometry can largely reduce the surface settlement and improve the safety of mining. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 6085 KiB  
Article
Earthquake Precursors Based on Rock Acoustic Emission and Deep Learning
by Zihan Jiang, Zhiwen Zhu, Giuseppe Lacidogna, Leandro F. Friedrich and Ignacio Iturrioz
Sci 2025, 7(3), 103; https://doi.org/10.3390/sci7030103 - 1 Aug 2025
Viewed by 175
Abstract
China is one of the countries severely affected by earthquakes, making precise and timely identification of earthquake precursors essential for reducing casualties and property damage. A novel method is proposed that combines a rock acoustic emission (AE) detection technique with deep learning methods [...] Read more.
China is one of the countries severely affected by earthquakes, making precise and timely identification of earthquake precursors essential for reducing casualties and property damage. A novel method is proposed that combines a rock acoustic emission (AE) detection technique with deep learning methods to facilitate real-time monitoring and advance earthquake precursor detection. The AE equipment and seismometers were installed in a granite tunnel 150 m deep in the mountains of eastern Guangdong, China, allowing for the collection of experimental data on the correlation between rock AE and seismic activity. The deep learning model uses features from rock AE time series, including AE events, rate, frequency, and amplitude, as inputs, and estimates the likelihood of seismic events as the output. Precursor features are extracted to create the AE and seismic dataset, and three deep learning models are trained using neural networks, with validation and testing. The results show that after 1000 training cycles, the deep learning model achieves an accuracy of 98.7% on the validation set. On the test set, it reaches a recognition accuracy of 97.6%, with a recall rate of 99.6% and an F1 score of 0.975. Additionally, it successfully identified the two biggest seismic events during the monitoring period, confirming its effectiveness in practical applications. Compared to traditional analysis methods, the deep learning model can automatically process and analyse recorded massive AE data, enabling real-time monitoring of seismic events and timely earthquake warning in the future. This study serves as a valuable reference for earthquake disaster prevention and intelligent early warning. Full article
Show Figures

Figure 1

20 pages, 3560 KiB  
Article
Study on Vibration Effects and Optimal Delay Time for Tunnel Cut-Blasting Beneath Existing Railways
by Ruifeng Huang, Wenqing Li, Yongxiang Zheng and Zhong Li
Appl. Sci. 2025, 15(15), 8365; https://doi.org/10.3390/app15158365 - 28 Jul 2025
Viewed by 183
Abstract
With the development of underground space in urban areas, the demand for tunneling through existing railways is increasing. The adverse effects of cut-blasting during the construction of tunnels under crossing existing railways are investigated. Combined with the principle of blasting seismic wave superposition, [...] Read more.
With the development of underground space in urban areas, the demand for tunneling through existing railways is increasing. The adverse effects of cut-blasting during the construction of tunnels under crossing existing railways are investigated. Combined with the principle of blasting seismic wave superposition, LS-DYNA numerical simulation is used to analyze the seismic wave superposition law under different superposition methods. This study also investigates the vibration reduction effect of millisecond blasting for cut-blasting under the different classes of surrounding rocks. The results show that the vibration reduction forms of millisecond blasting can be divided into separation and interference of waveform. Based on the principle of superposition of blasting seismic waves, vibration reduction through wave interference is further divided. At the same time, a new vibration reduction mode is proposed. This vibration reduction mode can significantly improve construction efficiency while improving damping efficiency. The new vibration reduction mode can increase the vibration reduction to 80% while improving construction efficiency. Additionally, there is a significant difference in the damping effect of different classes of surrounding rock on the blasting seismic wave. Poor-quality surrounding rock enhances the attenuation of seismic wave velocity and peak stress in the surrounding rock. In the Zhongliangshan Tunnel, a tunnel cut-blasting construction at a depth of 42 m, the best vibration reduction plan of Class III is 3 ms millisecond blasting, in which the surface points achieve separation vibration reduction. The best vibration reduction plan of Class V is 1 ms millisecond blasting, in which the surface points achieve a new vibration reduction mode. During the tunnel blasting construction process, electronic detonators are used for millisecond blasting of the cut-blasting. This method can reduce the vibration effects generated by blasting. The stability of the existing railway is ultimately guaranteed. This can improve construction efficiency while ensuring construction safety. This study can provide significant guidance for the blasting construction of the tunnel through the railway. Full article
Show Figures

Figure 1

24 pages, 5817 KiB  
Article
Shaking Table Test of a Subway Station–Soil–Aboveground Structures Interaction System: Structural Impact on the Field
by Na Hong, Yan Ling, Zixiong Yang, Xiaochun Ha and Bin Xu
Buildings 2025, 15(13), 2223; https://doi.org/10.3390/buildings15132223 - 25 Jun 2025
Viewed by 415
Abstract
The seismic design of underground or aboveground structures is commonly based on the free-field assumption, which neglects the interaction between underground structures–soil–aboveground structures (USSI). This simplification may lead to unsafe or overly conservative, cost-intensive designs. To address this limitation, a series of shaking [...] Read more.
The seismic design of underground or aboveground structures is commonly based on the free-field assumption, which neglects the interaction between underground structures–soil–aboveground structures (USSI). This simplification may lead to unsafe or overly conservative, cost-intensive designs. To address this limitation, a series of shaking table tests were conducted on a coupled USSI system, in which the underground component consisted of a subway station connected to tunnels through structural joints to investigate the “city effect” on-site seismic response, particularly under long-period horizontal seismic excitations. Five test configurations were developed, including combinations of one or two aboveground structures, with or without a subway station. These were compared to a free-field case to evaluate differences in dynamic characteristics, acceleration amplification factors (AMFs), frequency content, and response spectra. The results confirm that boundary effects were negligible in the experimental setup. Notably, long-period seismic inputs had a detrimental impact on the field response when structures were present, with the interaction effects significantly altering surface motion characteristics. The findings demonstrate that the presence of a subway station and/or aboveground structure alters the seismic response of the soil domain, with clear dependence on the input motion characteristics and relative structural positioning. Specifically, structural systems lead to de-amplification under high-frequency excitations, while under long-period inputs, they suppress short-period responses and amplify long-period components. These insights emphasize the need to account for USSI effects in seismic design and retrofitting strategies, particularly in urban environments, to achieve safer and more cost-effective solutions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 3189 KiB  
Article
Microscopic Numerical Analysis of Sand Liquefaction Under Subway Train Load
by Jin Zhang, Jiale Yang, Chuanlong Xu, Xianzhang Ling, Chen Liu and Mohsen Saleh Asheghabadi
Appl. Sci. 2025, 15(12), 6874; https://doi.org/10.3390/app15126874 - 18 Jun 2025
Viewed by 283
Abstract
Long-term vibrations from metro trains can cause liquefaction of water-rich sandy soil foundations, affecting the safety of operational tunnels. However, existing liquefaction studies mainly focus on seismic loads, and the macro-meso-mechanical mechanisms of liquefaction induced by train vibration loads remain unclear, which hinders [...] Read more.
Long-term vibrations from metro trains can cause liquefaction of water-rich sandy soil foundations, affecting the safety of operational tunnels. However, existing liquefaction studies mainly focus on seismic loads, and the macro-meso-mechanical mechanisms of liquefaction induced by train vibration loads remain unclear, which hinders the establishment of effective liquefaction prediction and evaluation methods. To investigate the microscopic mechanisms underlying sand liquefaction caused by train-induced vibrations, this study employs PFC3D discrete element software in conjunction with laboratory experiments to analyze the microscopic parameters of the unit cell. The findings indicate that the coordination number, mechanical coordination number, porosity, contact force chains, and strain energy all decrease with increasing vibration frequency. Conversely, the pore pressure, anisotropy, and energy exhibit opposite trends, continuing until the sample reaches a state of liquefaction failure. Notably, when the dynamic stress amplitude increases or the loading frequency decreases, the rate of reduction in coordination number, mechanical coordination number, porosity, contact force chains, and strain energy becomes more pronounced. Similarly, the rate of increase in pore pressure and anisotropy is more significant under these conditions. The research findings can provide a reference for the design of metro projects and liquefaction mitigation measures, thereby enhancing the safety and reliability of urban metro transportation systems. Full article
Show Figures

Figure 1

16 pages, 23356 KiB  
Article
Experimental Seismic Surveying in a Historic Underground Metals Mine
by John H. McBride, Lex Lambeck, Kevin A. Rey, Stephen T. Nelson and R. William Keach
Geosciences 2025, 15(6), 221; https://doi.org/10.3390/geosciences15060221 - 12 Jun 2025
Viewed by 337
Abstract
Underground mine surveys present unique challenges, including the logistics of deploying an energy source, placing geophones in solid rock, managing reverberation from the adit, and ensuring safety. We present the results of seismic surveying at the historic Deer Trail Mine in south-central Utah [...] Read more.
Underground mine surveys present unique challenges, including the logistics of deploying an energy source, placing geophones in solid rock, managing reverberation from the adit, and ensuring safety. We present the results of seismic surveying at the historic Deer Trail Mine in south-central Utah (USA). The mine is located along the eastern side of the Tushar Range. The surveys utilised a narrow, mostly horizontal adit, 120–510 m below the ground surface. The country rock consists of highly fractured and mineralised Permian to Pennsylvanian quartzites, shales, and limestones. A short test of a 96-channel common midpoint (CMP) P-wave profile was conducted using an accelerated weight-dropper source. We supplemented the P-wave survey with tests of surface-wave dispersion and horizontal-vertical spectral ratio modelling for shallow S-wave structure. These tests confirmed the capability to map shallow, small-scale structure. A conventional CMP 264-channel survey with an explosive source covered 1728 m. A static recording array was used for both surveys with 4.5-Hz vertical geophones. The conventional CMP profile imaged horizontal and dipping reflectors down to about 2000 m, interpreted as lithologic variations in the bedrock. Our study demonstrates the potential for high-resolution seismic exploration in an unconventional and challenging setting to guide the exploitation of deeply buried mineral resources. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

16 pages, 4809 KiB  
Article
First-Arrival Tomography for Mountain Tunnel Hazard Assessment Using Unmanned Aerial Vehicle Seismic Source and Enhanced by Supervirtual Interferometry
by Jun Zhang, Rongyi Qian, Zhenning Ma, Xiaoqiong Lei, Jianyu Ling, Xu Liu and Guibin Zhang
Remote Sens. 2025, 17(10), 1686; https://doi.org/10.3390/rs17101686 - 11 May 2025
Viewed by 467
Abstract
Preliminary tunnel surveys are essential for identifying geological hazards such as aquifers, faults, and karstic zones. While first-arrival tomography is effective for imaging shallow anomalies, traditional seismic sources face significant limitations in forested mountainous regions due to mobility, cost, and environmental impact. To [...] Read more.
Preliminary tunnel surveys are essential for identifying geological hazards such as aquifers, faults, and karstic zones. While first-arrival tomography is effective for imaging shallow anomalies, traditional seismic sources face significant limitations in forested mountainous regions due to mobility, cost, and environmental impact. To address this, we deployed a seismic source delivered by an unmanned aerial vehicle (UAV) for a highway tunnel survey in Lijiang, China. The UAV system, paired with nodal geophones, enabled rapid, low-impact, and high-resolution data acquisition in rugged terrain. To enhance the weak far-offset refractions affected by near-surface attenuation, we applied supervirtual refraction interferometry (SVI), which significantly improved the signal-to-noise ratio and expanded the usable first-arrival dataset. The combined use of UAV excitation and SVI processing produced a high-precision P-wave velocity model through traveltime tomography, aligned well with borehole data. This model revealed the spatial distribution of weathered zones and bedrock interfaces, and allowed us to infer potential fracture zones. The results offer critical guidance for tunnel alignment and hazard mitigation in complex geological settings. Full article
Show Figures

Figure 1

28 pages, 4167 KiB  
Article
Analytical Solution for Rayleigh Wave-Induced Dynamic Response of Shallow Grouted Tunnels in Saturated Soil
by Haifeng Huang, Mingyu Chang, Pengfa Zhou, Yang Luo, Chao Wang, Yusheng Shen, Kaixiang Fan and Bo Gao
Buildings 2025, 15(10), 1589; https://doi.org/10.3390/buildings15101589 - 8 May 2025
Viewed by 427
Abstract
The dynamic interaction between shallow cylindrical tunnels with grouting reinforcement zones and saturated poroelastic medium under Rayleigh surface wave excitation is investigated. Employing the wave function expansion method within the framework of Biot theory, the analytical solution is derived in the frequency domain. [...] Read more.
The dynamic interaction between shallow cylindrical tunnels with grouting reinforcement zones and saturated poroelastic medium under Rayleigh surface wave excitation is investigated. Employing the wave function expansion method within the framework of Biot theory, the analytical solution is derived in the frequency domain. A comprehensive parametric analysis evaluates the influence of critical parameters—including input frequency, the stiffness and thickness ratios between the tunnel lining and grouting zone, as well as tunnel burial depth—on the dynamic behavior of the composite structure. The spatial distributions of dynamic stress concentration factors and pore pressure concentration factors obtained in this study may offer critical insights for optimizing seismic resilience design in tunnel engineering. Full article
(This article belongs to the Special Issue New Challenges of Underground Structures in Earthquake Engineering)
Show Figures

Figure 1

28 pages, 17234 KiB  
Article
Three-Dimensional Seismic Analysis of Symmetrical Double-O-Tube Shield Tunnel
by Chia-Feng Hsu, Chih-Hsiung Huang, Yeou-Fong Li, Shong-Loong Chen and Cheng-Der Wang
Symmetry 2025, 17(5), 719; https://doi.org/10.3390/sym17050719 - 8 May 2025
Viewed by 546
Abstract
The symmetrical Double-O-Tube (DOT) shield tunneling method, first developed in Japan in the 1980s, offers advantages in optimizing cross-sectional area and reducing construction space. While past studies have primarily focused on construction-induced settlement or empirical modeling, this study presents the first comprehensive three-dimensional [...] Read more.
The symmetrical Double-O-Tube (DOT) shield tunneling method, first developed in Japan in the 1980s, offers advantages in optimizing cross-sectional area and reducing construction space. While past studies have primarily focused on construction-induced settlement or empirical modeling, this study presents the first comprehensive three-dimensional seismic analysis of Taiwan’s first DOT shield tunnel, part of the CA450A contract of the Taoyuan International Airport MRT. A detailed numerical simulation is conducted using PLAXIS 3D 2024 with the Hardening Soil model, capturing both static and dynamic responses under earthquake loading. Notably, the analysis incorporates full-direction seismic input (3D) using Arias intensity-based filtering and scaling to assess the tunnel’s mechanical behavior under varying seismic intensities. Key structural responses such as displacement, axial force, shear force, and bending moment are evaluated. The findings reveal critical deformation patterns and stress concentrations in the central support structure, offering novel insights for the seismic design of complex multi-cell shield tunnels in high-risk seismic zones. Full article
(This article belongs to the Special Issue Symmetry in Finite Element Modeling and Mechanics)
Show Figures

Figure 1

15 pages, 4805 KiB  
Article
Experimental Study on the Interfacial Shear Behavior Between ECC and Foamed Concrete
by Runtao Li, Zude Ding, Shunguo Wang, Juan Huang and Caipeng Zhu
Buildings 2025, 15(10), 1582; https://doi.org/10.3390/buildings15101582 - 8 May 2025
Viewed by 379
Abstract
In tunnel structures that traverse active fault zones, a vibration isolation layer is often installed between the primary support and the secondary lining. As a result, a three-layer flexible support structure composed of the initial support, damping layer, and secondary lining is formed. [...] Read more.
In tunnel structures that traverse active fault zones, a vibration isolation layer is often installed between the primary support and the secondary lining. As a result, a three-layer flexible support structure composed of the initial support, damping layer, and secondary lining is formed. Currently, there is limited research on the mechanical behavior of interlayer interfaces. To address this, mechanical performance tests were conducted on composite specimens under compression-shear conditions, including foam concrete paired with C30 ordinary concrete (PC specimens) and foam concrete paired with Engineered Cementitious Composites (PE specimens). The interfacial shear mechanical properties under varying normal loads were analyzed. The results indicate that the shear mechanical properties of both PC and PE interfaces increase with rising normal stress. Under identical normal stress conditions, the PC interface exhibits higher shear strength, shear modulus, and shear-slip energy compared to the PE interface, but its failure displacement is smaller. When the normal stress increases from 0 MPa to 2 MPa, the interfacial shear strength of PC specimens increases by 1.6 times, while that of PE specimens increases by 2.7 times. The residual shear strength of the PC specimens and PE specimens increased by 6.1 times and 15.3 times, respectively. B Established the maximum shear strength formulas for PC specimens and PE specimens. These findings provide a scientific basis for the design of tunnel shock-absorbing layers and ductile linings. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

34 pages, 7092 KiB  
Article
Research on the Influence of Engineered Cementitious Composite’s Water–Cement Ratio and Fiber Content on the Mechanical Performance of Foam Lightweight Soil
by Qingguo Yang, Yu Zhou, Ya Li, Kelin Chen, Wujing Yin and Yunhao Li
Buildings 2025, 15(9), 1479; https://doi.org/10.3390/buildings15091479 - 27 Apr 2025
Viewed by 428
Abstract
This study explores the influence of the water–cement ratio and fiber content in engineered cementitious composite (ECC) on the mechanical characteristics of foamed lightweight soil (FLS) through experimental analysis. Two types of cementitious materials—ECC and ordinary Portland cement (OPC)—were utilized to create FLS [...] Read more.
This study explores the influence of the water–cement ratio and fiber content in engineered cementitious composite (ECC) on the mechanical characteristics of foamed lightweight soil (FLS) through experimental analysis. Two types of cementitious materials—ECC and ordinary Portland cement (OPC)—were utilized to create FLS specimens under identical parameters to examine their mechanical performance. Results indicate that ECC-FLS exhibits superior toughness, plasticity, and ductility compared to OPC-FLS, validating the potential of ECC as a high-performance material for FLS. To assess the influence of the ECC water–cement ratio, specimens were constructed with varying ratios at 0.2, 0.25, and 0.3, while maintaining other parameters as constant. The experimental results indicate that as the water–cement ratio of ECC increases, the flexural strength, compressive strength, flexural toughness, and compressive elastic modulus of the lightweight ECC-FLS gradually increase, exhibiting a better mechanical performance. Moreover, this study investigates the effect of basalt fiber content in ECC on the mechanical properties of FLS. While keeping other parameters constant, the volume content of basalt fibers varied at 0.1%, 0.3%, and 0.5%, respectively. The experimental results demonstrate that within the range of 0 to 0.5%, the mechanical properties of FLS improved with increasing fiber content. The fibers in ECC effectively enhanced the strength of FLS. In conclusion, the adoption of ECC and appropriate fiber content can significantly optimize the mechanical performance of FLS, endowing it with broader application prospects in engineering practices. ECC-FLS, characterized by excellent ductility and crack resistance, demonstrates versatile engineering applications. It is particularly suitable for soft soil foundations or regions prone to frequent geological activities, where it enhances the seismic resilience of subgrade structures. This material also serves as an ideal construction solution for underground utility tunnels, as well as for the repair and reconstruction of pavement and bridge decks. Notably, ECC-FLS enables the resource utilization of industrial solid wastes such as fly ash and slag, thereby contributing to carbon emission reduction and the realization of a circular economy. These attributes collectively position HDFLS as a sustainable and high-performance construction material with significant potential for promoting environmentally friendly infrastructure development. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 29455 KiB  
Article
Deformation Analysis of Nuclear Power Shield Tunnel by Longitudinal Response Displacement Method Considering Fluid–Solid Coupling
by Yijiang Fan, Jie Zhao, Xiaodong Yu, Cheng Fan and Bo Qian
Buildings 2025, 15(8), 1365; https://doi.org/10.3390/buildings15081365 - 19 Apr 2025
Viewed by 523
Abstract
The joint of a shield tunnel segment is the weak part of tunnel, and the opening amount of the joint seriously affects the watertightness of the internal structure of the tunnel. In this experiment, a model was created with ANSYS, the fluid–solid coupling [...] Read more.
The joint of a shield tunnel segment is the weak part of tunnel, and the opening amount of the joint seriously affects the watertightness of the internal structure of the tunnel. In this experiment, a model was created with ANSYS, the fluid–solid coupling effect of the seawater and seabed was considered using the SuperFLUSH/2D 6.0 software, and the local site effect was considered by free-field seismic response analysis. Considering the structure and stress characteristics of the shield tunnel in conjunction with the marine area, earthquake research on shield tunnel culverts was conducted using lateral and longitudinal beam–spring models. The main focus of this article is to study the earthquake resistance of shield tunnel joints under extreme seismic excitation (SL-2) in complex marine environments. The results indicated that in the lateral analysis, under varying soil layer conditions, the diameter deformation rates for sections 1 and 2 using high-strength bolts were 1.752% and 1.334%, respectively, while the joint-opening amounts were 0.515 mm and 0.387 mm, respectively. This suggests that locations with thicker silt layers exhibit larger joint-opening amounts and are more susceptible to deformation. In the longitudinal analysis, when bolt strength varied, the maximum joint-opening ranged from 4.706 mm to 6.507 mm, and the maximum dislocation ranged from 0.625 mm to 1.326 mm. The deformation rule of the joint bolts followed the pattern that higher stiffness led to smaller deformation, whereas poorer geological conditions resulted in larger deformation. Therefore, the interface between soft and hard strata is a weak point in the longitudinal seismic resistance of the shield tunnel structure. The conclusions of this study can supplement the seismic research on shield tunnels in the marine areas of nuclear power plants. Full article
Show Figures

Figure 1

24 pages, 12283 KiB  
Article
Seismic Performance of Modal Transfer Stations on Soft Clays
by Juan Manuel Mayoral, Mauricio Pérez, Azucena Román-de la Sancha and Jimena Rosas
Appl. Sci. 2025, 15(6), 3406; https://doi.org/10.3390/app15063406 - 20 Mar 2025
Viewed by 469
Abstract
In densely populated urban zones, seismic performance evaluation of strategic infrastructure during seismic events has become more challenging because the distance between surface and underground structures has been shortened to optimize the urban environment functionality. This is even more important in transit transfer [...] Read more.
In densely populated urban zones, seismic performance evaluation of strategic infrastructure during seismic events has become more challenging because the distance between surface and underground structures has been shortened to optimize the urban environment functionality. This is even more important in transit transfer stations, which usually comprise tunnels, bridges, and buildings, in which wave propagation interference is exacerbated. This paper explores the seismic interactions between on-ground and underground structures in soft-soil environments, focusing on a typical urban modal transfer station in Mexico City. The study is conducted through comprehensive parametric analyses using 3D numerical simulations in FLAC3D (v.6.0), considering both intraplate and interplate earthquakes, to assess the effect of differences in their frequency content, duration, and intensity. Multiple scenarios are considered in the numerical study, and the relative distances among the structures are varied to investigate both detrimental and beneficial interaction effects, and to identify the zone of influence where this interaction leads to ground motion variability. The study’s findings established the key variables in the interaction between underground and on-ground structures, providing valuable insights into the seismic design and retrofitting of urban infrastructure in densely populated areas. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 9802 KiB  
Article
Multi-Means Comprehensive Forecasting Technology for Water Inrush in Long Tunnels
by Jingxi Yang, Qi Ma, Huabo Xiao, Xinyuan Wei, Fei Yan, Wencong Zhang, Jingwen Chen, Zhou Xiao and Guoqing Wang
Appl. Sci. 2025, 15(6), 3332; https://doi.org/10.3390/app15063332 - 18 Mar 2025
Viewed by 311
Abstract
In response to the challenges of detecting and forecasting adverse geological bodies and water inrush risks in long tunnels, this paper, based on the comprehensive analysis of seismic reflection waves and electroseismic effect coupling, has achieved a long-distance tunnel construction process, adverse geological [...] Read more.
In response to the challenges of detecting and forecasting adverse geological bodies and water inrush risks in long tunnels, this paper, based on the comprehensive analysis of seismic reflection waves and electroseismic effect coupling, has achieved a long-distance tunnel construction process, adverse geological detection, and early warning, and has realized precise forecasting of the scale and location of adverse water-containing bodies. Meanwhile, the transient electromagnetic theory and technology for detecting the position and scale of water-containing bodies have been proposed, achieving medium-distance water inrush risk detection. Finally, for water-containing bodies that are close, ground penetrating radar methods are used for detection and forecasting to achieve the purpose of close-range detection and forecasting. Ultimately, a comprehensive detection and forecasting theory and technology for adverse geological bodies and water inrush in long tunnels using electromagnetic, seismic wave, and electroseismic multi-means at long, medium, and short distances have been established. This technology has been applied to the detection and forecasting of adverse geology and water inrush in a tunnel in Fuzhou, and good application effects have been achieved through on-site excavation verification. By multi-means comprehensive forecasting technology and early warning systems, fine detection of adverse geology and water inrush during the tunnel construction process can be achieved, providing guidance and support for the safe construction of tunnels. Full article
Show Figures

Figure 1

18 pages, 8561 KiB  
Article
Analysis of Tunnel Lining Damage Characteristics Under the Combined Actions of Fault Dislocation and Seismic Action
by Jiaxuan Du, Songhong Yan, Weiyu Sun, Yuxiang Li and Mingxing Cao
Appl. Sci. 2025, 15(3), 1150; https://doi.org/10.3390/app15031150 - 23 Jan 2025
Viewed by 887
Abstract
Tunnels crossing active faults frequently experience simultaneous exposure to fault dislocation and seismic action during operation. To study the damage behavior of tunnels under the combined effects of fault dislocation and seismic action, a three-dimensional nonlinear finite element model was established. This model [...] Read more.
Tunnels crossing active faults frequently experience simultaneous exposure to fault dislocation and seismic action during operation. To study the damage behavior of tunnels under the combined effects of fault dislocation and seismic action, a three-dimensional nonlinear finite element model was established. This model simulates fault dislocation superimposed on seismic action in the context of tunnel engineering through active faults. The main conclusions are as follows: (1) The acceleration amplification phenomenon occurs in the tunnels after the superposition of seismic action; at the same time, the degree and scope of tunnel damage increase significantly, in which the increase in tensile damage is more significant. (2) The initial damage from fault dislocation worsens tunnel damage under seismic action, as evidenced by the energy dissipation characteristics. (3) As the initial fault displacement and peak seismic acceleration increase, the extent of lining damage also increases. Notably, compressive damage to the lining is symmetrically distributed along the fault plane, whereas tensile damage is significantly more severe within the fault rupture zone. (4) Even moderate earthquakes can cause severe damage to tunnels crossing active faults. Therefore, tunnel construction in these areas must include disaster prevention and mitigation strategies. Full article
(This article belongs to the Special Issue Advances in Tunnelling and Underground Space Technology)
Show Figures

Figure 1

Back to TopTop