Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (611)

Search Parameters:
Keywords = triterpene acids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2509 KiB  
Article
Semi-Synthesis, Anti-Leukemia Activity, and Docking Study of Derivatives from 3α,24-Dihydroxylup-20(29)-en-28-Oic Acid
by Mario J. Noh-Burgos, Sergio García-Sánchez, Fernando J. Tun-Rosado, Antonieta Chávez-González, Sergio R. Peraza-Sánchez and Rosa E. Moo-Puc
Molecules 2025, 30(15), 3193; https://doi.org/10.3390/molecules30153193 - 30 Jul 2025
Viewed by 211
Abstract
Current treatments against leukemia present several limitations, prompting the search for new therapeutic agents, particularly those derived from natural products. In this context, structural modifications were performed on the triterpene 3α,24-dihydroxylup-20(29)-en-28-oic acid (T1), isolated from Phoradendron wattii. Among [...] Read more.
Current treatments against leukemia present several limitations, prompting the search for new therapeutic agents, particularly those derived from natural products. In this context, structural modifications were performed on the triterpene 3α,24-dihydroxylup-20(29)-en-28-oic acid (T1), isolated from Phoradendron wattii. Among the five derivatives obtained, 3α,24-dihydroxy-30-oxolup-20(29)-en-28-oic acid (T1c) exhibited the highest activity, with an IC50 value of 12.90 ± 0.1 µM against THP-1 cells. T1c significantly reduced cell viability in both acute lymphoblastic leukemia (CCRF-CEM, REH, JURKAT, and MOLT-4) and acute myeloid leukemia (THP-1) cell lines, inducing apoptosis after 48 h of treatment, while showing minimal cytotoxicity toward normal mononuclear cells (MNCs). In silico molecular docking studies were conducted against three key protein targets: BCL-2 (B-cell lymphoma 2), EGFR (epidermal growth factor receptor, tyrosine kinase domain), and FLT3 (FMS-like tyrosine kinase 3). The lowest binding energies (kcal/mol) observed were as follows: T1–BCL-2: −10.12, EGFR: −12.75, FLT3: −14.05; T1c–BCL-2: −10.23, EGFR: −14.50, FLT3: −14.07; T2–BCL-2: −11.59, EGFR: −15.00, FLT3: −14.03. These findings highlight T1c as a promising candidate in the search for anti-leukemic drugs which deserves further study. Full article
(This article belongs to the Special Issue Synthesis and Derivatization of Heterocyclic Compounds)
Show Figures

Graphical abstract

15 pages, 752 KiB  
Article
Enhanced Anti-Inflammatory Effects of Rosemary (Salvia rosmarinus) Extracts Modified with Pseudomonas shirazensis Nanoparticles
by Enrique Gutierrez-Albanchez, Elena Fuente-González, Svitlana Plokhovska, Francisco Javier Gutierrez-Mañero and Beatriz Ramos-Solano
Antioxidants 2025, 14(8), 931; https://doi.org/10.3390/antiox14080931 - 29 Jul 2025
Viewed by 160
Abstract
Rosemary (Salvia rosmarinus) is renowned for its antioxidant, anti-inflammatory, and antihyperglycemic properties, largely attributed to its rich phytochemical profile. This study evaluates the potential of metabolites from Pseudomonas shirazensis NFV3, formulated in silver nanoparticles (AgNPs), to enhance the bioactivity of rosemary [...] Read more.
Rosemary (Salvia rosmarinus) is renowned for its antioxidant, anti-inflammatory, and antihyperglycemic properties, largely attributed to its rich phytochemical profile. This study evaluates the potential of metabolites from Pseudomonas shirazensis NFV3, formulated in silver nanoparticles (AgNPs), to enhance the bioactivity of rosemary extracts in postharvest applications. Rosemary stems were treated with AgNPs coated with bacterial metabolites (NP), bacterial cells, or metabolites (LM), and the extracts’ phytochemical composition and bioactivities were assessed. HPLC and HPLC–MS analyses revealed that the NP treatment induced significant metabolic remodeling, particularly upregulating rosmarinic acid and selected triterpenes (ursolic and betulinic acids), while reducing carnosic acid levels. NP-treated extracts exhibited significantly enhanced inhibition of cyclooxygenase (COX-1 and COX-2), indicating improved anti-inflammatory potential. The α-glucosidase inhibition and antioxidant activity (DPPH assay) of the extracts were not substantially altered, suggesting the selective enhancement of pharmacological functions. These findings demonstrate that nanoparticle-based elicitation selectively remodels secondary metabolism in rosemary, improving extract quality and bioactivity. This strategy offers a novel, sustainable tool for optimizing plant-based therapeutics in the phytopharmaceutical industry. Full article
(This article belongs to the Special Issue Applications of Antioxidant Nanoparticles, 2nd Edition)
Show Figures

Figure 1

16 pages, 776 KiB  
Article
Phytochemical Profile and Functional Properties of the Husk of Argania spinosa (L.) Skeel
by Antonietta Cerulli, Natale Badalamenti, Francesco Sottile, Maurizio Bruno, Sonia Piacente, Vincenzo Ilardi, Rosa Tundis, Roberta Pino and Monica Rosa Loizzo
Plants 2025, 14(15), 2288; https://doi.org/10.3390/plants14152288 - 24 Jul 2025
Viewed by 236
Abstract
Due to the limited scientific exploration of Argania spinosa (L.) skeel husk, this study presents the first investigation of the metabolite profile of methanol and acetone extracts analyzed by liquid chromatography coupled with electrospray ionization and high-resolution multistage mass spectrometry (LC-ESI/HRMSMS). A total [...] Read more.
Due to the limited scientific exploration of Argania spinosa (L.) skeel husk, this study presents the first investigation of the metabolite profile of methanol and acetone extracts analyzed by liquid chromatography coupled with electrospray ionization and high-resolution multistage mass spectrometry (LC-ESI/HRMSMS). A total of 43 compounds, including hydroxycinnamic acid and flavonoid derivatives, saponins, and triterpenic acids, were identified, some of which have not been previously reported in this species. The total phenols (TPC) and flavonoids (TFC) content were spectrophotometrically determined. A multi-target approach was applied to investigate the antioxidant potential using 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), β-carotene bleaching, and Ferric Reducing Ability Power (FRAP) tests. Carbohydrate hydrolyzing enzymes and lipase inhibitory activities were also assessed. The acetone extract exhibited the highest TPC and TFC values, resulting in being the most active in β-carotene bleaching test with IC50 values of 26.68 and 13.82 µg/mL, after 30 and 60 min of incubation, respectively. Moreover, it was the most active against both α-glucosidase and α-amylase enzymes with IC50 values of 12.37 and 18.93 µg/mL, respectively. These results pointed out that this by-product is a rich source of bioactive phytochemicals potentially useful for prevention of type 2 diabetes and obesity. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

29 pages, 2022 KiB  
Article
The Natural Fermentation of Greek Tsounati Olives: Microbiome Analysis
by Marina Georgalaki, Ilario Ferrocino, Davide Buzzanca, Rania Anastasiou, Georgia Zoumpopoulou, Despoina Giabasakou, Danai Ziova, Alexandra Kokkali, George Paraskevakos and Effie Tsakalidou
Foods 2025, 14(15), 2568; https://doi.org/10.3390/foods14152568 - 22 Jul 2025
Viewed by 378
Abstract
The comprehensive analysis of microbial communities reveals the unique microbial identity of different olive varieties, paving the way for new strategies in their development and commercial exploitation. In this context, the present study aimed to explore the microbial diversity and functional characteristics of [...] Read more.
The comprehensive analysis of microbial communities reveals the unique microbial identity of different olive varieties, paving the way for new strategies in their development and commercial exploitation. In this context, the present study aimed to explore the microbial diversity and functional characteristics of Tsounati variety olives from the Monemvasia region of Peloponnese, Greece, that were naturally fermented for three months. The bacterial and fungal microbiota of both olives and brines were fingerprinted throughout the fermentation through classical microbiological analysis combined with molecular techniques. Among the 148 isolated bacteria, 85 were lactic acid bacteria (LAB), and 63 belonged to the Enterobacteriaceae family, while the 178 fungal isolates comprised 136 yeasts and 42 non-yeast or yeast-like fungi. Metataxonomic analysis confirmed the dominance of the bacterial genera Lactiplantibacillus, Leuconostoc, along with the Enterobacteriaceae family, and it revealed the presence of Coleofasciculaceae cyanobacteria mostly in olives. The dominant fungal genera were yeasts, namely Saccharomyces, Nakazawaea, and Cyberlindnera. Using the Folin–Ciocalteu assay, the average total polyphenol content of Tsounati fermented olive samples was 761.80 ± 128.87 mg gallic acid equivalents kg−1 after 90 days of fermentation. The concentrations of the triterpenic, maslinic, and oleanolic acids, as determined by HPLC, remained stable throughout fermentation, with average values of 4764 and 1807 mg kg−1, respectively. Finally, sensory analysis revealed the rich aromatic character of Tsounati variety, highlighting its potential to be used for Greek-style table olive production. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

25 pages, 1469 KiB  
Article
Variation in the Chemical Composition of Small Cranberry (Vaccinium oxycoccos L.) Fruits Collected from a Bog-Type Habitat in Lithuania
by Mindaugas Liaudanskas, Rima Šedbarė, Irmantas Ramanauskas and Valdimaras Janulis
Int. J. Mol. Sci. 2025, 26(14), 6956; https://doi.org/10.3390/ijms26146956 - 20 Jul 2025
Viewed by 235
Abstract
This study revealed variations in the composition and in vitro antioxidant activity of proanthocyanidins, hydroxycinnamic acid derivatives, flavonols, anthocyanins, and triterpene compounds in small cranberry fruit samples collected from a bog-type natural habitat in Lithuania during intensive ripening of the fruit. The highest [...] Read more.
This study revealed variations in the composition and in vitro antioxidant activity of proanthocyanidins, hydroxycinnamic acid derivatives, flavonols, anthocyanins, and triterpene compounds in small cranberry fruit samples collected from a bog-type natural habitat in Lithuania during intensive ripening of the fruit. The highest total amounts of identified flavonols were determined at the beginning of fruit ripening on September 10 (1232.84 ± 31.73 µg/g). The highest total amounts of proanthocyanidins (1.85 ± 0.02 mg EE/g, p < 0.05), anthocyanins (4096.79 ± 5.93 µg/g, p < 0.05), and triterpene compounds (8248.46 ± 125.60 µg/g, p < 0.05) were detected in small cranberry fruit samples collected in the middle of the ripening period (September 16–18). The most potent in vitro antiradical and reducing activity was found in extracts of small cranberry fruit collected on September 10 (95.25 ± 1.15 µmol TE/g and 159.26 ± 0.77 µmol/g, respectively). The strongest correlation was found between the total content of hydroxycinnamic acid derivatives in the small cranberry fruit samples and the in vitro reducing activity of their extracts (0.858, p < 0.01). Among the individual compounds, the strongest correlation was observed between the amounts of isoquercitrin and guaijaverin in V. oxycoccos fruit samples and the in vitro reducing activity as assessed by the CUPRAC method (0.844, p < 0.01 and 0.769, p < 0.05, respectively). Full article
(This article belongs to the Special Issue Recent Advances in Medicinal Plants and Natural Products)
Show Figures

Figure 1

22 pages, 1183 KiB  
Review
Exploring the Impact of Olive-Derived Bioactive Components on Gut Microbiota: Implications for Digestive Health
by Manuel Garrido-Romero, Marina Díez-Municio and Francisco Javier Moreno
Foods 2025, 14(14), 2413; https://doi.org/10.3390/foods14142413 - 8 Jul 2025
Viewed by 1010
Abstract
Recent advances highlight the crucial role of the gut microbiota in human health and disease, with dietary components emerging as powerful modulators of microbial communities. This review synthesizes current evidence on the effects of olive-derived bioactive compounds, including polyphenols (e.g., hydroxytyrosol, oleuropein or [...] Read more.
Recent advances highlight the crucial role of the gut microbiota in human health and disease, with dietary components emerging as powerful modulators of microbial communities. This review synthesizes current evidence on the effects of olive-derived bioactive compounds, including polyphenols (e.g., hydroxytyrosol, oleuropein or tyrosol), triterpenes and other phytochemicals on gut microbiota composition and function. These compounds have been shown to enhance beneficial bacterial populations such as Lactobacillus and Bifidobacterium, reduce potentially pathogenic taxa, and promote the production of short-chain fatty acids and other health microbial metabolites, reinforcing intestinal barrier integrity. In vitro, in vivo, and clinical studies also reveal the potential of olive bioactives to ameliorate metabolic, inflammatory, and neurocognitive disorders through gut-microbiota-brain axis modulation. Despite promising results, key challenges remain, including interindividual microbiota variability, lack of standardized intervention protocols, and limited human clinical trials. Addressing these gaps through robust translational research could pave the way for microbiota-targeted, personalized nutritional strategies based on olive-derived compounds. Full article
Show Figures

Figure 1

14 pages, 857 KiB  
Article
Rapid and Effective Recovery of Oleanolic and Maslinic Acids from Olive Leaves Using SFE and pH-Zone Centrifugal Partition Chromatography
by Lemonia Antoniadi, Apostolis Angelis, Theodora Nikou, Dimitris Michailidis and Leandros A. Skaltsounis
Molecules 2025, 30(13), 2709; https://doi.org/10.3390/molecules30132709 - 24 Jun 2025
Viewed by 335
Abstract
Olive leaves, the main byproducts of olive cultivation, are characterized by a plethora of bioactive metabolites with significant nutritional value. Their main pentacyclic triterpenes, Oleanolic Acid (OA) and Maslinic Acid (MA), are two high added-value compounds with remarkable activities. This study aimed to [...] Read more.
Olive leaves, the main byproducts of olive cultivation, are characterized by a plethora of bioactive metabolites with significant nutritional value. Their main pentacyclic triterpenes, Oleanolic Acid (OA) and Maslinic Acid (MA), are two high added-value compounds with remarkable activities. This study aimed to develop an efficient methodology for extracting and purifying OA and MA, utilizing Supercritical Fluid Extraction (SFE) and Centrifugal Partition Chromatography (CPC)—two modern, scalable, and green techniques. A total of 21 g of olive leaves were subjected to SFE using supercritical CO2 and ethanol as co-solvent. The extraction employed a step gradient mode, starting with 100% CO2 and incrementally increasing ethanol (0–10% w/w) every 20 min. Fractions rich in OA and MA (500 mg) were further purified via CPC, utilizing pH zone refining to exploit the protonation and deprotonation properties of acidic triterpenes. The biphasic solvent system consisted of n-hexane, ethyl acetate, ethanol, and water (8:2:5:5 v/v/v/v), with trifluoroacetic acid added to the stationary phase and triethylamine added to the mobile phase. This two-step process yielded 89.5 mg of OA and 28.5 mg of MA with over 95% purity, as confirmed by HPLC-ELSD and 1H-NMR. Moreover, purified compounds and SFE fractions exhibited promising elastase and collagenase inhibition, highlighting them as dermocosmetic agents. Full article
(This article belongs to the Special Issue Supercritical Fluid Extraction of Natural Bioactive Compounds)
Show Figures

Figure 1

20 pages, 2168 KiB  
Article
Controlled Application of Far-Red Light to Improve Growth and Bioactive Compound Yield in Centella asiatica
by Yu Kyeong Shin, Jae Woo Song and Jun Gu Lee
Horticulturae 2025, 11(7), 728; https://doi.org/10.3390/horticulturae11070728 - 23 Jun 2025
Viewed by 324
Abstract
This study examined how far-red (FR) light supplementation influences triterpene glycoside accumulation in Centella asiatica grown under different light intensities (50–200 μmol·m−2·s−1) over 5 weeks. Four major compounds—madecassoside, asiaticoside, madecassic acid, and asiatic acid—were quantified. Results from three-way ANOVA [...] Read more.
This study examined how far-red (FR) light supplementation influences triterpene glycoside accumulation in Centella asiatica grown under different light intensities (50–200 μmol·m−2·s−1) over 5 weeks. Four major compounds—madecassoside, asiaticoside, madecassic acid, and asiatic acid—were quantified. Results from three-way ANOVA showed that light intensity and time significantly affected the accumulation of all compounds, with FR light selectively enhancing glycoside levels but not triterpene acids. Although total glycoside content declined over time, plants under 200FR conditions retained the highest levels by week 5. Principal component analysis suggested that FR light modulates resource allocation between growth and secondary metabolism. These findings advance our understanding of light-mediated regulation in phytochemical biosynthesis and offer a basis for optimizing cultivation strategies in controlled environments. Notably, the compound-specific responses to FR suggest differential regulation within the triterpene biosynthetic pathway, opening avenues for targeted enhancement of medicinally important compounds. Full article
Show Figures

Graphical abstract

32 pages, 2937 KiB  
Article
Enhancing the Pharmacological Properties of Triterpenes Through Acetylation: An Anticancer and Antioxidant Perspective
by Barbara Bednarczyk-Cwynar, Piotr Ruszkowski, Andrzej Günther, Szymon Sip, Katarzyna Bednarek-Rajewska and Przemysław Zalewski
Molecules 2025, 30(12), 2661; https://doi.org/10.3390/molecules30122661 - 19 Jun 2025
Viewed by 827
Abstract
This paper presents the influence of acetylation on the cytotoxic and antioxidant activity of natural triterpenes. Oleanolic acid, betulin, betulinic acid and other triterpenes have been modified to improve their pharmacological properties. Acylation of the hydroxyl group at the C-3 position showed significant [...] Read more.
This paper presents the influence of acetylation on the cytotoxic and antioxidant activity of natural triterpenes. Oleanolic acid, betulin, betulinic acid and other triterpenes have been modified to improve their pharmacological properties. Acylation of the hydroxyl group at the C-3 position showed significant changes in biological activity, in particular against cancer cell lines such as HeLa, A-549, MCF-7, PC-3 and SKOV-3, with the highest IC50 results for acetyloleanolic acid (1b) and acetylbetulinic acid (4b). Docking results showed that all compounds tested demonstrated the ability to bind to pockets (C1–C5) of the p53 Y220 protein, obtaining different Vina score values. The strongest binding was observed for compound 2b in the C3 pocket (−10.1 kcal × mol−1), while in the largest C1 pocket, the best result was achieved by compound 5b (−9.1 kcal × mol−1). Moreover, antioxidant studies using the CUPRAC and DPPH tests showed significant differences in the mechanisms of action of the compounds depending on the structure. The analyses of ADMETox confirmed the favorable pharmacokinetic profile and low toxicity of most of the tested derivatives. The results suggest that acetylated triterpenes, especially 1b and 4b, have great potential as anticancer drug candidates, requiring further research on their cytotoxic activity and structural modifications. Full article
(This article belongs to the Special Issue Phytochemistry, Antioxidants, and Anti-Diabetes)
Show Figures

Graphical abstract

16 pages, 2264 KiB  
Article
Ethanolic Extract of Ganoderma mexicanum Pat. Mycelium: A Source of Bioactive Compounds with Antiproliferative Activity and Potential PPAR-γ Natural Ligands
by Lucia T. Angulo-Sanchez, Max Vidal-Gutiérrez, Heriberto Torres-Moreno, Martín Esqueda, Aldo Gutiérrez, Georgina Vargas, Juan Luis Monribot-Villanueva, José A. Guerrero-Analco, César Muñoz-Bacasehua and Ramón Enrique Robles-Zepeda
Pharmaceuticals 2025, 18(6), 909; https://doi.org/10.3390/ph18060909 - 18 Jun 2025
Viewed by 678
Abstract
Background/Objective: Ganoderma spp. have long been studied for their bioactive pharmacological properties, and their biomass and extracts have been obtained from various sources. This study adopts a novel approach: enriching a liquid culture of Ganoderma mexicanum with a vineyard pruning waste extract [...] Read more.
Background/Objective: Ganoderma spp. have long been studied for their bioactive pharmacological properties, and their biomass and extracts have been obtained from various sources. This study adopts a novel approach: enriching a liquid culture of Ganoderma mexicanum with a vineyard pruning waste extract to identify bioactive compounds with antiproliferative activity through enriched chromatographic fractions. Methods: The ethanolic extract from a mycelial culture was separated following a partitioning process, and the hexane fraction was subsequently separated in a chromatographic column. The fractions were evaluated for their antiproliferative properties against cancer cell lines. The interactions of the molecules identified with peroxisome proliferator-activated receptor gamma (PPAR-γ) were analyzed via molecular docking. Results: Three chromatographic fractions (FH11–FH13) exhibited antiproliferative activity which was significantly more effective against non-small lung cancer cells (A549). The cells treated with the crude extract and fractions presented a balloon-like morphology. A chemical analysis of the active fractions allowed us to identify four compounds: one fatty acid (9-Hydroxy-10E,12Z-octadecadienoic acid) and three triterpenes (ganoderic acids DM, TQ, and X). These compounds showed interactions with the PPAR-γ receptor through molecular docking. Conclusions: Ganoderma mexicanum is a promising source of compounds with antiproliferative activity that could serve as natural ligands for PPAR-γ and has possible applications in lung cancer therapy. Full article
Show Figures

Graphical abstract

38 pages, 2216 KiB  
Review
Mediterranean Basin Erica Species: Traditional Uses, Phytochemistry and Pharmacological Properties
by Khadijah A. Jabal, Maria Pigott, Helen Sheridan and John J. Walsh
Molecules 2025, 30(12), 2616; https://doi.org/10.3390/molecules30122616 - 17 Jun 2025
Viewed by 650
Abstract
Erica species native to the Mediterranean basin are the principal Ericas that have found use in traditional medicine. Examples include treatments for urinary tract disorders, inflammatory conditions, gastrointestinal ailments and weight loss. This review critically evaluates the ethnobotanical usage, phytochemical profiles and pharmacological [...] Read more.
Erica species native to the Mediterranean basin are the principal Ericas that have found use in traditional medicine. Examples include treatments for urinary tract disorders, inflammatory conditions, gastrointestinal ailments and weight loss. This review critically evaluates the ethnobotanical usage, phytochemical profiles and pharmacological potential of the Mediterranean Erica species, including Erica arborea L., Erica multiflora L. and Erica manipuliflora Salisb. A wide spectrum of bioactive secondary metabolites has been identified across these species, notably pentacyclic triterpenes (e.g., lupeol, ursolic acid and oleanolic acid) and polyphenolics (e.g., myricetin and quercetin glycosides). Extracts of these species have demonstrated antioxidant, anti-inflammatory, analgesic, antimicrobial and diuretic activities in vitro and/or in vivo, providing pharmacological support for traditional uses. Phytochemical profiles vary by species, plant part, geography and extraction technique. Filsuvez®, comprising pentacyclic triterpenes from birch bark, has clinical approval for the treatment of partial thickness wounds associated with dystrophic and junctional epidermolysis bullosa. The undoubted reservoir of pentacyclic triterpenes and flavonoid glycosides in Mediterranean Erica species warrants further comprehensive mechanistic studies, toxicological evaluations and clinical validation. Full article
Show Figures

Graphical abstract

23 pages, 4522 KiB  
Article
Betulinic Acid-Loaded Oleogel as a Novel Pharmaceutical Formulation for Potential Cutaneous Applications: Development, Characterization, and Biosafety Profile
by Andreea Smeu, Daliana Minda, Casiana Boru, Lavinia Vlaia, Vicențiu Vlaia, Cristina Adriana Dehelean, Sergio Liga, George Puenea and Daniela Lucia Muntean
Life 2025, 15(6), 954; https://doi.org/10.3390/life15060954 - 13 Jun 2025
Viewed by 578
Abstract
Skin disorders constitute a persistent health problem, covering both acute and chronic conditions that manifest in patients of all ages. Betulinic acid (BA) is a triterpene previously studied as an efficient treatment of skin ailments due to its innate pharmacological properties. Nonetheless, due [...] Read more.
Skin disorders constitute a persistent health problem, covering both acute and chronic conditions that manifest in patients of all ages. Betulinic acid (BA) is a triterpene previously studied as an efficient treatment of skin ailments due to its innate pharmacological properties. Nonetheless, due to its lipophilic nature and low bioavailability, topical delivery systems are necessary for its proper administration. Oleogels are efficient carriers for the incorporation of hydrophobic biomolecules; however, their use for the delivery of BA remains scarce. Therefore, this study was designed to develop, characterize, and evaluate a BA-containing oleogel (BA-O) regarding its cutaneous safety profile as a potential pharmaceutical formulation targeting dermatologic issues. The findings illustrated the efficient formulation of BA as oleogel, the product presenting the specific conditions of topical semi-solid formulations in terms of physico-chemical characteristics and high biocompatibility in vitro and in ovo, as BA-O lacked a cytotoxic effect in HaCaT and JB6 Cl 41-5a skin cells (cell viability percentages being > 70%) and was categorized as non-irritant in EpiDerm™ tissues (viability > 80%) and on the chorioallantoic membrane (Irritation Score = 0.186). These results present the preclinical biosafety profile of BA-O with prospective potential for cutaneous applications that should be investigated in future studies. Full article
Show Figures

Figure 1

19 pages, 4003 KiB  
Article
Anti-lymphoma Activity of Acyclic Terpenoids and Its Structure–Activity Relationship: In Vivo, In Vitro, and In Silico Studies
by Fernando Calzada, Jesica Ramírez-Santos, Rosa María Ordoñez-Razo, Miguel Valdes, Claudia Velázquez and Elizabeth Barbosa
Int. J. Mol. Sci. 2025, 26(12), 5683; https://doi.org/10.3390/ijms26125683 - 13 Jun 2025
Viewed by 466
Abstract
Terpenoids are a large group of molecules present in several plant species and in many essential oils reported with cytotoxic and anticancer properties. The aim of this study was to evaluate the anticancer activity of eleven acyclic terpenes; seven monoterpenoids: geranyl acetate (C1), [...] Read more.
Terpenoids are a large group of molecules present in several plant species and in many essential oils reported with cytotoxic and anticancer properties. The aim of this study was to evaluate the anticancer activity of eleven acyclic terpenes; seven monoterpenoids: geranyl acetate (C1), geranic acid (C2), citral (C3, mixture of neral and geranial), geraniol (C4), methyl geranate (C5), nerol (C6) and citronellic acid (C7); two sesquiterpenes: farnesal (C8) and farnesol (C9); and one triterpene: squalene (C10), using in vivo, in vitro, and in silico models. Anti-lymphoma activity was evaluated using male Balb/c mice inoculated with U-937 cells. Cytotoxic activity was evaluated using the WST-1 method. Computer tools were used to obtain a molecular docking study, measuring pharmacokinetic and toxicological properties of the acyclic terpenoids with greater antitumor activity. The results showed that the terpenoids with the highest cytotoxic and nodal growth inhibitory activity were C3, C4, C6, and C9, and their effects were better compared to MTX. The data obtained suggest that the anti-lymphoma activity could be due to the presence of the aldehyde, hydroxyl, and acetate groups in the C1 of the monoterpenes and sesquiterpenes evaluated. The theoretical results obtained from molecular docking showed that geranial (C3A), neral (C3B), C9, and C6 terpenoids obtained a higher affinity for the HMG-CoA reductase enzyme and suggest that it could be a target to induce anti-lymphoma activity of bioactive terpenoids. Our study provides evidence that C3, C6, and C9 could be potential anticancer agents for the treatment of histiocytic lymphoma. Full article
Show Figures

Figure 1

16 pages, 2009 KiB  
Article
Thin-Layer, Intermittent, Near-Infrared Drying of Two-Phase Olive Pomace: Mathematical Modeling and Effect on Recovery of Bioactive Compounds and Antioxidant Activity
by Ioanna Pyrka and Nikolaos Nenadis
Foods 2025, 14(12), 2042; https://doi.org/10.3390/foods14122042 - 10 Jun 2025
Viewed by 408
Abstract
The present study examined the drying kinetics of two-phase olive pomace (OP) using near-infrared (NIR) thin layer intermittent drying at 70–140 °C. For the first time, this approach was combined with color, bioactive compound retention and antioxidant activity assessment. Among tested models, the [...] Read more.
The present study examined the drying kinetics of two-phase olive pomace (OP) using near-infrared (NIR) thin layer intermittent drying at 70–140 °C. For the first time, this approach was combined with color, bioactive compound retention and antioxidant activity assessment. Among tested models, the Midilli’s semi-empirical model best described the drying behavior (r2 ≥ 0.99839, RMSE ≤ 0.01349). Effective diffusivity ranged from 1.417 × 10−9 to 5.807 × 10−9 m2/s, and activation energy was calculated at 23.732 kJ/mol. Drying at 140 °C reduced time by 68% compared to 70 °C. The corresponding sample had the highest total phenolics content, antioxidant activity (DPPH, CUPRAC assays) and triterpenic acid (maslinic, oleanolic) content, and a significant amount of hydroxytyrosol, despite the increased sample browning. Compared to oven-drying (140 °C), NIR was equal or better and 3.2-fold faster. The same was evidenced compared to freeze-drying, except for tyrosol recovery (1.2-fold lower in NIR). These findings were obtained using two different OP industrial samples. Given that NIR is already used industrially for food drying, the present study offers proof-of-concept for its application as a rapid and eco-friendly pretreatment of OP for food and feed uses. However, scalability challenges and the limitations of semi-empirical modeling must be addressed in the future to support industrial-scale implementation. Full article
Show Figures

Figure 1

16 pages, 3581 KiB  
Article
Cucurbitane Glycosides and Their Potential Anti-Inflammatory Activities from Hemsleya chinensis Tubers
by Jun Chi, Miaomiao Li, Feihe Lian, Yixiao Li and Liping Dai
Molecules 2025, 30(11), 2349; https://doi.org/10.3390/molecules30112349 - 28 May 2025
Viewed by 435
Abstract
Hemsleya chinensis tubers, abundantly produced in southwestern China, are commonly used as a folk medicine that excel in anti-inflammation to treat enteritis, bronchitis, and tonsillitis. In this study, three previously undescribed cucurbitane glycosides, hemchinins G–H (13), that were characterized [...] Read more.
Hemsleya chinensis tubers, abundantly produced in southwestern China, are commonly used as a folk medicine that excel in anti-inflammation to treat enteritis, bronchitis, and tonsillitis. In this study, three previously undescribed cucurbitane glycosides, hemchinins G–H (13), that were characterized by the presence of four glucose substitutions, as well as eleven ones with one to three β-glucoses, were isolated from the tubers of H. chinensis. The structures were confirmed using comprehensive UV, IR, HR-ESI-MS, and NMR analyses, and absolute configurations were determined through a comparison of calculated and experimental ECD after acid hydrolysis. Compounds 13 showed NO inhibition effects on LPS-induced RAW 264.7 cells. Finally, molecular docking analyses were conducted to obtain the affinities of the isolated cucurbitane glycosides and our previously reported 19 cucurbitane triterpenes, focusing on targets involved in anti-inflammatory effects. The results indicated that they showed high docking scores of affinities with the proteins in the NF-κB, AMPK, and Nrf2 signaling pathways. Among them, cucurbitane triterpenes with sugar moiety substitution at C-3 and C-26/27 showed better affinity ability. The findings can provide insights into the anti-inflammatory mechanisms of this species and facilitate the development of novel therapeutic agents. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

Back to TopTop