Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,114)

Search Parameters:
Keywords = transient operation condition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3032 KB  
Article
High Fidelity Real-Time Optimization of Multi-Robot Lines Processing Shared and Non-Deterministic Material Flows
by Paolo Righettini and Filippo Cortinovis
Robotics 2025, 14(11), 150; https://doi.org/10.3390/robotics14110150 (registering DOI) - 24 Oct 2025
Viewed by 84
Abstract
Multi-robot ensembles comprising several manipulators are commonly used in industrial settings to process non-deterministic flows of items loaded by an upstream source onto a shared transportation system. After the execution of a given task, the robots regularly deposit the items on a common [...] Read more.
Multi-robot ensembles comprising several manipulators are commonly used in industrial settings to process non-deterministic flows of items loaded by an upstream source onto a shared transportation system. After the execution of a given task, the robots regularly deposit the items on a common output flow, which conveys the semi-finished material towards the downstream portion of the plant for further processing. The productivity and reliability of the entire process, which is affected by the plant layout, by the quality of the adopted scheduling and task assignment algorithms, and by the proper balancing of the input and output flows, may be degraded by random disturbances and transient conditions of the input flow. In this paper, a highly accurate event-based simulator of this kind of system is used in conjunction with a rollout algorithm to optimize the performance of the plant in all operating scenarios. The proposed method relies on a simulation of the plant that comprehensively considers the dynamic performance of the manipulators, their actual motion planning algorithms, the adopted scheduling and task assignment methods, and the regulation of the material flows. The simulation environment is built upon computationally efficient maps able to predict the execution time of the tasks assigned to the robots, considering all the determining factors, and on a representation of the manipulators themselves as finite state automata. The proposed formalization of the line balancing problem as a Markov Decision Process and the resulting rollout optimization method are shown to substantially improve the performance of the plant, even in challenging situations, and to be well suited to real-time implementation even on commodity hardware. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

18 pages, 5577 KB  
Article
Research on Intelligent Identification Model of Cable Damage of Sea Crossing Cable-Stayed Bridge Based on Deep Learning
by Jin Yan, Yunkai Zhao, Changqing Li and Jiancheng Lu
Buildings 2025, 15(21), 3849; https://doi.org/10.3390/buildings15213849 (registering DOI) - 24 Oct 2025
Viewed by 74
Abstract
To accurately evaluate the health condition of the cables of a cross-sea cable-stayed bridge under typhoon effects and to improve the efficiency of damage identification, an accurate bridge damage identification method combining convolutional neural network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) is [...] Read more.
To accurately evaluate the health condition of the cables of a cross-sea cable-stayed bridge under typhoon effects and to improve the efficiency of damage identification, an accurate bridge damage identification method combining convolutional neural network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) is proposed. A numerical model of the cable-stayed bridge was first established in ANSYS. Based on the monitoring data of Super Typhoon Mujigae, a three-dimensional fluctuating wind field was generated by harmonic synthesis. Through transient analysis, the static and dynamic responses of the cable-stayed bridge under typhoon loads were analyzed, and the critical cable locations most susceptible to damage were identified. Subsequently, the acceleration signals of the structural damage states under typhoon were extracted, and the damage-sensitive features were obtained through the Hilbert transform. Finally, an intelligent damage identification model for cable-stayed bridges was established by combining CNN and BiLSTM, and the identification results were compared with those obtained using CNN and BiLSTM individually. The results indicate that the neural network model combining CNN and BiLSTM performs significantly better than either CNN or BiLSTM alone in predicting both the location and degree of damage. Compared with the standalone CNN and BiLSTM models, the proposed hybrid CNN–BiLSTM network improves the accuracy of damage-location identification by 1.6% and 2.42%, respectively, and achieves an overall damage-degree identification accuracy exceeding 98%. The findings of this study provide theoretical and practical support for the intelligent operation and maintenance of cable-stayed bridges in coastal regions. The proposed approach is expected to serve as a valuable reference for evaluating large-span bridge structures under extreme wind conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

30 pages, 5764 KB  
Article
Control and Modeling Framework for Balanced Operation and Electro-Thermal Analysis in Three-Level T-Type Neutral Point Clamped Inverters
by Ahmed H. Okilly, Cheolgyu Kim, Do-Wan Kim and Jeihoon Baek
Energies 2025, 18(21), 5587; https://doi.org/10.3390/en18215587 - 24 Oct 2025
Viewed by 94
Abstract
Reliable multilevel inverter IGBT modules require precise loss and heat management, particularly in severe traction applications. This paper presents a comprehensive modeling framework for three-level T-type neutral-point clamped (TNPC) inverters using a high-power Insulated Gate Bipolar Transistor (IGBT) module that combines model predictive [...] Read more.
Reliable multilevel inverter IGBT modules require precise loss and heat management, particularly in severe traction applications. This paper presents a comprehensive modeling framework for three-level T-type neutral-point clamped (TNPC) inverters using a high-power Insulated Gate Bipolar Transistor (IGBT) module that combines model predictive control (MPC) with space vector pulse width modulation (SVPWM). The particle swarm optimization (PSO) algorithm is used to methodically tune the MPC cost function weights for minimization, while achieving a balance between output current tracking, stabilization of the neutral-point voltage, and, consequently, a uniform distribution of thermal stress. The proposed SVPWM-MPC algorithm selects optimal switching states, which are then utilized in a chip-level loss model coupled with a Cauer RC thermal network to predict transient chip-level junction temperatures dynamically. The proposed framework is executed in MATLAB R2024b and validated with experiments, and the SemiSel industrial thermal simulation tool, demonstrating both control effectiveness and accuracy of the electro-thermal model. The results demonstrate that the proposed control method can sustain neutral-point voltage imbalance of less than 0.45% when operating at 25% load and approximately 1% under full load working conditions, while accomplishing a uniform junction temperature profile in all inverter legs across different working conditions. Moreover, the results indicate that the proposed control and modeling structure is an effective and common-sense way to perform coordinated electrical and thermal management, effectively allowing for predesign and reliability testing of high-power TNPC inverters. Full article
(This article belongs to the Special Issue Power Electronics Technology and Application)
Show Figures

Figure 1

23 pages, 4862 KB  
Article
Development of High-Power DC Solid-State Power Controllers Using SiC FETs for Aircraft Electrical Systems
by Xin Zhao, Chuanyou Xu, Ke Ma, Xuanlyu Wu, Xiliang Chen, Xiangke Li and Xiaohua Wu
Electronics 2025, 14(21), 4157; https://doi.org/10.3390/electronics14214157 - 23 Oct 2025
Viewed by 179
Abstract
The growing demand for improved interruption performance characteristics in emerging aircraft high-voltage direct current (HVDC) electrical networks motivates the rapid development of solid-state power controllers (SSPCs). This article presents a comprehensive design procedure for a 270 V 300 A SSPC utilizing discrete SiC [...] Read more.
The growing demand for improved interruption performance characteristics in emerging aircraft high-voltage direct current (HVDC) electrical networks motivates the rapid development of solid-state power controllers (SSPCs). This article presents a comprehensive design procedure for a 270 V 300 A SSPC utilizing discrete SiC cascode devices. Due to the high fault current and limited power of single switches, parallel SiC FETs are essential for interrupting high fault currents in SSPCs. Consequently, the challenge of current balancing among parallel devices is addressed in this paper by adopting a passive current balancing strategy based on an irregular-shaped busbar. Furthermore, considering the voltage spikes arising from the power loop parasitic inductance and TVS characteristics during fault interruption, an RC-TVS-based transient voltage mitigation circuit is proposed to suppress these peak voltages. Moreover, thermal models for overload and short-circuit conditions were developed to optimize the thermal management system to ensure reliable operation of the SSPC. Finally, a prototype of 270 V/300 A SSPC has been built to validate the key characteristics of the proposed high power SSPC. Full article
(This article belongs to the Special Issue Compatibility, Power Electronics and Power Engineering)
Show Figures

Figure 1

14 pages, 4214 KB  
Article
High-Efficiency Wide-Bandwidth Boost Converter IC with Pulse-Skipped Switching and Gm-Boosted Compensation for Battery-Powered Portable Systems
by Woojin Kim, Haejun Noh, Se-Un Shin and Hyuntak Jeon
Energies 2025, 18(21), 5575; https://doi.org/10.3390/en18215575 - 23 Oct 2025
Viewed by 170
Abstract
High-efficiency power management is essential for silicon photomultiplier (SiPM)-based sensing systems, especially in portable radiation detectors that demand long battery life and stable operation. Conventional fixed-frequency, voltage-mode boost converters face two critical issues: efficiency degradation at light load due to dominant switching losses, [...] Read more.
High-efficiency power management is essential for silicon photomultiplier (SiPM)-based sensing systems, especially in portable radiation detectors that demand long battery life and stable operation. Conventional fixed-frequency, voltage-mode boost converters face two critical issues: efficiency degradation at light load due to dominant switching losses, and narrow loop bandwidth in discontinuous conduction mode (DCM), which limits transient response. This work proposes a boost converter IC that integrates a pulse-skipped switching (PSS) scheme with a Gm-boosted compensator to address these challenges. The PSS method adaptively suppresses unnecessary switching events, significantly improving light-load efficiency, while the Gm-boosted compensator enhances loop gain, expanding the bandwidth and enabling faster recovery under dynamic conditions. Implemented in a 250 nm BCD process, the converter provides up to 30 V output from a 3.3–5 V supply with load currents up to 10 mA. Simulation results show a peak efficiency of 86.3% at 1 mA and a loop bandwidth increase of more than 14 times compared with a conventional fixed-frequency, voltage-mode design. Beyond radiation applications, the proposed converter is broadly applicable to battery-powered IoT, medical monitoring, and portable energy systems requiring efficient high-voltage generation. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

20 pages, 13127 KB  
Article
Research on Electrical Energy Parameters in the Distribution System of a Mining Facility
by Aleksei S. Karpov, Vera V. Yaroshevich and Elizaveta I. Gubskaya
Appl. Sci. 2025, 15(21), 11355; https://doi.org/10.3390/app152111355 - 23 Oct 2025
Viewed by 167
Abstract
The study investigates the electrical energy parameters in the distribution system of a mining facility located in Murmansk Oblast, Russia, focusing on power quality (PQ) issues arising substantially from mine hoist operation conditions. Despite compliance with Russian standards related to PQ, discrepancies were [...] Read more.
The study investigates the electrical energy parameters in the distribution system of a mining facility located in Murmansk Oblast, Russia, focusing on power quality (PQ) issues arising substantially from mine hoist operation conditions. Despite compliance with Russian standards related to PQ, discrepancies were observed between PQ measurement results and problems inherent in the system, such as transformer failures. The research employed two instruments, Resurs-UF2M and Metrel MI2892, to conduct a PQ survey, comparing their data aggregation methods and measurement accuracy. Various data aggregation intervals were also used to evaluate the impact of resolution on PQ assessment. Results revealed significant discrepancies between the instruments, with Metrel MI2892 providing a more reliable and detailed dataset, while Resurs-UF2M failed to capture rapid transients and enable profound PQ analysis to be performed. The research identified eight PQ indices exceeding permissible levels, attributed to the electromagnetic influence of high-power mining equipment. The findings underscore the limitations of current regulatory frameworks and measurement methods, emphasizing the need for revised standards to improve diagnostic accuracy. The research highlights the importance of proper instrument selection and configuration to mitigate PQ disturbances, prevent equipment failures, and enhance power system reliability in mining facilities. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

15 pages, 2607 KB  
Article
Structural Health Monitoring of a Lamina in Unsteady Water Flow Using Modal Reconstruction Algorithms
by Gabriele Liuzzo, Stefano Meloni and Pierluigi Fanelli
Fluids 2025, 10(11), 276; https://doi.org/10.3390/fluids10110276 - 22 Oct 2025
Viewed by 123
Abstract
Ensuring the structural integrity of mechanical components operating in fluid environments requires precise and reliable monitoring techniques. This study presents a methodology for reconstructing the full-field deformation of a flexible aluminium plate subjected to unsteady water flow in a water tunnel, using a [...] Read more.
Ensuring the structural integrity of mechanical components operating in fluid environments requires precise and reliable monitoring techniques. This study presents a methodology for reconstructing the full-field deformation of a flexible aluminium plate subjected to unsteady water flow in a water tunnel, using a structural modal reconstruction approach informed by experimental data. The experimental setup involves an aluminium lamina (200 mm × 400 mm × 2.5 mm) mounted in a closed-loop water tunnel and exposed to a controlled flow with velocities up to 0.5 m/s, corresponding to Reynolds numbers on the order of 104, inducing transient deformations captured through an image-based optical tracking technique. The core of the methodology lies in reconstructing the complete deformation field of the structure by combining a reduced number of vibration modes derived from the geometry and boundary conditions of the system. The novelty of the present work consists in the integration of the Internal Strain Potential Energy Criterion (ISPEC) for mode selection with a data-driven machine learning framework, enabling real-time identification of active modal contributions from sparse experimental measurements. This approach allows for an accurate estimation of the dynamic response while significantly reducing the required sensor data and computational effort. The experimental validation demonstrates strong agreement between reconstructed and measured deflections, with normalised errors below 15% and correlation coefficients exceeding 0.94, confirming the reliability of the reconstruction. The results confirm that, even under complex, time-varying fluid–structure interactions, it is possible to achieve accurate and robust deformation reconstruction with minimal computational cost. This integrated methodology provides a reliable and efficient basis for structural health monitoring of flexible components in hydraulic and marine environments, bridging the gap between sparse measurement data and full-field dynamic characterisation. Full article
Show Figures

Figure 1

17 pages, 3323 KB  
Article
Enhancing Torque Output for a Magnetic Actuation System for Robotic Spinal Distraction
by Yumei Li, Zikang Li, Ding Lu, Tairan Peng, Yunzhi Chen, Gang Fu, Zhenguo Nie and Fangyuan Wei
Sensors 2025, 25(20), 6497; https://doi.org/10.3390/s25206497 - 21 Oct 2025
Viewed by 360
Abstract
Magnetically controlled spinal growing rods, used for treating early-onset scoliosis (EOS), face a critical clinical limitation: insufficient distraction force. Compounding this issue is the inherent inability to directly monitor the mechanical output of such implants in vivo, which challenges their safety and efficacy. [...] Read more.
Magnetically controlled spinal growing rods, used for treating early-onset scoliosis (EOS), face a critical clinical limitation: insufficient distraction force. Compounding this issue is the inherent inability to directly monitor the mechanical output of such implants in vivo, which challenges their safety and efficacy. To overcome these limitations, optimizing the rotor’s maximum torque is essential. Furthermore, defining the “continuous rotation domain” establishes a vital safety boundary for stable operation, preventing loss of synchronization and loss of control, thus safeguarding the efficacy of future clinical control strategies. In this study, a transient finite element magnetic field simulation model of a circumferentially distributed permanent magnet–rotor system was established using ANSYS Maxwell (2024). The effects of the clamp angle between the driving magnets and the rotor, the number of pole pairs, the rotor’s outer diameter, and the rotational speed of the driving magnets on the rotor’s maximum torque were systematically analyzed, and the optimized continuous rotation domain of the rotor was determined. The results indicated that when the clamp angle was set at 120°, the number of pole pairs was one, the rotor outer diameter was 8 mm, the rotor achieved its maximum torque and exhibited the largest continuous rotation domain, while the rotational speed of the driving magnets had no effect on maximum torque. Following optimization, the maximum torque of the simulation increased by 201% compared with the pre-optimization condition, and the continuous rotation domain was significantly enlarged. To validate the simulation, a rotor torque measurement setup incorporating a torque sensor was constructed. Experimental results showed that the maximum torque improved from 30 N·mm before optimization to 90 N·mm after optimization, while the driving magnets maintained stable rotation throughout the process. Furthermore, a spinal growing rod test platform equipped with a pressure sensor was developed to evaluate actuator performance and measure the maximum distraction force. The optimized growing rod achieved a peak distraction force of 413 N, nearly double that of the commercial MAGEC system, which reached only 208 N. The simulation and experimental methodologies established in this study not only optimizes the device’s performance but also provides a viable pathway for in vivo performance prediction and monitoring, addressing a critical need in smart implantable technology. Full article
(This article belongs to the Special Issue Recent Advances in Medical Robots: Design and Applications)
Show Figures

Figure 1

17 pages, 3538 KB  
Article
Characterization of Non-Constant Flow in the Recession Process of Pressurized Pipelines with Air Valves
by Shuaihui Sun, Jinyang Ma, Bo Zhang, Jingwen Jia and Jiuwang Li
Water 2025, 17(20), 3022; https://doi.org/10.3390/w17203022 - 21 Oct 2025
Viewed by 222
Abstract
Emptying pressure pipelines is a routine operation during pipeline maintenance. This study investigates the emptying characteristics of pressurized pipelines with air valves under unsteady flow conditions. A mathematical model for the emptying process is developed using the rigid water column theory, exploring the [...] Read more.
Emptying pressure pipelines is a routine operation during pipeline maintenance. This study investigates the emptying characteristics of pressurized pipelines with air valves under unsteady flow conditions. A mathematical model for the emptying process is developed using the rigid water column theory, exploring the influence of drain valve opening, initial air pocket length, and valve opening patterns on the transient flow behavior. The results indicate that, compared with the linear valve opening pattern, a nonlinear power function opening increases the minimum air pocket pressure head by 0.1014 m and delays its occurrence by 0.655 s. The maximum emptying velocity rises by 0.48 m/s when the opening is increased from 10% to 30%, thereby shortening the emptying time by 65.4%. However, the pressure head inside the air pocket decreases accordingly. When the air valve diameter is enlarged from 0.003 mm to 0.008 mm, the pressure recovery time is markedly reduced and the initial pressure fluctuations are attenuated. Numerical simulations based on the Heihe emptying case demonstrate that a well-planned layout of multiple air valves effectively shortens the duration of negative pressure heads. Replacing the first air valve with a 50 cm diameter circular orifice significantly raises the minimum pressure head of the pipeline and dramatically enhances the stability of emptying pressurized pipeline. Full article
(This article belongs to the Special Issue Hydrodynamics in Pressurized Pipe Systems)
Show Figures

Figure 1

22 pages, 1585 KB  
Article
Sustainable Control of Large-Scale Industrial Systems via Approximate Optimal Switching with Standard Regulators
by Alexander Chupin, Zhanna Chupina, Oksana Ovchinnikova, Marina Bolsunovskaya, Alexander Leksashov and Svetlana Shirokova
Sustainability 2025, 17(20), 9337; https://doi.org/10.3390/su17209337 - 21 Oct 2025
Viewed by 175
Abstract
Large-scale production systems (LSPS) operate under growing complexity driven by digital transformation, tighter environmental regulations, and the demand for resilient and resource-efficient operation. Conventional control strategies, particularly PID and isodromic regulators, remain dominant in industrial automation due to their simplicity and robustness; however, [...] Read more.
Large-scale production systems (LSPS) operate under growing complexity driven by digital transformation, tighter environmental regulations, and the demand for resilient and resource-efficient operation. Conventional control strategies, particularly PID and isodromic regulators, remain dominant in industrial automation due to their simplicity and robustness; however, their capability to achieve near-optimal performance is limited under constraints on control amplitude, rate, and energy consumption. This study develops an analytical–computational approach for the approximate realization of optimal nonlinear control using standard regulator architectures. The method determines switching moments analytically and incorporates practical feasibility conditions that account for nonlinearities, measurement noise, and actuator limitations. A comprehensive robustness analysis and simulation-based validation were conducted across four representative industrial scenarios—energy, chemical, logistics, and metallurgy. The results show that the proposed control strategy reduces transient duration by up to 20%, decreases overshoot by a factor of three, and lowers transient energy losses by 5–8% compared with baseline configurations, while maintaining bounded-input–bounded-output (BIBO) stability under parameter uncertainty and external disturbances. The framework provides a clear implementation pathway combining analytical tuning with observer-based derivative estimation, ensuring applicability in real industrial environments without requiring complex computational infrastructure. From a broader sustainability perspective, the proposed method contributes to the reliability, energy efficiency, and longevity of industrial systems. By reducing transient energy demand and mechanical wear, it supports sustainable production practices consistent with the following United Nations Sustainable Development Goals—SDG 7 (Affordable and Clean Energy), SDG 9 (Industry, Innovation and Infrastructure), and SDG 12 (Responsible Consumption and Production). The presented results confirm both the theoretical soundness and practical feasibility of the approach, while experimental validation on physical setups is identified as a promising direction for future research. Full article
(This article belongs to the Special Issue Large-Scale Production Systems: Sustainable Manufacturing and Service)
Show Figures

Figure 1

9 pages, 397 KB  
Article
Evaluation of the Effects of Lipoxin A4 and Resolvin D1 on the Severity of Transient Tachypnea of the Newborn: A Prospective Study
by Emrah Çığrı, Funda Çatan İnan, Sedat Gülten, Mehmet Akif Bildirici, Ayşe Ece Gökkaya, Metin Asıleren, Fethiye Yıldız and Hilmi Onur Kabukcu
Children 2025, 12(10), 1421; https://doi.org/10.3390/children12101421 - 21 Oct 2025
Viewed by 166
Abstract
Objective: Transient tachypnea of the newborn (TTN) is a common condition observed in neonates. Since its management often requires intensive care and leads to maternal–infant separation, it is a major source of parental concern. The present study aimed to evaluate the effects of [...] Read more.
Objective: Transient tachypnea of the newborn (TTN) is a common condition observed in neonates. Since its management often requires intensive care and leads to maternal–infant separation, it is a major source of parental concern. The present study aimed to evaluate the effects of lipoxin A4 and resolvin D1 on the clinical course of TTN and to determine whether complete blood count parameters could serve as predictors of disease severity. Materials and Methods: A total of 62 neonates admitted to the neonatal intensive care unit with a diagnosis of TTN were included. According to Silverman scoring, infants were divided into a mild group (n = 31) and a severe group (n = 31). Lipoxin A4 and resolvin D1 levels, together with complete blood count parameters, were compared between the two groups. Logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the predictive value of these parameters for the clinical course. Results: Serum lipoxin A4 (p = 0.005) and resolvin D1 (p = 0.002) levels were significantly higher in the mild group compared with the severe group, whereas the neutrophil-to-lymphocyte ratio (p = 0.044) and platelet-to-lymphocyte ratio (p = 0.027) were significantly lower. Resolvin D1 and the platelet-to-lymphocyte ratio were identified as significant predictors of severe disease. In predicting a mild course, lipoxin A4 demonstrated the highest sensitivity (80.6%), while resolvin D1 exhibited the highest specificity (87.1%). Conclusions: Lipoxin A4 and resolvin D1 appear to play a protective role in preventing severe clinical progression of transient tachypnea of the newborn. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Figure 1

18 pages, 3812 KB  
Article
Advancements in PARCS/TRACE Coupling and Simulation of Rod Ejection Accident in VVER-1000 Nuclear Reactor
by Gianluca Nesti, Guido Mazzini, Antonio Dambrosio and Matteo D’Onorio
Energies 2025, 18(20), 5500; https://doi.org/10.3390/en18205500 - 18 Oct 2025
Viewed by 232
Abstract
As the global energy demand continues to grow and the pursuit of clean and sustainable resources intensifies, nuclear energy stands out as a secure, reliable, and low-emission solution. The complexity of nuclear power plant behavior under various operating conditions necessitates advanced simulation tools [...] Read more.
As the global energy demand continues to grow and the pursuit of clean and sustainable resources intensifies, nuclear energy stands out as a secure, reliable, and low-emission solution. The complexity of nuclear power plant behavior under various operating conditions necessitates advanced simulation tools capable of capturing the interplay between multiple physical phenomena. Among these, multi-physics coupling, particularly between neutronics and thermal hydraulics, is a well-established approach for accurately modeling transient scenarios with strong feedback effects. In this context, PARCS and TRACE codes, developed by the U.S. Nuclear Regulatory Commission, are widely used for coupled neutronic/thermal-hydraulic analyses and can be operated via the SNAP graphical interface. However, the current version of SNAP does not support automatic coupling for hexagonal core geometries, such as those found in VVER-type reactors. To address this limitation, a dedicated tool was developed to facilitate the coupling process between PARCS and TRACE for hexagonal cores. The proposed methodology was tested through the simulation of a rod ejection accident in a VVER-1000 reactor, demonstrating the validity of the methodology and confirming that the multi-physics approach provides more accurate, best-estimate results. Full article
(This article belongs to the Special Issue Nuclear Fuel and Fuel Cycle Technology)
Show Figures

Figure 1

27 pages, 2211 KB  
Article
HVDC Receiving-End Power Grid Multi-Resource Coordinated Transient Voltage Emergency Control Technology Based on Transient Voltage Similarity
by Xu Ling, Jianghui Xi, Qiuting Guo, Xiaodong Yu and Xiongguang Zhao
Electronics 2025, 14(20), 4090; https://doi.org/10.3390/electronics14204090 - 17 Oct 2025
Viewed by 234
Abstract
This study addresses the issues related to the inaccurate assessment of transient voltage stability margins and the limited participation of resources involved in regulation during high-voltage direct current (HVDC) receiving-end grid faults under high-penetration new energy integration. This paper proposes a method for [...] Read more.
This study addresses the issues related to the inaccurate assessment of transient voltage stability margins and the limited participation of resources involved in regulation during high-voltage direct current (HVDC) receiving-end grid faults under high-penetration new energy integration. This paper proposes a method for transient voltage emergency control at the HVDC receiving-end grid, utilizing a multi-resource approach based on transient voltage similarity partitioning with a multiple-two-element notation criterion. First, the transient voltage stability margin and the new energy transient off-grid margin index, based on the multiple-two-element notation criterion, are introduced. Second, a grid partitioning scheme is employed, which clusters nodes based on the similarity of their transient voltage features, and the impact of multiple resources on the transient voltage stability of the HVDC receiving-end system is analyzed using trajectory sensitivity. On this basis, a multi-resource optimization model for transient voltage emergencies is established with the aim of minimizing the control cost, considering the transient voltage stability, off-grid new energy, and other safety evaluation constraints, in order to coordinate multiple resources participating in transient voltage control until the stability requirements are met. Finally, the validity of the proposed control scheme is verified using the improved frequency stability benchmark test system (Chinese Society for Electrical Engineering—Frequency Stability, CSEE-FS). The research results demonstrate that the scheme proposed in this study can be utilized to accurately assess the transient voltage stability and off-grid potential of renewable energy units following failure at the HVDC receiving-end system. Additionally, it can reasonably partition the grid based on transient operating conditions while fully exploiting the potential of multiple resources within the faulted partition to control transient voltage emergencies in the grid. Full article
Show Figures

Figure 1

11 pages, 2986 KB  
Article
Numerical Investigations of Factors Affecting the Heat Energy Productivity of Geothermal Wells Converted from Hydrocarbon Well Pairs
by Boyun Guo and Ekow Edusah
Energies 2025, 18(20), 5487; https://doi.org/10.3390/en18205487 - 17 Oct 2025
Viewed by 212
Abstract
Repurposing end-of-life hydrocarbon wells for geothermal energy generation offers a cost-effective and sustainable strategy to expand low-carbon energy deployment while utilizing existing infrastructure. Fracture-connected horizontal oil and gas well pairs present a promising configuration for enhancing heat transfer in low-permeability reservoirs. Existing modeling [...] Read more.
Repurposing end-of-life hydrocarbon wells for geothermal energy generation offers a cost-effective and sustainable strategy to expand low-carbon energy deployment while utilizing existing infrastructure. Fracture-connected horizontal oil and gas well pairs present a promising configuration for enhancing heat transfer in low-permeability reservoirs. Existing modeling approaches, however, lack the ability to simulate transient heat conduction from rock to fluid in such complex fracture pathways. This work develops a mathematical model that couples time-dependent heat conduction in the reservoir rock with convective heat transport within the fractures. This model enables prediction of heat energy productivity of converted well pairs by accounting for realistic boundary conditions and operational parameters. In applying the model to a representative shale gas field in Louisiana, key factors affecting fluid temperature and thermal power output, including fracture geometry, fluid flow rate, and wellbore insulation, were considered. The results demonstrate the feasibility and sensitivity of converting hydrocarbon wells into geothermal energy production, providing critical insight for optimizing such conversions to support the increased demand for clean, sustainable energy. Full article
Show Figures

Figure 1

18 pages, 6453 KB  
Article
Stress Evolution of Concrete Structures During Construction: Field Monitoring with Multi-Modal Strain Identification
by Chunjiang Yu, Tao Li, Weiyu Dou, Lichao Xu, Lingfeng Zhu, Hao Su and Qidi Wang
Buildings 2025, 15(20), 3742; https://doi.org/10.3390/buildings15203742 - 17 Oct 2025
Viewed by 141
Abstract
The method addresses the challenges of non-steady conditions at an early age by combining wavelet filtering and empirical mode decomposition (EMD) to separate strain components arising from shrinkage, expansive agent compensation, temperature variations, construction disturbances, and live loads. The approach incorporates construction logs [...] Read more.
The method addresses the challenges of non-steady conditions at an early age by combining wavelet filtering and empirical mode decomposition (EMD) to separate strain components arising from shrinkage, expansive agent compensation, temperature variations, construction disturbances, and live loads. The approach incorporates construction logs as external constraints to ensure accurate correspondence between signal features and physical events. Scientifically, this study addresses the fundamental problem of identifying and quantifying multi-source strain components under transient and non-steady construction conditions, which remains a major challenge in the field of structural monitoring. Field monitoring was conducted on typical cast-in-place concrete components: a full-width bridge deck in the negative moment region. The results show that both structural types exhibit a distinct shrinkage–recovery process at an early age but differ in amplitude distribution, recovery rate, and restraint characteristics. During the construction procedure stage, the cast-in-place segment in the negative moment region was sensitive to prestressing and adjacent segment construction. Under variable loads, the former showed higher live load sensitivity, while the latter exhibited more pronounced temperature-driven responses. Total strain decomposition revealed that temperature and dead load were the primary long-term components in the structure, with differing proportional contributions. Representative strain variations observed in the field ranged from 10 to 50 µε during early-age shrinkage–expansion cycles to 80–100 µε reductions during prestressing operations, quantitatively illustrating the evolution characteristics captured by the proposed method. This approach demonstrates the method’s capability to reveal transient stress mechanisms that conventional steady-state analyses cannot capture, providing a reliable basis for strain monitoring, disturbance identification, and performance evaluation during construction, as well as for long-term prediction and optimization of operation–maintenance strategies. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop