Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,074)

Search Parameters:
Keywords = tube structures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1742 KiB  
Article
Detection of Microorganisms Causing Human Respiratory Infection Using One-Tube Multiplex PCR
by Isabela L. Lima, Adriana F. Neves, Robson J. Oliveira-Júnior, Lorrayne C. M. G. Honório, Vitória O. Arruda, Juliana A. São Julião, Luiz Ricardo Goulart Filho and Vivian Alonso-Goulart
Infect. Dis. Rep. 2025, 17(4), 93; https://doi.org/10.3390/idr17040093 (registering DOI) - 4 Aug 2025
Abstract
Background/Objectives: Due to the significant overlap in symptoms between COVID-19 and other respiratory infections, a multiplex PCR-based platform was developed to simultaneously detect 22 respiratory pathogens. Target sequences were retrieved from the GenBank database and aligned using Clustal Omega 2.1 to identify conserved [...] Read more.
Background/Objectives: Due to the significant overlap in symptoms between COVID-19 and other respiratory infections, a multiplex PCR-based platform was developed to simultaneously detect 22 respiratory pathogens. Target sequences were retrieved from the GenBank database and aligned using Clustal Omega 2.1 to identify conserved regions prioritized for primer design. Primers were designed using Primer Express® 3.0.1 and evaluated in Primer Explorer to ensure specificity and minimize secondary structures. A multiplex strategy organized primers into three groups, each labeled with distinct fluorophores (FAM, VIC, or NED), allowing for detection by conventional PCR or capillary electrophoresis (CE). Methods: After reverse transcription for RNA targets, amplification was performed in a single-tube reaction. A total of 340 clinical samples—nasopharyngeal and saliva swabs—were collected from patients, during the COVID-19 pandemic period. The automated analysis of electropherograms enabled precise pathogen identification. Results: Of the samples analyzed, 57.1% tested negative for all pathogens. SARS-CoV-2 was the most frequently detected pathogen (29%), followed by enterovirus (6.5%). Positive results were detected in both nasopharyngeal and saliva swabs, with SARS-CoV-2 predominating in saliva samples. Conclusion: This single-tube multiplex PCR-CE assay represents a cost-effective and robust approach for comprehensive respiratory pathogen detection. It enables rapid and simultaneous diagnosis, facilitating targeted treatment strategies and improved patient outcomes. Full article
14 pages, 6587 KiB  
Article
Research on the Optimization of Self-Injection Production Effects in the Middle and Later Stages of Shale Gas Downdip Wells Based on the Depth of Pipe String
by Lujie Zhang, Guofa Ji and Junliang Li
Appl. Sci. 2025, 15(15), 8633; https://doi.org/10.3390/app15158633 (registering DOI) - 4 Aug 2025
Abstract
In the final phases of casing production, shale gas horizontal wells with a downward slope frequently find it difficult to sustain self-flow production. The ideal tubing insertion depth for self-flow production in gas wells has not been thoroughly studied, even though the timely [...] Read more.
In the final phases of casing production, shale gas horizontal wells with a downward slope frequently find it difficult to sustain self-flow production. The ideal tubing insertion depth for self-flow production in gas wells has not been thoroughly studied, even though the timely adoption of tubing production can successfully prolong the self-flow production period. Using a fully dynamic multiphase flow simulation program, the ideal tubing depth for gas well self-flow production was ascertained. A wellbore structural model was built using a particular well as an example. By altering the tubing depth, the formation pressure limit values necessary to sustain gas well self-flow production at various tubing depths were simulated. The appropriate tubing depth for gas well self-flow production was examined, along with the well’s cumulative gas output at various tubing depths. Using the example as a case study, it was discovered that the critical formation pressure for gas well self-flowing production dropped to 7.8 MPa when the tubing was lowered to 2600 m. This effectively increased cumulative production by 56.19 × 106 m3 and extended the self-flow production time by roughly 135 days. The study’s findings offer strong evidence in favor of maximizing shale gas wells’ self-flow production performance in later phases of production. Full article
Show Figures

Figure 1

23 pages, 5280 KiB  
Article
Seismic Damage Pattern Analysis of Long-Span CFST Arch Bridges Based on Damper Configuration Strategies
by Bin Zhao, Longhua Zeng, Qingyun Chen, Chao Gan, Lueqin Xu and Guosi Cheng
Buildings 2025, 15(15), 2728; https://doi.org/10.3390/buildings15152728 - 2 Aug 2025
Viewed by 136
Abstract
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. [...] Read more.
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. The framework aims to investigate the influence of viscous dampers on the seismic response and damage patterns of long-span deck-type CFST arch bridges under near-fault pulse-like ground motions. The effects of different viscous damper configuration strategies and design parameters on seismic responses of long-span deck-type CFST arch bridges were systematically investigated, and the preferred configuration and parameter set were identified. The influence of preferred viscous damper configurations on seismic damage patterns of long-span deck-type CFST arch bridges was systematically analyzed through the established analysis and evaluation frameworks. The results indicate that a relatively optimal reduction in bridge response can be achieved when viscous dampers are simultaneously installed at both the abutments and the approach piers. Minimum seismic responses were attained at a damping exponent α = 0.2 and damping coefficient C = 6000 kN/(m/s), demonstrating stability in mitigating vibration effects on arch rings and bearings. In the absence of damper implementation, the lower chord arch foot section is most likely to experience in-plane bending failure. The piers, influenced by the coupling effect between the spandrel construction and the main arch ring, are more susceptible to damage as their height decreases. Additionally, the end bearings are more prone to failure compared to the central-span bearings. Implementation of the preferred damper configuration strategy maintains essentially consistent sequences in seismic-induced damage patterns of the bridge, but the peak ground motion intensity causing damage to the main arch and spandrel structure is significantly increased. This strategy enhances the damage-initiation peak ground acceleration (PGA) for critical sections of the main arch, while concurrently reducing transverse and longitudinal bending moments in pier column sections. The proposed integrated analysis and evaluation framework has been validated for its applicability in capturing the seismic damage patterns of long-span deck-type CFST arch bridges. Full article
Show Figures

Figure 1

32 pages, 2261 KiB  
Article
Influence of Superplasticizers on the Diffusion-Controlled Synthesis of Gypsum Crystals
by F. Kakar, C. Pritzel, T. Kowald and M. S. Killian
Crystals 2025, 15(8), 709; https://doi.org/10.3390/cryst15080709 (registering DOI) - 31 Jul 2025
Viewed by 114
Abstract
Gypsum (CaSO4·2H2O) crystallization underpins numerous industrial processes, yet its response to chemical admixtures remains incompletely understood. This study investigates diffusion-controlled crystal growth in a coaxial test tube system to evaluate how three Sika® ViscoCrete® superplasticizers—430P, 111P, and [...] Read more.
Gypsum (CaSO4·2H2O) crystallization underpins numerous industrial processes, yet its response to chemical admixtures remains incompletely understood. This study investigates diffusion-controlled crystal growth in a coaxial test tube system to evaluate how three Sika® ViscoCrete® superplasticizers—430P, 111P, and 120P—affect nucleation, growth kinetics, morphology, and thermal behavior. The superplasticizers, selected for their surface-active properties, were hypothesized to influence crystallization via interfacial interactions. Ion diffusion was maintained quasi-steadily for 12 weeks, with crystal evolution tracked weekly by macro-photography; scanning electron microscopy and thermogravimetric/differential scanning were performed at the final stage. All admixtures delayed nucleation in a concentration-dependent manner. Lower dosages (0.5–1.0 wt%) yielded platy-to-prismatic morphologies and higher dehydration enthalpies, indicating more ordered lattice formation. In contrast, higher dosages (1.5–2.0 wt%) produced denser, irregular crystals and shifted dehydration to lower temperatures, suggesting structural defects or increased hydration. Among the additives, 120P showed the strongest inhibitory effect, while 111P at 0.5 wt% resulted in the most uniform crystals. These results demonstrate that ViscoCrete® superplasticizers can modulate gypsum crystallization and thermal properties. Full article
(This article belongs to the Section Macromolecular Crystals)
13 pages, 2055 KiB  
Article
Design and Characterization of Ring-Curve Fractal-Maze Acoustic Metamaterials for Deep-Subwavelength Broadband Sound Insulation
by Jing Wang, Yumeng Sun, Yongfu Wang, Ying Li and Xiaojiao Gu
Materials 2025, 18(15), 3616; https://doi.org/10.3390/ma18153616 (registering DOI) - 31 Jul 2025
Viewed by 179
Abstract
Addressing the challenges of bulky, low-efficiency sound-insulation materials at low frequencies, this work proposes an acoustic metamaterial based on curve fractal channels. Each unit cell comprises a concentric circular-ring channel recursively iterated: as the fractal order increases, the channel path length grows exponentially, [...] Read more.
Addressing the challenges of bulky, low-efficiency sound-insulation materials at low frequencies, this work proposes an acoustic metamaterial based on curve fractal channels. Each unit cell comprises a concentric circular-ring channel recursively iterated: as the fractal order increases, the channel path length grows exponentially, enabling outstanding sound-insulation performance within a deep-subwavelength thickness. Finite-element and transfer-matrix analyses show that increasing the fractal order from one to three raises the number of bandgaps from three to five and expands total stop-band coverage from 17% to over 40% within a deep-subwavelength thickness. Four-microphone impedance-tube measurements on the third-order sample validate a peak transmission loss of 75 dB at 495 Hz, in excellent agreement with simulations. Compared to conventional zigzag and Hilbert-maze designs, this curve fractal architecture delivers enhanced low-frequency broadband insulation, structural lightweighting, and ease of fabrication, making it a promising solution for noise control in machine rooms, ducting systems, and traffic environments. The method proposed in this paper can be applied to noise reduction of transmission parts for ceramic automation production. Full article
Show Figures

Figure 1

24 pages, 3598 KiB  
Article
State of the Art on Empirical and Numerical Methods for Cave Stability Analysis: Application in Al-Badia Lava Tube, Harrat Al-Shaam, Jordan
by Ronald Herrera, Daniel Garcés, Abdelmadjid Benrabah, Ahmad Al-Malabeh, Rafael Jordá-Bordehore and Luis Jordá-Bordehore
Appl. Mech. 2025, 6(3), 56; https://doi.org/10.3390/applmech6030056 (registering DOI) - 31 Jul 2025
Viewed by 77
Abstract
Empirical and numerical methodologies for the geomechanical assessment of underground excavations have evolved in recent years to adapt to the geotechnical and structural conditions of natural caves, enabling stability evaluation and ensuring safe conditions for speleological exploration. This study analyzes the evolution of [...] Read more.
Empirical and numerical methodologies for the geomechanical assessment of underground excavations have evolved in recent years to adapt to the geotechnical and structural conditions of natural caves, enabling stability evaluation and ensuring safe conditions for speleological exploration. This study analyzes the evolution of the state of the art of these techniques worldwide, assessing their reliability and application context, and identifying the most suitable methodologies for determining the stability of the Al-Badia lava tube. The research was conducted through bibliographic analysis and rock mass characterization using empirical geomechanical classifications. Subsequently, the numerical boundary element method (BEM) was applied to compare the obtained results and model the stress–strain behavior of the cavity. The results allowed the classification of the Al-Badia lava tube into stable, transition, and unstable zones, using empirical support charts and determining the safety factors of the surrounding rock mass. The study site highlights that empirical methods are rather conservative, and numerical results align better with observed conditions. Full article
Show Figures

Figure 1

26 pages, 3459 KiB  
Article
Compressive Behaviour of Sustainable Concrete-Filled Steel Tubes Using Waste Glass and Rubber Glove Fibres
by Zobaer Saleheen, Tatheer Zahra, Renga Rao Krishnamoorthy and Sabrina Fawzia
Buildings 2025, 15(15), 2708; https://doi.org/10.3390/buildings15152708 - 31 Jul 2025
Viewed by 101
Abstract
To reduce the carbon footprint of the concrete industry and promote a circular economy, this study explores the reuse of waste materials such as glass powder (GP) and nitrile rubber (NR) fibres in concrete. However, the inclusion of these waste materials results in [...] Read more.
To reduce the carbon footprint of the concrete industry and promote a circular economy, this study explores the reuse of waste materials such as glass powder (GP) and nitrile rubber (NR) fibres in concrete. However, the inclusion of these waste materials results in lower compressive strength compared to conventional concrete, limiting their application to non-structural elements. To overcome this limitation, this study adopts the concept of confined concrete by developing concrete-filled steel tube (CFST) stub columns. In total, twelve concrete mix variations were developed, with and without steel tube confinement. GP was utilised at replacement levels of 10–30% by weight of cement, while NR fibres were introduced at 0.5% and 1% by volume of concrete. The findings demonstrate that the incorporation of GP and NR fibres leads to a reduction in compressive strength, with a compounded effect observed when both materials are combined. Steel confinement within CFST columns effectively mitigated the strength reductions, restoring up to 17% of the lost capacity and significantly improving ductility and energy absorption capacity. All CFST columns exhibited consistent local outward buckling failure mode, irrespective of the concrete mix variations. A comparison with predictions from existing design codes and empirical models revealed discrepancies, underscoring the need for refined design approaches for CFST columns incorporating sustainable concrete infill. This study contributes valuable insights into the development of eco-friendly, high-performance structural systems, highlighting the potential of CFST technology in facilitating the adoption of waste materials in the construction sector. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 2829 KiB  
Article
Axial Compression Behavior of Bamboo Scrimber-Filled Steel Tubular (BSFST) Column Under Different Loading Modes
by Ze Xing, Yang Wei, Kang Zhao, Jinwei Lu, Baoxing Wei and Yu Lin
Materials 2025, 18(15), 3607; https://doi.org/10.3390/ma18153607 (registering DOI) - 31 Jul 2025
Viewed by 116
Abstract
Bamboo scrimber is an environmentally friendly biomass building material with excellent mechanical properties. However, it is susceptible to delamination failure of the transverse fibers under compression, which limits its structural performance. To address this problem, this study utilizes steel tubes to encase bamboo [...] Read more.
Bamboo scrimber is an environmentally friendly biomass building material with excellent mechanical properties. However, it is susceptible to delamination failure of the transverse fibers under compression, which limits its structural performance. To address this problem, this study utilizes steel tubes to encase bamboo scrimber, forming a novel bamboo scrimber-filled steel tubular column. This configuration enables the steel tube to provide effective lateral restraint to the bamboo material. Axial compression tests were conducted on 18 specimens, including bamboo scrimber columns and bamboo scrimber-filled steel tubular columns, to investigate the effects of steel ratio and loading mode (full-section and core loading) on the axial compression performance. The test results indicate that the external steel tubes significantly enhance the structural load-bearing capacity and deformation capacity. Primary failure modes of the composite columns include shear failure and buckling. The ultimate stress and strain of the structure are positively correlated with the steel ratio; as the steel ratio increases, the ultimate stress of the specimens can increase by up to 19.2%, while the ultimate strain can increase by up to 37.7%. The core-loading specimens exhibited superior load-bearing capacity and deformation ability compared to the full-section-loading specimens. Considering the differences in the curves for full-section and core loading, the steel tube confinement coefficient was introduced, and the predictive models for the ultimate stress and ultimate strain of the bamboo scrimber-filled steel tubular column were developed with accurate prediction. Full article
Show Figures

Figure 1

28 pages, 2174 KiB  
Article
Validating Lava Tube Stability Through Finite Element Analysis of Real-Scene 3D Models
by Jiawang Wang, Zhizhong Kang, Chenming Ye, Haiting Yang and Xiaoman Qi
Electronics 2025, 14(15), 3062; https://doi.org/10.3390/electronics14153062 - 31 Jul 2025
Viewed by 184
Abstract
The structural stability of lava tubes is a critical factor for their potential use in lunar base construction. Previous studies could not reflect the details of lava tube boundaries and perform accurate mechanical analysis. To this end, this study proposes a robust method [...] Read more.
The structural stability of lava tubes is a critical factor for their potential use in lunar base construction. Previous studies could not reflect the details of lava tube boundaries and perform accurate mechanical analysis. To this end, this study proposes a robust method to construct a high-precision, real-scene 3D model based on ground lava tube point cloud data. By employing finite element analysis, this study investigated the impact of real-world cross-sectional geometry, particularly the aspect ratio, on structural stability under surface pressure simulating meteorite impacts. A high-precision 3D reconstruction was achieved using UAV-mounted LiDAR and SLAM-based positioning systems, enabling accurate geometric capture of lava tube profiles. The original point cloud data were processed to extract cross-sections, which were then classified by their aspect ratios for analysis. Experimental results confirmed that the aspect ratio is a significant factor in determining stability. Crucially, unlike the monotonic trends often suggested by idealized models, analysis of real-world geometries revealed that the greatest deformation and structural vulnerability occur in sections with an aspect ratio between 0.5 and 0.6. For small lava tubes buried 3 m deep, the ground pressure they can withstand does not exceed 6 GPa. This process helps identify areas with weaker load-bearing capacity. The analysis demonstrated that a realistic 3D modeling approach provides a more accurate and reliable assessment of lava tube stability. This framework is vital for future evaluations of lunar lava tubes as safe habitats and highlights that complex, real-world geometry can lead to non-intuitive structural weaknesses not predicted by simplified models. Full article
Show Figures

Figure 1

24 pages, 11697 KiB  
Article
Layered Production Allocation Method for Dual-Gas Co-Production Wells
by Guangai Wu, Zhun Li, Yanfeng Cao, Jifei Yu, Guoqing Han and Zhisheng Xing
Energies 2025, 18(15), 4039; https://doi.org/10.3390/en18154039 - 29 Jul 2025
Viewed by 169
Abstract
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones [...] Read more.
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones in their pore structure, permeability, water saturation, and pressure sensitivity, significant variations exist in their flow capacities and fluid production behaviors. To address the challenges of production allocation and main reservoir identification in the co-development of CBM and tight gas within deep gas-bearing basins, this study employs the transient multiphase flow simulation software OLGA to construct a representative dual-gas co-production well model. The regulatory mechanisms of the gas–liquid distribution, deliquification efficiency, and interlayer interference under two typical vertical stacking relationships—“coal over sand” and “sand over coal”—are systematically analyzed with respect to different tubing setting depths. A high-precision dynamic production allocation method is proposed, which couples the wellbore structure with real-time monitoring parameters. The results demonstrate that positioning the tubing near the bottom of both reservoirs significantly enhances the deliquification efficiency and bottomhole pressure differential, reduces the liquid holdup in the wellbore, and improves the synergistic productivity of the dual-reservoirs, achieving optimal drainage and production performance. Building upon this, a physically constrained model integrating real-time monitoring data—such as the gas and liquid production from tubing and casing, wellhead pressures, and other parameters—is established. Specifically, the model is built upon fundamental physical constraints, including mass conservation and the pressure equilibrium, to logically model the flow paths and phase distribution behaviors of the gas–liquid two-phase flow. This enables the accurate derivation of the respective contributions of each reservoir interval and dynamic production allocation without the need for downhole logging. Validation results show that the proposed method reliably reconstructs reservoir contribution rates under various operational conditions and wellbore configurations. Through a comparison of calculated and simulated results, the maximum relative error occurs during abrupt changes in the production capacity, approximately 6.37%, while for most time periods, the error remains within 1%, with an average error of 0.49% throughout the process. These results substantially improve the timeliness and accuracy of the reservoir identification. This study offers a novel approach for the co-optimization of complex multi-reservoir gas fields, enriching the theoretical framework of dual-gas co-production and providing technically adaptive solutions and engineering guidance for multilayer unconventional gas exploitation. Full article
Show Figures

Figure 1

18 pages, 4813 KiB  
Article
Dynamic Recrystallization Model of High-Temperature Deformation and Finite Element Analysis of Microstructure Evolution of 14Cr1Mo Pressure Vessel Steel
by Baoning Yu, Bo Zhang, Ruxing Shi, Feng Mao, Shizhong Wei and Duhang Yang
Materials 2025, 18(15), 3531; https://doi.org/10.3390/ma18153531 - 28 Jul 2025
Viewed by 263
Abstract
Due to the frequent occurrence of coarse-grained structures in large hydrogenation tube sheets, their hydrogen resistance and corrosion resistance deteriorate, significantly shortening their service life. Therefore, microstructure evolution must be strictly controlled during the forging process. High-temperature compression tests were simulated using a [...] Read more.
Due to the frequent occurrence of coarse-grained structures in large hydrogenation tube sheets, their hydrogen resistance and corrosion resistance deteriorate, significantly shortening their service life. Therefore, microstructure evolution must be strictly controlled during the forging process. High-temperature compression tests were simulated using a Gleeble-1500D thermal simulator to investigate the hot deformation behavior of 14Cr1Mo pressure vessel steel under deformation conditions of 1050–1250 °C and strain rates of 0.01–1 s−1. Based on the experimental data, the flow stress curve of 14Cr1Mo steel was obtained, and its thermal deformation behavior was analyzed. Furthermore, the dynamic recrystallization (DRX) kinetic model and grain size model of 14Cr1Mo steel were established. These models were then integrated into the finite element software Forge® to validate the accuracy of the DRX models. The results showed excellent agreement between the simulated and experimentally measured grain sizes, with a maximum deviation of less than 8%, confirming the high accuracy of the dynamic recrystallization models. These models provide a theoretical basis for finite element simulation and microstructure control in the manufacturing of super-large pressure vessel tube sheet forgings. Full article
Show Figures

Figure 1

25 pages, 6357 KiB  
Article
Investigation of a Composite Material Painting Method: Assessment of the Mixture Curing of Organic Coatings
by Anca Barbu, Anamaria Ioana Feier, Edward Petzek and Marilena Gheorghe
Processes 2025, 13(8), 2394; https://doi.org/10.3390/pr13082394 - 28 Jul 2025
Viewed by 257
Abstract
The present investigation highlights the importance of evaluating the painting process on a composite material, namely the Kevlar validation process. Kevlar, a synthetic fabric, is well known for its remarkable strength and durability. Kevlar is used in the construction of spaceships and airplanes [...] Read more.
The present investigation highlights the importance of evaluating the painting process on a composite material, namely the Kevlar validation process. Kevlar, a synthetic fabric, is well known for its remarkable strength and durability. Kevlar is used in the construction of spaceships and airplanes because it is lightweight and five times stronger than steel. This paper will present the methods for measuring paint layer thickness in accordance with EN ISO 2808:2019, confirming that organic coatings have fully cured, and coating thickness will be measured using magnetic currents. This study will also address the topic of determining liquid resistance. The protocols for manufacturing the Kevlar specimen are in accordance with ISO 2812-2:2018 using the water immersion method and structural testing. The investigation also demonstrates the progress of the framing test following immersion in Airbus PTP metal test tubes. Full article
Show Figures

Figure 1

31 pages, 9977 KiB  
Article
Novel Deep Learning Framework for Evaporator Tube Leakage Estimation in Supercharged Boiler
by Yulong Xue, Dongliang Li, Yu Song, Shaojun Xia and Jingxing Wu
Energies 2025, 18(15), 3986; https://doi.org/10.3390/en18153986 - 25 Jul 2025
Viewed by 272
Abstract
The estimation of leakage faults in evaporation tubes of supercharged boilers is crucial for ensuring the safe and stable operation of the central steam system. However, leakage faults of evaporation tubes feature high time dependency, strong coupling among monitoring parameters, and interference from [...] Read more.
The estimation of leakage faults in evaporation tubes of supercharged boilers is crucial for ensuring the safe and stable operation of the central steam system. However, leakage faults of evaporation tubes feature high time dependency, strong coupling among monitoring parameters, and interference from noise. Additionally, the large number of monitoring parameters (approximately 140) poses a challenge for spatiotemporal feature extraction, feature decoupling, and establishing a mapping relationship between high-dimensional monitoring parameters and leakage, rendering the precise quantitative estimation of evaporation tube leakage extremely difficult. To address these issues, this study proposes a novel deep learning framework (LSTM-CNN–attention), combining a Long Short-Term Memory (LSTM) network with a dual-pathway spatial feature extraction structure (ACNN) that includes an attention mechanism(attention) and a 1D convolutional neural network (1D-CNN) parallel pathway. This framework processes temporal embeddings (LSTM-generated) via a dual-branch ACNN—where the 1D-CNN captures local spatial features and the attention models’ global significance—yielding decoupled representations that prevent cross-modal interference. This architecture is implemented in a simulated supercharged boiler, validated with datasets encompassing three operational conditions and 15 statuses in the supercharged boiler. The framework achieves an average diagnostic accuracy (ADA) of over 99%, an average estimation accuracy (AEA) exceeding 90%, and a maximum relative estimation error (MREE) of less than 20%. Even with a signal-to-noise ratio (SNR) of −4 dB, the ADA remains above 90%, while the AEA stays over 80%. This framework establishes a strong correlation between leakage and multifaceted characteristic parameters, moving beyond traditional threshold-based diagnostics to enable the early quantitative assessment of evaporator tube leakage. Full article
Show Figures

Figure 1

18 pages, 2037 KiB  
Article
Gene-by-Environment Interactions Involving Maternal Exposures with Orofacial Cleft Risk in Filipinos
by Zeynep Erdogan-Yildirim, Jenna C. Carlson, Nandita Mukhopadhyay, Elizabeth J. Leslie-Clarkson, Carmencita D. Padilla, Jeffrey C. Murray, Terri H. Beaty, Seth M. Weinberg, Mary L. Marazita and John R. Shaffer
Genes 2025, 16(8), 876; https://doi.org/10.3390/genes16080876 - 25 Jul 2025
Viewed by 268
Abstract
Background/Objectives: Maternal exposures are known to influence the risk of isolated cleft lip with or without cleft palate (CL/P)—a common and highly heritable birth defect with a multifactorial etiology. Methods: To identify new risk loci, we conducted a genome-wide gene–environment interaction (GEI) analysis [...] Read more.
Background/Objectives: Maternal exposures are known to influence the risk of isolated cleft lip with or without cleft palate (CL/P)—a common and highly heritable birth defect with a multifactorial etiology. Methods: To identify new risk loci, we conducted a genome-wide gene–environment interaction (GEI) analysis of CL/P with maternal smoking and vitamin use in Filipinos (Ncases = 540, Ncontrols = 260). Since GEI analyses are typically low in power and the results can be difficult to interpret, we applied multiple testing frameworks to evaluate potential GEI effects: a one degree-of-freedom (1df) GxE test, the 3df joint test, and the two-step EDGE approach. Results: While no genome-wide significant interactions were detected, we identified 11 suggestive GEIs with smoking and 24 with vitamin use. Several implicated loci contain biologically plausible genes. Notable interactions with smoking include loci near FEZF1, TWIST2, and NET1. While FEZF1 is involved in early neuronal development, TWIST2 and NET1 regulate epithelial–mesenchymal transition, which is required for proper lip and palate fusion. Interactions with vitamins encompass CECR2—a chromatin remodeling protein required for neural tube closure—and FURIN, a critical protease during early embryogenesis that activates various growth factors and extracellular matrix proteins. The activity of both proteins is influenced by folic acid. Conclusions: Our findings highlight the critical role of maternal exposures in identifying genes associated with structural birth defects such as CL/P and provide new paths to explore for CL/P genetics. Full article
(This article belongs to the Section Genes & Environments)
Show Figures

Figure 1

35 pages, 10845 KiB  
Article
Study on Axial Compression Performance of CFRP-Aluminum Alloy Laminated Short Tubes
by Xiaoqun Luo, Yanheng Li, Li Wang and Xiaonong Guo
Materials 2025, 18(15), 3480; https://doi.org/10.3390/ma18153480 - 24 Jul 2025
Viewed by 230
Abstract
CFRP possesses the advantages of lightweight and high strength, but its cost is relatively high, and its ductility is insufficient; aluminum alloys have a relatively low cost and good ductility. This paper develops a CFRP-aluminum alloy laminated tube (CFRP-AL tube), which combines the [...] Read more.
CFRP possesses the advantages of lightweight and high strength, but its cost is relatively high, and its ductility is insufficient; aluminum alloys have a relatively low cost and good ductility. This paper develops a CFRP-aluminum alloy laminated tube (CFRP-AL tube), which combines the advantages of CFRP and aluminum alloy. Such composite components have broad application prospects in the field of spatial structures. The CFRP-AL tubes were studied by experimental, numerical, and theoretical research on their axial compression performance in this paper. Firstly, the standard tensile test was carried out on 6061-T6 aluminum alloy. Combining the test results and references, the Johnson–Cook hardening model parameters of aluminum alloy were determined. The tensile test of CFRP was conducted to determine its material parameters. Based on composite material mechanics and fracture mechanics, a composite progressive damage model for the CFRP-AL tube was established. Secondly, axial compression tests were carried out on 27 CFRP-AL tubes and 3 aluminum alloy tubes with a small slenderness ratio. The test results show that the typical failure mode of CFRP-AL tubes with small slenderness ratios is strength failure, and the ultimate bearing capacity rises by 11~31% compared to aluminum alloy tubes. Thirdly, a user material subroutine capable of simulating CFRP failure was developed. Based on the user material subroutine, the effect of the initial imperfection, the fiber layer angle, the fiber layer thickness, the slenderness ratio, the diameter-thickness ratio and the CFRP volume ratio were discussed. And the failure mechanism and response of the CFRP-AL tubes under the axial compression were obtained. Finally, based on the strength theory, the formula predicting the bearing capacity of the strength failure was established, and the results of the formula were in a good agreement with the experimental and numerical results. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop