Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (282)

Search Parameters:
Keywords = tunnel junction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4669 KB  
Article
Comparative Buffer and Spacer Layer Engineering in Co/Pt-Based Perpendicular Synthetic Antiferromagnets
by Mehmet Emre Aköz, Frowin Dörr, Ahmet Yavuz Oral and Yasser Shokr
Magnetochemistry 2026, 12(1), 13; https://doi.org/10.3390/magnetochemistry12010013 - 19 Jan 2026
Viewed by 211
Abstract
Perpendicular magnetic tunnel junctions (p-MTJs) rely on synthetic antiferromagnets (SAFs) as reference layers to achieve strong perpendicular magnetic anisotropy (PMA) together with stable interlayer exchange coupling. In this study, we present a comparative materials study of buffer and spacer layer engineering in Co/Pt-based [...] Read more.
Perpendicular magnetic tunnel junctions (p-MTJs) rely on synthetic antiferromagnets (SAFs) as reference layers to achieve strong perpendicular magnetic anisotropy (PMA) together with stable interlayer exchange coupling. In this study, we present a comparative materials study of buffer and spacer layer engineering in Co/Pt-based perpendicular synthetic antiferromagnets (p-SAFs). The influence of buffer layer selection, number of multilayer repeats, and annealing at 330 °C for 30 min on PMA and interlayer exchange coupling is systematically examined. Co/Pt multilayers with four and six repeats were grown on Ta/Ru and Ta/CuN buffer layers separately, followed by the fabrication of SAF structures incorporating Ru spacers with thickness between 0.60 and 0.80 nm. Magnetic measurements show that Ta/Ru-buffered structures exhibit squarer hysteresis loops, higher remanence, and greater tolerance to annealing at 330 °C for 30 min compared to Ta/CuN-buffered counterparts. The SAF structures display clear two-step magnetization reversal and robust antiferromagnetic coupling across the investigated Ru thickness range, with large exchange fields and bias fields in the deposited state. Although annealing reduces the absolute coupling strength, a Ru spacer thickness of 0.60 nm retains the strongest antiferromagnetic response within the studied thermal budget. These results underscore the importance of comparative buffer and spacer layer engineering and provide materials insights into the design of Co/Pt-based p-SAF reference stacks that may inform future p-MTJ structures. Full article
Show Figures

Figure 1

13 pages, 2529 KB  
Article
Tuning Nanoscale Conductance in Cyclic Molecules via Molecular Length and Anchoring Groups
by Abdullah Alshehab, Turki Alotaibi and Ali K. Ismael
Nanomaterials 2026, 16(2), 83; https://doi.org/10.3390/nano16020083 - 7 Jan 2026
Viewed by 437
Abstract
This theoretical study investigates the electrical conductance of non-conjugated cyclic molecules featuring three terminal anchoring groups at the single-molecule level. Density Functional Theory (DFT) calculations demonstrate that the conductance of the symmetric and asymmetric cyclic structures C6C6, C6 [...] Read more.
This theoretical study investigates the electrical conductance of non-conjugated cyclic molecules featuring three terminal anchoring groups at the single-molecule level. Density Functional Theory (DFT) calculations demonstrate that the conductance of the symmetric and asymmetric cyclic structures C6C6, C6C8, C6C10, C8C8, C8C10, and C10C10 (where the numbers indicate the lengths of the upper and lower branches) decreases with increasing molecular length, independent of the anchor group chemistry. Distinct trends are observed across molecular series: the 6-unit branch—defined as molecules containing a common six-carbon saturated segment (e.g., C4C6, C6C6, C6C8, C6C10)—exhibits a non-conventional pattern, whereas the 8-unit and 10-unit branches display parabolic and conventional length-dependent behavior, respectively. A key finding is that cyclic molecules with identical total CH2 units exhibit nearly identical conductance values, irrespective of structural symmetry. These theoretical predictions are strongly supported by previously reported scanning tunneling microscopy break-junction measurements, establishing a fundamental structure–property relationship for sigma-conjugated molecular systems. These findings provide critical design principles for developing advanced molecular-scale electronic devices. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

