Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (37,300)

Search Parameters:
Keywords = transcriptional

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5973 KiB  
Article
Genome-Wide Identification and Characterisation of the 4-Coumarate–CoA Ligase (4CL) Gene Family in Gastrodia elata and Their Transcriptional Response to Fungal Infection
by Shan Sha, Kailang Mu, Qiumei Luo, Shi Yao, Tianyu Tang, Wei Sun, Zhigang Ju and Yuxin Pang
Int. J. Mol. Sci. 2025, 26(15), 7610; https://doi.org/10.3390/ijms26157610 (registering DOI) - 6 Aug 2025
Abstract
Gastrodia elata Blume is an important medicinal orchid, yet its large-scale cultivation is increasingly threatened by fungal diseases. The 4-coumarate–CoA ligase (4CL) gene family directs a key step in phenylpropanoid metabolism and plant defence, but its composition and function in G. elata have [...] Read more.
Gastrodia elata Blume is an important medicinal orchid, yet its large-scale cultivation is increasingly threatened by fungal diseases. The 4-coumarate–CoA ligase (4CL) gene family directs a key step in phenylpropanoid metabolism and plant defence, but its composition and function in G. elata have not been investigated. We mined the G. elata genome for 4CL homologues, mapped their chromosomal locations, and analysed their gene structures, conserved motifs, phylogenetic relationships, promoter cis-elements and codon usage bias. Publicly available transcriptomes were used to examine tissue-specific expression and responses to fungal infection. Subcellular localisation of selected proteins was verified by transient expression in Arabidopsis protoplasts. Fourteen Ge4CL genes were identified and grouped into three clades. Two members, Ge4CL2 and Ge4CL5, were strongly upregulated in tubers challenged with fungal pathogens. Ge4CL2 localised to the nucleus, whereas Ge4CL5 localised to both the nucleus and the cytoplasm. Codon usage analysis suggested that Escherichia coli and Oryza sativa are suitable heterologous hosts for Ge4CL expression. This study provides the first genome-wide catalogue of 4CL genes in G. elata and suggests that Ge4CL2 and Ge4CL5 may participate in antifungal defence, although functional confirmation is still required. The dataset furnishes a foundation for functional characterisation and the molecular breeding of disease-resistant G. elata cultivars. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 3503 KiB  
Article
Discovery of Hub Genes Involved in Seed Development and Lipid Biosynthesis in Sea Buckthorn (Hippophae rhamnoides L.) Using UID Transcriptome Sequencing
by Siyang Zhao, Chengjiang Ruan, Alexey A. Dmitriev and Hyun Uk Kim
Plants 2025, 14(15), 2436; https://doi.org/10.3390/plants14152436 (registering DOI) - 6 Aug 2025
Abstract
Sea buckthorn is a vital woody oil species valued for its role in soil conservation and its bioactive seed oil, which is rich in unsaturated fatty acids and other compounds. However, low seed oil content and small seed size are the main bottlenecks [...] Read more.
Sea buckthorn is a vital woody oil species valued for its role in soil conservation and its bioactive seed oil, which is rich in unsaturated fatty acids and other compounds. However, low seed oil content and small seed size are the main bottlenecks restricting the development and utilization of sea buckthorn. In this study, we tested the seed oil content and seed size of 12 sea buckthorn cultivars and identified the key genes and transcription factors involved in seed development and lipid biosynthesis via the integration of UID RNA-seq (Unique Identifiers, UID), WGCNA (weighted gene co-expression network analysis) and qRT-PCR (quantitative real-time PCR) analysis. The results revealed five cultivars (CY02, CY11, CY201309, CY18, CY21) with significantly higher oil contents and five cultivars (CY10, CY201309, CY18, CY21, CY27) with significantly heavier seeds. A total of 10,873 genes were significantly differentially expressed between the S1 and S2 seed developmental stages of the 12 cultivars. WGCNA was used to identify five modules related to seed oil content and seed weight/size, and 417 candidate genes were screened from these modules. Among them, multiple hub genes and transcription factors were identified; for instance, ATP synthase, ATP synthase subunit D and Acyl carrier protein 1 were related to seed development; plastid–lipid-associated protein, acyltransferase-like protein, and glycerol-3-phosphate 2-O-acyltransferase 6 were involved in lipid biosynthesis; and transcription factors DOF1.2, BHLH137 and ERF4 were associated with seed enlargement and development. These findings provide crucial insights into the genetic regulation of seed traits in sea buckthorn, offering targets for future breeding efforts aimed at improving oil yield and quality. Full article
(This article belongs to the Special Issue Molecular Regulation of Seed Development and Germination)
Show Figures

Figure 1

8 pages, 1384 KiB  
Communication
Efficient Genome Editing Using the T2A-Coupled Co-Expression of Two ZFN Monomers
by Shota Katayama and Takashi Yamamoto
Int. J. Mol. Sci. 2025, 26(15), 7602; https://doi.org/10.3390/ijms26157602 (registering DOI) - 6 Aug 2025
Abstract
Genome editing is commonly used in biomedical research. Among the genome editing tools, zinc finger nucleases (ZFNs) are smaller in size than transcription activator-like effector nucleases (TALENs) and CRISPR-Cas9. Therefore, ZFNs are easily packed into a viral vector with limited cargo space. However, [...] Read more.
Genome editing is commonly used in biomedical research. Among the genome editing tools, zinc finger nucleases (ZFNs) are smaller in size than transcription activator-like effector nucleases (TALENs) and CRISPR-Cas9. Therefore, ZFNs are easily packed into a viral vector with limited cargo space. However, ZFNs also consist of left and right monomers, which both need to be expressed in the target cells. When each monomer is expressed separately, two expression cassettes are required, thus increasing the size of the DNA. This is a disadvantage for a viral vector with limited cargo space. We herein showed that T2A-coupled ZF-ND1 monomers were co-expressed from a single expression cassette and that the corresponding ZF-ND1s efficiently cleaved the target DNA sequences. Furthermore, the total amount of transfected plasmid DNA was reduced by half, and genome editing efficiency was equivalent to that of two separate ZF-ND1 monomers. This study provides a promising framework for the development of ZFN applications. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 3674 KiB  
Article
Extracellular Adenosine in Gastric Cancer: The Role of GCSCs
by Sharin Valdivia, Carolina Añazco, Camila Riquelme, María Constanza Carrasco, Andrés Alarcón and Sebastián Alarcón
Int. J. Mol. Sci. 2025, 26(15), 7594; https://doi.org/10.3390/ijms26157594 - 6 Aug 2025
Abstract
Gastric cancer (GC) is among the most common and deadliest types of cancer, with a poor prognosis primarily due to late-stage detection and the presence of cancer stem cells (CSCs). This study investigates the mechanisms regulating extracellular adenosine levels in gastric cancer stem-like [...] Read more.
Gastric cancer (GC) is among the most common and deadliest types of cancer, with a poor prognosis primarily due to late-stage detection and the presence of cancer stem cells (CSCs). This study investigates the mechanisms regulating extracellular adenosine levels in gastric cancer stem-like cells (GCSCs) derived from the MKN-74 cell line. Our results show that GCSCs release more ATP into the extracellular medium and exhibit higher levels of CD39 expression, which enables them to hydrolyze a greater amount of ATP. Furthermore, we also found that GCSCs possess a greater capacity to hydrolyze AMP, primarily due to the activity of the CD73 protein, with no significant changes in CD73 transcripts and protein levels between GCSCs and differentiated cells. Additionally, adenosine transport is primarily mediated by members of the equilibrative nucleoside transporter (ENT) family in GCSCs, where a significant increase in the expression level of the ENT2 protein is observed compared to non-GCSCs MKN-74 cells. These findings suggest that targeting the adenosine metabolism pathway in GCSCs could be a potential therapeutic strategy for gastric cancer. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Cancer Invasion and Metastasis)
Show Figures

Figure 1

26 pages, 823 KiB  
Article
Reconciling Teaching and Research Tensions: A Sustainability Framework for Expert Teacher Development in Research Intensive Universities
by Yue Huang, Lin Jiang and Ruirui Zhai
Sustainability 2025, 17(15), 7113; https://doi.org/10.3390/su17157113 - 6 Aug 2025
Abstract
The sustainable development of teaching expertise in research-intensive universities remains a critical global challenge. This study investigates the distinctive characteristics of expert teachers—exemplary faculty in research universities—addressing their developmental trajectories and motivational mechanisms within prevailing incentive systems that prioritize research productivity over pedagogical [...] Read more.
The sustainable development of teaching expertise in research-intensive universities remains a critical global challenge. This study investigates the distinctive characteristics of expert teachers—exemplary faculty in research universities—addressing their developmental trajectories and motivational mechanisms within prevailing incentive systems that prioritize research productivity over pedagogical excellence. Employing grounded theory methodology, we conducted iterative coding of 20,000-word interview transcripts from 13 teaching-awarded professors at Chinese “Double First-Class” universities. Key findings reveal the following: (1) Compared to the original K-12 expert teacher model, university-level teaching experts exhibit distinctive disciplinary mastery—characterized by systematic knowledge structuring and cross-disciplinary integration capabilities. (2) Their developmental trajectory transcends linear expertise acquisition, instead manifesting as a problem-solving continuum across four nonlinear phases: career initiation, dilemma adaptation, theoretical consciousness, and leadership expansion. (3) Sustainable teaching excellence relies fundamentally on teachers’ professional passion, sustained through a virtuous cycle of high-quality instructional engagement and external validation (including positive student feedback, institutional recognition, and peer collaboration). Universities must establish comprehensive support systems—including (a) fostering a supportive and flexible learning atmosphere, (b) reforming evaluation mechanisms, and (c) facilitating interdisciplinary collaboration through teaching development communities—to institutionalize this developmental ecosystem. Full article
Show Figures

Figure 1

15 pages, 3830 KiB  
Article
ZNF496 as Candidate Gene for Neurodevelopmental Disorders: Identification of a Pathogenic De Novo Frameshift Variant
by Francesco Calì, Miriam Virgillito, Simone Treccarichi, Antonino Musumeci, Pinella Failla, Carla Papa, Rosanna Galati Rando, Concetta Federico, Salvatore Saccone and Mirella Vinci
Int. J. Mol. Sci. 2025, 26(15), 7586; https://doi.org/10.3390/ijms26157586 - 5 Aug 2025
Abstract
Zinc finger proteins are frequently implicated in a wide range of neurodevelopmental disorders (NDDs). In this study, we report a case of mild intellectual disability (ID), global developmental delay (GDD), and developmental coordination disorder (DCD) in an individual with unaffected parents. Trio-based whole-exome [...] Read more.
Zinc finger proteins are frequently implicated in a wide range of neurodevelopmental disorders (NDDs). In this study, we report a case of mild intellectual disability (ID), global developmental delay (GDD), and developmental coordination disorder (DCD) in an individual with unaffected parents. Trio-based whole-exome sequencing (WES) identified a de novo variant (c.1530dup, p.Glu511ArgfsTer16) in the ZNF496 gene of the proband. According to ACMG guidelines, this novel variant is classified as pathogenic. It creates a frameshift that introduces a premature stop codon, resulting in a truncated protein of 525 amino acids (compared to the wild-type 587 residues). Notably, NMDEscPredictor analysis predicted that the transcript escapes nonsense-mediated decay (NMD) despite the frameshift. Computational analyses suggest the potential pathogenetic effects of the identified variant. As documented, ZNF496 interacts with JARID2, a gene associated with NDDs, ID and facial dysmorphism (MIM: #620098). In silico analyses suggest that the identified mutation disrupts this interaction by deleting ZNF496’s C2H2 domain, potentially dysregulating JARID2 target genes. To our knowledge, this is the first reported association between ZNF496 and NDDs, and the variant has been submitted to the ClinVar database (SCV006100880). Functional studies are imperative to validate ZNF496’s role in NDDs and confirm the mutation’s impact on ZNF496-JARID2 interactions. Full article
Show Figures

Figure 1

25 pages, 2042 KiB  
Article
Transcriptomic Profiling of Mouse Mesenchymal Stem Cells Exposed to Metal-Based Nanoparticles
by Michal Sima, Helena Libalova, Zuzana Simova, Barbora Echalar, Katerina Palacka, Tereza Cervena, Jiri Klema, Zdenek Krejcik, Vladimir Holan and Pavel Rossner
Int. J. Mol. Sci. 2025, 26(15), 7583; https://doi.org/10.3390/ijms26157583 - 5 Aug 2025
Abstract
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of [...] Read more.
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of Ag, CuO, and ZnO NPs after in vitro exposure of mouse MSCs at the transcriptional level in order to reveal the potential toxicity as well as modulation of other processes that may modify the activity of MSCs. mRNA–miRNA interactions were further investigated to explore the epigenetic regulation of gene expression. All the tested NPs mediated immunomodulatory effects on MSCs, generation of extracellular vesicles, inhibition of osteogenesis, and enhancement of adipogenesis. Ag NPs exhibited the most pronounced response; they impacted the expression of the highest number of mRNAs, including those encoding interferon-γ-stimulated genes and genes involved in drug metabolism/cytochrome P450 activity, suggesting a response to the potential toxicity of Ag NPs (oxidative stress). Highly interacting MiR-126 was upregulated by all NPs, while downregulation of MiR-92a was observed after the ZnO NP treatment only, and both effects might be associated with the improvement of MSCs’ healing potency. Overall, our results demonstrate positive effects of NPs on MSCs, although increased oxidative stress caused by Ag NPs may limit the therapeutical potential of the combined MSC+NP treatment. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

20 pages, 3069 KiB  
Article
Inhibitory Impact of the Amino Benzoic Derivative DAB-2-28 on the Process of Epithelial–Mesenchymal Transition in Human Breast Cancer Cells
by Laurie Fortin, Julie Girouard, Yassine Oufqir, Alexis Paquin, Francis Cloutier, Isabelle Plante, Gervais Bérubé and Carlos Reyes-Moreno
Molecules 2025, 30(15), 3284; https://doi.org/10.3390/molecules30153284 - 5 Aug 2025
Abstract
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule [...] Read more.
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule derived from para-aminobenzoic acid, in the treatment of breast cancer. The luminal MCF-7 and the triple-negative MDA-MB-231 cancer cell lines used in this study represent, respectively, breast cancers in which the differentiation states are related to the epithelial phenotype of the mammary gland and breast cancers expressing a highly aggressive mesenchymal phenotype. In MCF-7 cells, soluble factors from macrophage-conditioned media (CM-MØ) induce a characteristic morphology of mesenchymal cells with an upregulated expression of Snail1, a mesenchymal marker, as opposed to a decrease in the expression of E-cadherin, an epithelial marker. DAB-2-28 does not affect the differential expression of Snail1 and E-cadherin in response to CM-MØ, but negatively impacts other hallmarks of EMT by decreasing invasion and migration capacities, in addition to MMP9 expression and gelatinase activity, in both MCF-7 and MDA-MB-231 cells. Moreover, DAB-2-28 inhibits the phosphorylation of key pro-EMT transcriptional factors, such as NFκB, STAT3, SMAD2, CREB, and/or AKT proteins, in breast cancer cells exposed to different EMT inducers. Overall, our study provides evidence suggesting that inhibition of EMT initiation or maintenance is a key mechanism by which DAB-2-28 can exert anti-tumoral effects in breast cancer cells. Full article
Show Figures

Figure 1

17 pages, 2170 KiB  
Article
RcsB and H-NS Both Contribute to the Repression the Expression of the csgDEFG Operon
by Hiroshi Ogasawara, Azusa Tomioka and Yuki Kato
Microorganisms 2025, 13(8), 1829; https://doi.org/10.3390/microorganisms13081829 - 5 Aug 2025
Abstract
Curli fimbriae are a major component of biofilm formation in Escherichia coli, and their expression is regulated by numerous transcription factors and small regulatory RNAs (sRNAs). The RcsD-RcsC-RcsB phosphorelay system, which is involved in the envelope stress response, plays a role in [...] Read more.
Curli fimbriae are a major component of biofilm formation in Escherichia coli, and their expression is regulated by numerous transcription factors and small regulatory RNAs (sRNAs). The RcsD-RcsC-RcsB phosphorelay system, which is involved in the envelope stress response, plays a role in this regulation. In this study, we report that DNase-I footprinting analysis revealed that the response regulator RcsB interacts with the −31 to +53 region of the promoter region of csgD, which encodes a major regulator of biofilm formation, and thus contributes to its transcriptional repression. Additionally, overexpression of RcsB or RcsB D56A that could not be phosphorylated by the histidine kinases RcsC and D both significantly reduced csgD expression and suppressed Curli formation. This indicates that the phosphorylation of RcsB has an insignificant impact on its affinity for its operator sites. Furthermore, we confirm that RcsB binds cooperatively to the csgD promoter region in the presence of the nucleoid-associated protein H-NS. Our study also confirms that RcsB positively regulates the expression of an sRNA, RprA, which is known to reduce mRNA csgD mRNA translation RprA via its binding to the 5′-untranslated region (UTR) of csgD. These findings indicate that, in E. coli, the RcsBCD system suppresses csgD expression through both direct transcriptional repression by the regulator RcsB and translational repression by the sRNA RprA. Full article
(This article belongs to the Special Issue Transcriptional Regulation in Bacteria, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 1669 KiB  
Article
Guinea Pig X Virus Is a Gammaherpesvirus
by Vy Ngoc Yen Truong, Robert Ellis and Brent A. Stanfield
Viruses 2025, 17(8), 1084; https://doi.org/10.3390/v17081084 - 5 Aug 2025
Abstract
The Guinea Pig X Virus (GPXV), a newly identified gammaherpesvirus, provides an opportunity to study viral evolution and host–virus dynamics. This study characterizes the GPXV genome and investigates its phylogenetic relationships and divergence from related viruses through comparative genomic and phylogenetic analyses. Virus [...] Read more.
The Guinea Pig X Virus (GPXV), a newly identified gammaherpesvirus, provides an opportunity to study viral evolution and host–virus dynamics. This study characterizes the GPXV genome and investigates its phylogenetic relationships and divergence from related viruses through comparative genomic and phylogenetic analyses. Virus propagation was conducted in Vero cells, followed by genomic DNA extraction and pan-herpesvirus nested PCR. Sanger sequencing filled gaps in the initial genome assembly, and whole-genome sequencing was performed using the Illumina MiSeq platform. Phylogenetic analyses focused on ORF8 (glycoprotein B), ORF9 (DNA polymerase catalytic subunit), ORF50 (RTA: replication and transcription activator), and ORF73 (LANA: latency-associated nuclear antigen). Results showed that GPXV ORFs showed variable evolutionary relationships with other gammaherpesviruses, including divergence from primate-associated viruses and clustering with bovine and rodent viruses. In addition to phylogenetics, a comprehensive comparative analysis of protein-coding genes between GPXV and the previously described Guinea Pig Herpes-Like Virus (GPHLV) revealed divergence. Twenty-four non-ORF genomic features were unique to GPXV, while 62 shared ORFs exhibited low to high sequence divergence. These findings highlight GPXV’s distinct evolutionary trajectory and its potential role as a model for studying host-specific adaptations and gammaherpesvirus diversity. Full article
(This article belongs to the Special Issue Animal Herpesvirus 2025)
Show Figures

Graphical abstract

13 pages, 7209 KiB  
Article
Evolutionary Analysis of the Land Plant-Specific TCP Interactor Containing EAR Motif Protein (TIE) Family of Transcriptional Corepressors
by Agustín Arce, Camila Schild, Delfina Maslein and Leandro Lucero
Plants 2025, 14(15), 2423; https://doi.org/10.3390/plants14152423 - 5 Aug 2025
Abstract
The plant-specific TCP transcription factor family originated before the emergence of land plants. However, the timing of the appearance of their specific transcriptional repressor family, the TCP Interactor containing EAR motif protein (TIE), remains unknown. Here, through phylogenetic analyses, we traced the origin [...] Read more.
The plant-specific TCP transcription factor family originated before the emergence of land plants. However, the timing of the appearance of their specific transcriptional repressor family, the TCP Interactor containing EAR motif protein (TIE), remains unknown. Here, through phylogenetic analyses, we traced the origin of the TIE family to the early evolution of the embryophyte, while an earlier diversification in algae cannot be ruled out. Strikingly, we found that the number of TIE members is highly constrained compared to the expansion of TCPs in angiosperms. We used co-expression data to identify potential TIE-TCP regulatory targets across Arabidopsis thaliana and rice. Notably, the expression pattern between these species is remarkably similar. TCP Class I and Class II genes formed two distinct clusters, and TIE genes cluster within the TCP Class I group. This study provides a comprehensive evolutionary analysis of the TIE family, shedding light on its conserved role in the regulation of gene transcription in flowering plant development. Full article
(This article belongs to the Special Issue Plant Molecular Phylogenetics and Evolutionary Genomics III)
Show Figures

Figure 1

24 pages, 2475 KiB  
Article
An Immunomodulating Peptide with Potential to Promote Anticancer Immunity Without Compromising Immune Tolerance
by Michael Agrez, Christopher Chandler, Amanda L. Johnson, Marlena Sorensen, Kirstin Cho, Stephen Parker, Benjamin Blyth, Darryl Turner, Justyna Rzepecka, Gavin Knox, Anastasia Nika, Andrew M. Hall, Hayley Gooding and Laura Gallagher
Biomedicines 2025, 13(8), 1908; https://doi.org/10.3390/biomedicines13081908 - 5 Aug 2025
Abstract
Background: Immune checkpoint inhibitor therapy in patients with lung cancer and metastatic melanoma is associated with exacerbation of autoimmune-related diseases. The efficacy of treatment targeting the programmed cell death receptor-1 (PD-1) checkpoint relies upon a feedback loop between interferon gamma (IFN-γ) and the [...] Read more.
Background: Immune checkpoint inhibitor therapy in patients with lung cancer and metastatic melanoma is associated with exacerbation of autoimmune-related diseases. The efficacy of treatment targeting the programmed cell death receptor-1 (PD-1) checkpoint relies upon a feedback loop between interferon gamma (IFN-γ) and the interleukin-12 isoform, IL-12p40. Paradoxically, both cytokines and the anti-PD-1 antibody worsen psoriasis. We previously reported an immunomodulating peptide, designated IK14004, that inhibits progression of Lewis lung cancer in mice yet uncouples IFN-γ from IL-12p40 production in human immune cells. Methods: Immune cells obtained from healthy donors were exposed to IK14004 in vitro to further characterise the signalling pathways affected by this peptide. Using C57BL/6 immunocompetent mice, the effect of IK14004 was tested in models of lung melanoma and psoriatic skin. Results: Differential effects of IK14004 on the expression of IFN-α/β, the interleukin-15 (IL-15) receptor and signal transducers and activators of transcription were consistent with immune responses relevant to both cancer surveillance and immune tolerance. Moreover, both melanoma and psoriasis were inhibited by the peptide. Conclusions: Taken together, these findings suggest mechanisms underlying immune homeostasis that could be exploited in the setting of cancer and autoimmune pathologies. Peptide administered together with checkpoint blockers in relevant models of autoimmunity and cancer may offer an opportunity to gain further insight into how immune tolerance can be retained in patients receiving cancer immunotherapy. Full article
(This article belongs to the Special Issue Peptides and Amino Acids in Drug Development: Here and Now)
Show Figures

Figure 1

33 pages, 452 KiB  
Review
Uncommon Factors Leading to Nephrotic Syndrome
by Ljiljana Bogdanović, Ivana Babić, Mirjana Prvanović, Dragana Mijač, Ana Mladenović-Marković, Dušan Popović and Jelena Bogdanović
Biomedicines 2025, 13(8), 1907; https://doi.org/10.3390/biomedicines13081907 - 5 Aug 2025
Abstract
Nephrotic syndrome (NS) is characterized by proteinuria, hypoalbuminemia, edema, and hyperlipidemia. Apart from the traditional causes of NS, such as minimal change disease, focal segmental glomerulosclerosis, diabetes, infections, malignancies, autoimmune conditions, and nephrotoxic agents, there are also rare causes of NS, whose knowledge [...] Read more.
Nephrotic syndrome (NS) is characterized by proteinuria, hypoalbuminemia, edema, and hyperlipidemia. Apart from the traditional causes of NS, such as minimal change disease, focal segmental glomerulosclerosis, diabetes, infections, malignancies, autoimmune conditions, and nephrotoxic agents, there are also rare causes of NS, whose knowledge is of the utmost importance. The aim of this article was to highlight the less well-known causes that have a significant impact on diagnosis and treatment. Genetic syndromes such as Schimke immuno-osseous dysplasia, familial lecithin-cholesterol acyltransferase deficiency with two clinical variants (fish-eye Disease and the p.Leu364Pro mutation), lead to NS through mechanisms involving podocyte and lipid metabolism dysfunction. Congenital disorders of glycosylation and Nail–Patella Syndrome emphasize the role of deranged protein processing and transcriptional regulation in glomerular injury. The link of NS with type 1 diabetes, though rare, suggests an etiology on the basis of common HLA loci and immune dysregulation. Histopathological analysis, particularly electron microscopy, shows mainly podocyte damage, mesangial sclerosis, and alteration of the basement membrane, which aids in differentiating rare forms. Prompt recognition of these novel etiologies by genetic analysis, renal biopsy, and an interdisciplinary panel is essential to avoid delays in diagnosis and tailored treatment. Full article
Show Figures

Graphical abstract

37 pages, 1583 KiB  
Review
Glial Cells and Aging: From the CNS to the Cerebellum
by Gina La Sala and Donatella Farini
Int. J. Mol. Sci. 2025, 26(15), 7553; https://doi.org/10.3390/ijms26157553 - 5 Aug 2025
Abstract
Among brain regions, the cerebellum (CBL) has traditionally been associated with motor control. However, increasing evidence from connectomics and functional imaging has expanded this view, revealing its involvement in a wide range of cognitive and integrative processes. Despite this emerging relevance, the CBL [...] Read more.
Among brain regions, the cerebellum (CBL) has traditionally been associated with motor control. However, increasing evidence from connectomics and functional imaging has expanded this view, revealing its involvement in a wide range of cognitive and integrative processes. Despite this emerging relevance, the CBL has received comparatively less attention in aging research, which has focused mainly on other central nervous system (CNS) regions such as the neocortex and hippocampus. This review synthesizes the current evidence on glial cell aging across the CNS, emphasizing how cerebellar circuits follow distinct trajectories in terms of cellular remodeling, transcriptional reprogramming, and structural vulnerability. Recent findings highlight that cerebellar astrocytes and microglia exhibit specific signatures related to aging compared to their cortical counterpart, including moderate reactivity, selective immune response, and spatial reorganization. Cerebellar white matter (WM) undergoes structural alteration, suggesting that oligodendroglial cells may undergo region-specific alterations, particularly within WM tracts, although these aspects remain underexplored. Despite the presence of glial remodeling, the CBL maintains a notable degree of structural and functional integrity during aging. This resilience may be the result of the CBL’s ability to maintain synaptic adaptability and homeostatic balance, supported by its highly organized and compartmentalized architecture. A better understanding of the dynamics of cerebellar glial cells in aging may provide new insight into the mechanisms of brain maintenance and identify potential biomarkers for healthy brain aging. Full article
(This article belongs to the Special Issue Cellular and Molecular Biology of Glial Cells)
Show Figures

Figure 1

15 pages, 1257 KiB  
Article
Androgen receptors and Zinc finger (ZNF) Transcription Factors’ Interplay and Their miRNA Regulation in Prostate Cancer Prognosis
by Laura Boldrini, Savana Watts, Noah Schneider, Rithanya Saravanan and Massimo Bardi
Sci 2025, 7(3), 111; https://doi.org/10.3390/sci7030111 - 5 Aug 2025
Abstract
Transcription factors play crucial roles in regulating gene expression, and any dysregulation in their levels could be involved in cancer progression. The role of androgen receptors (AR) and zinc finger (ZNF) proteins in tumors, like prostate cancer (PC), remains poorly understood. Moreover, due [...] Read more.
Transcription factors play crucial roles in regulating gene expression, and any dysregulation in their levels could be involved in cancer progression. The role of androgen receptors (AR) and zinc finger (ZNF) proteins in tumors, like prostate cancer (PC), remains poorly understood. Moreover, due to the multifaceted transcriptional behavior of ARs and ZNFs, their biological role in cancer progression may also depend on the interplay with micro-RNAs (miRNAs). Based on The Cancer Genome Atlas (TCGA) database, we analyzed the expression levels of zinc finger transcripts and ARs in PC. Specifically, exploring their involvement in cancer progression and regulation by miRNAs. The analysis relied on several tools to create a multivariate combination of the original biomarkers to improve their diagnostic efficacy. Multidimensional Scaling (MDS) identified two new dimensions that were entered into a regression analysis to determine the best predictors of overall survival (OS) and disease-free interval (DFI). A combination of both dimensions predicted almost 50% (R2 = 0.46) of the original variance of OS. Kaplan–Meier survival analysis also confirmed the significance of these two dimensions regarding the clinical output. This study showed preliminary evidence that several transcription factor expression levels belonging to the zinc family and related miRNAs can effectively predict patients’ overall PC survivability. Full article
Show Figures

Figure 1

Back to TopTop