16 pages, 3028 KB  
Article
Simulation of a Multiband Stacked Antiparallel Solar Cell with over 70% Efficiency
by Rehab Ramadan, Kin Man Yu and Nair López Martínez
Materials 2025, 18(24), 5625; https://doi.org/10.3390/ma18245625 - 15 Dec 2025
Viewed by 337
Abstract
Multiband solar cells offer a promising route to surpass the Shockley-Queisser limit by harnessing sub-bandgap photons through three active energy band transitions. However, realizing their full potential requires overcoming key challenges in material design and device architecture. Here, we propose a novel multiband [...] Read more.
Multiband solar cells offer a promising route to surpass the Shockley-Queisser limit by harnessing sub-bandgap photons through three active energy band transitions. However, realizing their full potential requires overcoming key challenges in material design and device architecture. Here, we propose a novel multiband stacked anti-parallel junction solar cell structure based on highly mismatched alloys (HMAs), in particular dilute GaAsN with ~1–4% N. An anti-parallel junction consists of two semiconductor junctions connected with opposite polarity, enabling bidirectional current control. The structures of the proposed devices are based on dilute GaAsN with anti-parallel junctions, which allow the elimination of tunneling junctions—a critical yet complex component in conventional multijunction solar cells. Semiconductors with three active energy bands have demonstrated the unique properties of carrier transport through the stacked anti-parallel junctions via tunnel currents. By leveraging highly mismatched alloys with tailored electronic properties, our design enables bidirectional carrier generation through forward- and reverse-biased diodes in series, significantly enhancing photocurrent extraction. Through detailed SCAPS-1D simulations, we demonstrate that strategically placed blocking layers prevent carrier recombination at contacts while preserving the three regions of photon absorption in a single multiband semiconductor p/n junction. Remarkably, our optimized five-stacked anti-parallel junctions structure achieves a maximum theoretical conversion efficiency of 70% under 100 suns illumination, rivaling the performance of state-of-the-art six-junctions III-V solar cells—but without the fabrication complexity of multijunction solar cells associated with tunnel junctions. This work establishes that highly mismatched alloys are a viable platform for high efficiency solar cells with simplified structures. Full article
Show Figures

Figure 1

14 pages, 7130 KB  
Article
The Ta Seed-Buffer Layer Microstructure and Its Influence on the Magnetic and Structural Parameters of CoFeB/MgO Layers
by Jarosław Kanak, Monika Cecot, Witold Skowroński, Antoni Żywczak, Marta Gajewska, Jerzy Wrona, Wiesław Powroźnik and Maciej Czapkiewicz
Materials 2025, 18(24), 5558; https://doi.org/10.3390/ma18245558 - 11 Dec 2025
Viewed by 352
Abstract
In this paper, we discuss the structural and magnetic properties of Ta(d)/Co40Fe40B20/MgO/Ta multilayers. The CoFeB wedge layer was deposited on three buffers differing in Ta layer thickness: d = 5, 10, and 15 nm. A [...] Read more.
In this paper, we discuss the structural and magnetic properties of Ta(d)/Co40Fe40B20/MgO/Ta multilayers. The CoFeB wedge layer was deposited on three buffers differing in Ta layer thickness: d = 5, 10, and 15 nm. A structural analysis showed that the Ta seed-buffer of 5 nm was amorphous, whereas thicker Ta grew in a β-tetragonal disordered structure. X-ray reflectivity measurements revealed that the Ta/CoFeB interface roughness for annealed samples ranged from 0.55 to 0.67 nm for a sample with a 0.85 nm CoFeB layer and decreased to approximately 0.47 nm for thicker CoFeB layers, while the average interface CoFeB/MgO thickness was about 0.2–0.3 nm. The morphological roughness of the amorphous single 5 nm Ta layer was the lowest, whereas crystalline grains in thicker Ta buffers induced higher roughness. The 5 nm thick MgO layer exhibited a strong (001)-oriented texture, which was the highest for the smoothest 5 nm Ta buffer. The magnetic dead layer thickness for the annealed sample with a 15 nm Ta buffer was 0.39 nm and increased with the decrease in the Ta buffer thickness. Temperature-dependent measurements offered further insight into the diffusion processes and the formation of the magnetic dead layer (MDL) at the Ta/CoFeB interface. Full article
Show Figures

Figure 1

15 pages, 2498 KB  
Article
A Hybrid CMOS-MTJ Polymorphic Logic for Secure and Versatile IC Design
by Rajat Kumar, Yogesh Sharma and Amit Kumar Goyal
Magnetochemistry 2025, 11(12), 108; https://doi.org/10.3390/magnetochemistry11120108 - 8 Dec 2025
Viewed by 458
Abstract
Recent advancements in nanotechnology have intensified research efforts to address security concerns like hardware trojans and intellectual property (IP) piracy, particularly by exploring novel alternatives to traditional MOSFET devices. Spin-based devices, known for their low power consumption, non-volatility, and seamless integration with silicon [...] Read more.
Recent advancements in nanotechnology have intensified research efforts to address security concerns like hardware trojans and intellectual property (IP) piracy, particularly by exploring novel alternatives to traditional MOSFET devices. Spin-based devices, known for their low power consumption, non-volatility, and seamless integration with silicon substrates, have emerged as promising candidates. This research proposes a novel approach to enhance the security of integrated circuits using spin-based devices known as magnetic tunnel junctions (MTJs). A Non-volatile Polymorphic Logic (NPL) is optimized and designed to perform multiple operations, effectively concealing its true functionality. The analytical studies conducted on the Cadence Virtuoso platform using TSMC 65 nm MOS technology demonstrate the feasibility and efficacy of the proposed approach. The proposed NPL circuit enables polymorphism by allowing the circuit to perform all one- and two-input Boolean logic operations, including NOT, AND/NAND, OR/NOR, and XOR/XNOR, through adjustments of applied keys. This dynamic functionality makes it challenging for attackers to determine the circuit’s true operation. The proposed design exhibits similar timing characteristics for different logic operations, which further complicates the tampering attempts. Additionally, the circuit’s layout is designed to be symmetric, ensuring the execution of all possible operations by the same physical layout. This provides post-manufacturing security from reverse engineering and finds its applications in securing custom IC designs against the evolving landscape of hardware-based threats. Full article
(This article belongs to the Special Issue Design and Application of Spintronic Devices)
Show Figures

Figure 1

17 pages, 6575 KB  
Article
Wind Load Distribution Characteristics of a Semi-Enclosed Sound Barrier at the Junction of a Single-Track Bridge and Three-Track Bridge of a High-Speed Railway
by Botao Li, Yinhui Bao, Guoqing Hu and Xun Zhang
Vibration 2025, 8(4), 75; https://doi.org/10.3390/vibration8040075 - 24 Nov 2025
Viewed by 392
Abstract
Due to its effective noise reduction, the semi-enclosed noise barrier is increasingly being applied in the construction of high-speed railways. However, there is still a lack of systematic research on the wind load distribution characteristics under natural crosswind, especially for the complex aerodynamic [...] Read more.
Due to its effective noise reduction, the semi-enclosed noise barrier is increasingly being applied in the construction of high-speed railways. However, there is still a lack of systematic research on the wind load distribution characteristics under natural crosswind, especially for the complex aerodynamic behavior of the intersection section of multi-line bridges. Therefore, the wind load distribution characteristics on the surface of the sound barrier under crosswind conditions are explored within the engineering context of a semi-enclosed acoustic barrier at the junction of a single-track bridge and a three-track bridge, using a combination of wind tunnel testing and numerical simulation. A rigid-body model with a geometric scale of 1:10 is established for the wind tunnel test. The wind load distribution characteristics of the two acoustic barriers are analyzed from the perspectives of mean wind pressure, pulsating wind pressure, and extreme wind pressure, respectively. FLUENT 2022 software is utilized to model the flow field characteristics of the sound barrier under two working conditions: windward and leeward. The results show that under the action of crosswind, the surface wind load of the sound barrier at the junction of the single/three-line bridge is very prominent, the maximum negative pressure shape coefficient is −4.516, and its distribution is dominated by negative pressure; that is, the sound barrier mainly bears suction. Compared with the semi-closed sound barrier on the single-track bridge, the extreme wind pressure at the semi-closed sound barrier on the three-track bridge and the junction of the two is more significant, which shows that this kind of area needs special attention in wind-resistant design. Full article
(This article belongs to the Special Issue Railway Dynamics and Ground-Borne Vibrations)
Show Figures

Figure 1

18 pages, 2526 KB  
Article
An Analysis of the Response of a Special-Shaped Integrated Pipe Gallery to Ground Fissure Activity During the Construction Period
by Yutong Zhang, Xueyan Wang, Feilong Yan, Li Wang and Nan Xiao
Buildings 2025, 15(22), 4014; https://doi.org/10.3390/buildings15224014 - 7 Nov 2025
Viewed by 407
Abstract
Distinct differences exist between utility tunnels with an irregular cross section and those with a conventional rectangular cross section in terms of construction processes and structural mechanical characteristics. Therefore, based on an ultra-long underground utility tunnel project in China, this study employs the [...] Read more.
Distinct differences exist between utility tunnels with an irregular cross section and those with a conventional rectangular cross section in terms of construction processes and structural mechanical characteristics. Therefore, based on an ultra-long underground utility tunnel project in China, this study employs the numerical analysis software ABAQUS 2016 to conduct an in-depth investigation into the construction process and mechanical behavior of an irregular cross-section tunnel subjected to fault dislocation activity. The analytical results indicate that utility tunnels with different cross-sectional types exhibit identical failure characteristics when intersected by a ground fissure. Specifically, as the fault dislocation magnitude increases, surface settlement continuously intensifies. The tunnel segment located on the hanging wall undergoes significant settlement deformation, whereas the segment on the footwall remains relatively stable. The tunnel as a whole demonstrates “bending deformation,” which is particularly pronounced at the location of the ground fissure. However, under oblique intersection conditions, the irregular cross-section tunnel generates greater tensile stresses than those generated in orthogonal intersection scenarios. Notably, relatively high tensile stresses concentrate at the junction between the main chamber and the auxiliary chamber. Consequently, segmentation and joint installation measures must be implemented in this area during the structural design phase, and targeted monitoring and reinforcement are essential during construction. Full article
Show Figures

Figure 1

14 pages, 2386 KB  
Article
Introduction of RKKY-pMTJ-Based Ultrafast Magnetic Sensor Architecture and Magnetic Multilayer Optimization
by Jaehun Cho and June-Seo Kim
Sensors 2025, 25(21), 6793; https://doi.org/10.3390/s25216793 - 6 Nov 2025
Cited by 1 | Viewed by 674
Abstract
A state-of-the-art tunnel magnetoresistance (TMR) sensor architecture, which is based on the perpendicularly magnetized magnetic tunnel junction (pMTJ), is introduced and engineered for ultrafast, high thermal stability, and linearity for magnetic field detection. Limitations in high-frequency environments, stemming from insufficient thermal stability and [...] Read more.
A state-of-the-art tunnel magnetoresistance (TMR) sensor architecture, which is based on the perpendicularly magnetized magnetic tunnel junction (pMTJ), is introduced and engineered for ultrafast, high thermal stability, and linearity for magnetic field detection. Limitations in high-frequency environments, stemming from insufficient thermal stability and slow recovery times in conventional TMR sensors, are overcome by this approach. The standard MRAM structure is modified, and the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction is employed to give a strong, internal restoring torque to the storage layer magnetization. Sensor linearity is also ensured by this RKKY mechanism, and rapid relaxation to the initial spin state is observed when an external field is removed. The structural and magnetic properties of the multilayer stack are experimentally demonstrated. Robust synthetic antiferromagnetic (SAF) coupling is confirmed by using polar MOKE spectroscopy with an optimal Ru insertion layer thickness (0.6 nm), which is essential for high thermal stability. Subsequently, an ultrafast response of this TMR sensor architecture is probed by micromagnetic simulations. The storage layer magnetization rapidly recovers to the SAF state within an ultrashort time of 5.78 to 5.99 ns. This sub-6 ns recovery time scale suggests potential operation into the hundreds of MHz range. Full article
(This article belongs to the Section State-of-the-Art Sensors Technologies)
Show Figures

Figure 1

21 pages, 5808 KB  
Article
Propagation Characteristics of Shock Waves and Distribution Features of Loads in T-Shaped Tunnels with Protected Door
by Lufeng Pei, Hujun Li, Zhen Wang, Guokai Zhang, Fei Gao and Song Sun
Appl. Sci. 2025, 15(20), 11210; https://doi.org/10.3390/app152011210 - 20 Oct 2025
Viewed by 866
Abstract
The study focuses on the T-shaped tunnel scenario with protective doors, performs explosion tests using aluminized explosives, and investigates the propagation patterns and loading characteristics of explosion shock waves in the straight tunnel, at the T-shaped junction, and within the semi-enclosed space in [...] Read more.
The study focuses on the T-shaped tunnel scenario with protective doors, performs explosion tests using aluminized explosives, and investigates the propagation patterns and loading characteristics of explosion shock waves in the straight tunnel, at the T-shaped junction, and within the semi-enclosed space in front of the protective door. It was observed that, in comparison to TNT explosives, the overpressure curve of aluminized explosives in the near-explosion zone exhibited a two- batch characteristic. The second batch presented the maximum overpressure peak. In contrast, in the far zone, the curve displayed a stable triangular waveform. In the main tunnel of the T-shaped opening with protective doors, it was found that the back blast surface located in front of the entrance to the main tunnel experienced the maximum momentum, which could be as high as 12 times greater than that of the reflection area on the blast-facing surface at the entrance of the main tunnel and the shock-wave pressure wave pattern can be divided into four batch. The regularities of each measurement point in multiple tests show consistency, highlighting the influence laws of the geometric structure on the wave pattern and load distribution. In addition, this paper integrates LS-DYNA numerical simulation with aerodynamics theory to reveal that shock waves generate expansion waves and oblique shock waves as they pass through the T-shaped opening. After two reflections off the main tunnel wall and the door, a stable propagation waveform is established. In addition, through dimensional analysis and in combination with the experimental results, the momentum at key positions was analyzed and predicted. This study offers a reference for the design of relevant engineering protection measures. Full article
(This article belongs to the Special Issue Advanced Blasting Technology for Mining)
Show Figures

Figure 1

12 pages, 1654 KB  
Article
Research on Open Magnetic Shielding Packaging for STT and SOT-MRAM
by Haibo Ye, Xiaofei Zhang, Nannan Lu, Jiawei Li, Jun Jia, Guilin Zhao, Jiejie Sun, Lei Zhang and Chao Wang
Micromachines 2025, 16(10), 1157; https://doi.org/10.3390/mi16101157 - 13 Oct 2025
Viewed by 919
Abstract
As an emerging type of non-volatile memory, magneto-resistive random access memory (MRAM) stands out for its exceptional reliability and rapid read–write speeds, thereby garnering considerable attention within the industry. The memory cell architecture of MRAM is centered around the magnetic tunnel junction (MTJ), [...] Read more.
As an emerging type of non-volatile memory, magneto-resistive random access memory (MRAM) stands out for its exceptional reliability and rapid read–write speeds, thereby garnering considerable attention within the industry. The memory cell architecture of MRAM is centered around the magnetic tunnel junction (MTJ), which, however, is prone to interference from external magnetic fields—a limitation that restricts its application in demanding environments. To address this challenge, we propose an innovative open magnetic shielding structure. This design demonstrates remarkable shielding efficacy against both in-plane and perpendicular magnetic fields, effectively catering to the magnetic shielding demands of both spin-transfer torque (STT) and spin–orbit torque (SOT) MRAM. Finite element magnetic simulations reveal that when subjected to an in-plane magnetic field of 40 mT, the magnetic field intensity at the chip level is reduced to nearly 1‰ of its original value. Similarly, under a perpendicular magnetic field of 40 mT, the magnetic field at the chip is reduced to 2‰ of its initial strength. Such reductions significantly enhance the anti-magnetic capabilities of MRAM. Moreover, the magnetic shielding performance remains unaffected by the height of the packaging structure, ensuring compatibility with various chip stack packaging requirements across different layers. The research presented in this paper holds immense significance for the realization of highly reliable magnetic shielding packaging solutions for MRAM. Full article
Show Figures

Figure 1

9 pages, 780 KB  
Article
Long-Term Stability and Histologic Evaluation of Orthodontically Driven Osteogenesis (ODO): A Preliminary Retrospective Study
by Federico Brugnami, Simonetta Meuli, Valentina Ventura and Davide Gentile
J. Clin. Med. 2025, 14(19), 6896; https://doi.org/10.3390/jcm14196896 - 29 Sep 2025
Cited by 1 | Viewed by 710
Abstract
Background: Orthodontically driven osteogenesis (ODO) is a surgical tunnel modification of periodontally accelerated osteogenic orthodontics (PAOO), combining selective corticotomy with bone grafting in sequential and/or segmental fashion. This is a minimally invasive approach that enhances periodontal health and allows orthodontic tooth movement [...] Read more.
Background: Orthodontically driven osteogenesis (ODO) is a surgical tunnel modification of periodontally accelerated osteogenic orthodontics (PAOO), combining selective corticotomy with bone grafting in sequential and/or segmental fashion. This is a minimally invasive approach that enhances periodontal health and allows orthodontic tooth movement beyond the original alveolar envelope. Considering the lack of long-term three-dimensional data on orthodontically driven osteogenesis (ODO), this study aims to quantitatively assess the long-term stability of alveolar bone and buccal cortical thickness following ODO, using CBCT imaging. The null hypothesis is that ODO does not result in significant changes in alveolar bone volume or cortical thickness over a seven-year follow-up period. Methods: Twenty patients (13 females, 7 males; mean age 27.4 ± 5.3 years) who had undergone orthodontically driven osteogenesis (ODO) using a minimally invasive tunnel approach and segmental corticotomy protocol followed by clear aligner therapy were retrospectively evaluated. The mean follow-up period after treatment was 7 years (range: 5–15 years). Cone beam computed tomography (CBCT) scans were obtained at one year postoperatively (T1) and again at the long-term follow-up visit (T2). Buccal bone thickness measurements were taken at standardized levels (3 mm, 5 mm, and 7 mm apical to the cementoenamel junction) and compared between T1 and T2 to evaluate bone stability over time. In addition, histologic evaluation of the previously grafted area was performed in two patients: one sample was collected during an alveolar ridge augmentation procedure six months after ODO, and the other during orthognathic surgery eight months after ODO. The samples were analyzed to assess new bone formation and integration of graft material. Results: Radiographic analysis showed long term stability of the new bone support. Histologic examination showed newly formed lamellar and reticular bone. Bone marrow showed no inflammatory infiltration, and bone particles were still detectable but incorporated in the newly created bone. Conclusions: Based on these findings, ODO appears to be a promising technique that could induce stable bone osteogenesis. A larger cohort study can enhance the evidence of these promising results to popularize this technique. Full article
(This article belongs to the Special Issue New Insights into Orthodontic Treatment)
Show Figures

Figure 1

23 pages, 12444 KB  
Article
Dynamic Responses and Damage Assessment of Submerged Floating Tunnel Under Explosive Loads
by Xiangji Ye, Ming Wang, Dongsheng Qiao, Xin Zhao and Li Wang
J. Mar. Sci. Eng. 2025, 13(9), 1829; https://doi.org/10.3390/jmse13091829 - 21 Sep 2025
Viewed by 571
Abstract
Submerged floating tunnel (SFT) may be subjected to sudden explosive loads such as internal vehicle explosions, terrorist attacks, and external explosions during operation. Based on the Arbitrary Lagrange–Euler (ALE) method, the locally truncated SFT model and fluid–structure interaction model of internal air and [...] Read more.
Submerged floating tunnel (SFT) may be subjected to sudden explosive loads such as internal vehicle explosions, terrorist attacks, and external explosions during operation. Based on the Arbitrary Lagrange–Euler (ALE) method, the locally truncated SFT model and fluid–structure interaction model of internal air and external water are established. Spherical explosives are used to simulate the destructive impact of internal explosions at different positions of the road inside the SFT and key positions at the bottom of the road. The results show that the peak accelerations at the monitoring points caused by the explosions of vehicles on the road rapidly decay within a range of three times the radius of the SFT, and circularly distributed damage appears on the explosion-facing side of the road surface. Longitudinal extensional damage occurs at the junction of the road surface and the SFT wall as well as the bottom supporting wall. Longitudinal cracks appear on the SFT wall. The peak accelerations at the monitoring points of the internal road caused by the concealed bomb at the bottom of the SFT rapidly decay within a range of twice the radius of the SFT, and the damage to the SFT is mainly concentrated on the road surface and the supporting wall. The most dangerous direction of external underwater explosion is determined to be directly below the SFT. When the scaled distance of the explosion is less than 0.543 m/kg1/3, the accelerations at the monitoring points of the internal road show a single-peak trend with rapid rise and decay, and circumferential through-cracks appear on the SFT wall. The supporting wall connecting the SFT wall and the internal road transmits stress to the road, causing extensive damage. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 10285 KB  
Article
Angle of Attack Effects on Boundary Layer Transition over a Flared Cone–Swept Fin Configuration
by Qingdong Meng, Juanmian Lei, Song Wu, Chaokai Yuan, Jiang Yu and Ling Zhou
Aerospace 2025, 12(9), 824; https://doi.org/10.3390/aerospace12090824 - 12 Sep 2025
Viewed by 815
Abstract
In our previous study, the transition behavior of a flared cone–swept fin configuration was investigated under an angle of attack (AoA) of 0°. To further explore the role of AoA in complex three-dimensional geometries with strong fin–body interactions, wind tunnel experiments [...] Read more.
In our previous study, the transition behavior of a flared cone–swept fin configuration was investigated under an angle of attack (AoA) of 0°. To further explore the role of AoA in complex three-dimensional geometries with strong fin–body interactions, wind tunnel experiments were conducted at Ma = 9.3, Re = 1.36 × 107/m, with AoA ranging from −6° to 6°. Global surface temperature distributions were obtained using temperature-sensitive paint (TSP), while localized heat flux and pressure fluctuations were captured using thin-film thermocouples and high-frequency pressure sensors. The results show that varying AoA shifts the location of high heat flux between the upper and lower surfaces of the flared cone and induces a switch from streamwise to separation vortices. The windward side exhibits stronger disturbance responses than the leeward side. The junction region between the flared cone and the near-horizontal surface is highly sensitive to AoA variations, consistently exhibiting pronounced second-mode instabilities. These findings provide experimental support for understanding transition mechanisms under the combined effects of shock/boundary layer interaction (SBLI), crossflow, and adverse pressure gradients, with implications for transition prediction and thermal protection system design. Full article
Show Figures

Figure 1

11 pages, 619 KB  
Article
Sensitivity of the Threshold Current for Switching of a Magnetic Tunnel Junction to Fabrication Defects and Its Application in Physical Unclonable Functions
by Jacob Huber, Rahnuma Rahman and Supriyo Bandyopadhyay
Appl. Sci. 2025, 15(17), 9548; https://doi.org/10.3390/app15179548 - 30 Aug 2025
Cited by 1 | Viewed by 810
Abstract
A physical unclonable function (PUF) leverages the unclonable random variations in device behavior due to defects incurred during manufacturing to produce a unique “biometric” that can be used for authentication. Here, we show that the threshold current for the switching of a magnetic [...] Read more.
A physical unclonable function (PUF) leverages the unclonable random variations in device behavior due to defects incurred during manufacturing to produce a unique “biometric” that can be used for authentication. Here, we show that the threshold current for the switching of a magnetic tunnel junction via spin transfer torque is sensitive to the nature of structural defects introduced during manufacturing and hence can be the basis of a PUF. We use micromagnetic simulations to study the threshold currents for six different defect morphologies at two different temperatures to establish the viability of a PUF. We also derive the challenge–response set at the two different temperatures to calculate the inter- and intra-Hamming distances for a given challenge. Full article
(This article belongs to the Special Issue Nanoscale Electronic Devices: Modeling and Applications)
Show Figures

Figure 1

23 pages, 3731 KB  
Article
Efficient Navigable Area Computation for Underground Autonomous Vehicles via Ground Feature and Boundary Processing
by Miao Yu, Yibo Du, Xi Zhang, Ziyan Ma and Zhifeng Wang
Sensors 2025, 25(17), 5355; https://doi.org/10.3390/s25175355 - 29 Aug 2025
Viewed by 779
Abstract
Accurate boundary detection is critical for autonomous trackless rubber-wheeled vehicles in underground coal mines, as it prevents lateral collisions with tunnel walls. Unlike open-road environments, underground tunnels suffer from poor illumination, water mist, and dust, which degrade visual imaging. To address these challenges, [...] Read more.
Accurate boundary detection is critical for autonomous trackless rubber-wheeled vehicles in underground coal mines, as it prevents lateral collisions with tunnel walls. Unlike open-road environments, underground tunnels suffer from poor illumination, water mist, and dust, which degrade visual imaging. To address these challenges, this paper proposes a navigable area computation for underground autonomous vehicles via ground feature and boundary processing, consisting of three core steps. First, a real-time point cloud correction process via pre-correction and dynamic update aligns ground point clouds with the LiDAR coordinate system to ensure parallelism. Second, corrected point clouds are projected onto a 2D grid map using a grid-based method, effectively mitigating the impact of ground unevenness on boundary extraction; third, an adaptive boundary completion method is designed to resolve boundary discontinuities in junctions and shunting chambers. Additionally, the method emphasizes continuous extraction of boundaries over extended periods by integrating temporal context, ensuring the continuity of boundary detection during vehicle operation. Experiments on real underground vehicle data validate that the method achieves accurate detection and consistent tracking of dual-sided boundaries across straight tunnels, curves, intersections, and shunting chambers, meeting the requirements of underground autonomous driving. This work provides a rule-based, real-time solution feasible under limited computing power, offering critical safety redundancy when deep learning methods fail in harsh underground environments. Full article
(This article belongs to the Special Issue Intelligent Traffic Safety and Security)
Show Figures

Figure 1

Back to TopTop