ZNF496 as Candidate Gene for Neurodevelopmental Disorders: Identification of a Pathogenic De Novo Frameshift Variant
Abstract
1. Introduction
2. Results
2.1. Clinical Report
2.2. WES Analysis
2.3. Structural Protein Prediction of ZNF496
3. Discussion
4. Materials and Methods
4.1. Libraries Preparation and WES Analysis
4.2. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACMG | American College of Medical Genetics and Genomics |
DCD | Developmental coordination disorder |
GDD | Global developmental delay |
ID | Intellectual disability |
NDD | Neurodevelopmental disorder |
NGS | Next-generation sequencing |
NMD | Nonsense-mediated decay |
IGV | Integrated genomics viewer |
MAF | Minor allele frequency |
plDDT | Predicted local distance difference test |
SNV | Single-nucleotide variant |
WES | Whole exome sequencing |
References
- Hajdu, B.; Hunyadi-Gulyás, É.; Kato, K.; Kawaguchi, A.; Nagata, K.; Gyurcsik, B. Zinc Binding of a Cys2His2-Type Zinc Finger Protein Is Enhanced by the Interaction with DNA. JBIC J. Biol. Inorg. Chem. 2023, 28, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Padjasek, M.; Kocyła, A.; Kluska, K.; Kerber, O.; Tran, J.B.; Krężel, A. Structural Zinc Binding Sites Shaped for Greater Works: Structure-Function Relations in Classical Zinc Finger, Hook and Clasp Domains. J. Inorg. Biochem. 2020, 204, 110955. [Google Scholar] [CrossRef] [PubMed]
- Hamed, M.Y.; Siam, R.; Zaid, R. The Role of Zinc Finger Linkers in Zinc Finger Protein Binding to DNA. J. Comput. Aided Mol. Des. 2021, 35, 973–986. [Google Scholar] [CrossRef]
- Rakhra, G.; Rakhra, G. Zinc Finger Proteins: Insights into the Transcriptional and Post Transcriptional Regulation of Immune Response. Mol. Biol. Rep. 2021, 48, 5735–5743. [Google Scholar] [CrossRef]
- Bu, S.; Lv, Y.; Liu, Y.; Qiao, S.; Wang, H. Zinc Finger Proteins in Neuro-Related Diseases Progression. Front. Neurosci. 2021, 15, 760567. [Google Scholar] [CrossRef]
- Farmiloe, G.; Lodewijk, G.A.; Robben, S.F.; van Bree, E.J.; Jacobs, F.M.J. Widespread Correlation of KRAB Zinc Finger Protein Binding with Brain-Developmental Gene Expression Patterns. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190333. [Google Scholar] [CrossRef]
- Turelli, P.; Playfoot, C.; Grun, D.; Raclot, C.; Pontis, J.; Coudray, A.; Thorball, C.; Duc, J.; Pankevich, E.V.; Deplancke, B.; et al. Primate-Restricted KRAB Zinc Finger Proteins and Target Retrotransposons Control Gene Expression in Human Neurons. Sci. Adv. 2020, 6, eaba3200. [Google Scholar] [CrossRef]
- Gana, S.; Veggiotti, P.; Sciacca, G.; Fedeli, C.; Bersano, A.; Micieli, G.; Maghnie, M.; Ciccone, R.; Rossi, E.; Plunkett, K.; et al. 19q13.11 Cryptic Deletion: Description of Two New Cases and Indication for a Role of WTIP Haploinsufficiency in Hypospadias. Eur. J. Hum. Genet. 2012, 20, 852–856. [Google Scholar] [CrossRef]
- Christensen, M.B.; Levy, A.M.; Mohammadi, N.A.; Niceta, M.; Kaiyrzhanov, R.; Dentici, M.L.; Al Alam, C.; Alesi, V.; Benoit, V.; Bhatia, K.P.; et al. Biallelic Variants in ZNF142 Lead to a Syndromic Neurodevelopmental Disorder. Clin. Genet. 2022, 102, 98–109. [Google Scholar] [CrossRef]
- Squassina, A.; Meloni, A.; Chillotti, C.; Pisanu, C. Zinc Finger Proteins in Psychiatric Disorders and Response to Psychotropic Medications. Psychiatr. Genet. 2019, 29, 132–141. [Google Scholar] [CrossRef]
- Al-Naama, N.; Mackeh, R.; Kino, T. C2H2-Type Zinc Finger Proteins in Brain Development, Neurodevelopmental, and Other Neuropsychiatric Disorders: Systematic Literature-Based Analysis. Front. Neurol. 2020, 11, 32. [Google Scholar] [CrossRef]
- Nielsen, A.L.; Jørgensen, P.; Lerouge, T.; Cerviño, M.; Chambon, P.; Losson, R. Nizp1, a Novel Multitype Zinc Finger Protein that Interacts with the NSD1 Histone Lysine Methyltransferase through a Unique C2HR Motif. Mol. Cell. Biol. 2004, 24, 5184–5196. [Google Scholar] [CrossRef]
- Losson, R.; Nielsen, A.L. The NIZP1 KRAB and C2HR Domains Cross-Talk for Transcriptional Regulation. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2010, 1799, 463–468. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, Y.; Ni, Z.; Qiao, X.; Guo, Y.; Wang, X.; Cao, D.; Wang, Y.; Ruan, C. Advances in the Molecular Mechanisms of Zinc-Finger Transcription Factors in Neurodevelopmental Disorders. IBRO Neurosci. Rep. 2025, 18, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Treccarichi, S.; Vinci, M.; Musumeci, A.; Rando, R.G.; Papa, C.; Saccone, S.; Federico, C.; Failla, P.; Ruggieri, M.; Calì, F.; et al. Investigating the Role of the Zinc Finger Protein ZC2HC1C on Autism Spectrum Disorder Susceptibility. Medicina 2025, 61, 574. [Google Scholar] [CrossRef]
- Kervestin, S.; Jacobson, A. NMD: A Multifaceted Response to Premature Translational Termination. Nat. Rev. Mol. Cell Biol. 2012, 13, 700–712. [Google Scholar] [CrossRef]
- Carrard, J.; Lejeune, F. Nonsense-Mediated MRNA Decay, a Simplified View of a Complex Mechanism. BMB Rep. 2023, 56, 625–632. [Google Scholar] [CrossRef]
- Camilloni, C.; Bonetti, D.; Morrone, A.; Giri, R.; Dobson, C.M.; Brunori, M.; Gianni, S.; Vendruscolo, M. Towards a Structural Biology of the Hydrophobic Effect in Protein Folding. Sci. Rep. 2016, 6, 28285. [Google Scholar] [CrossRef]
- Mysliwiec, M.R.; Kim, T.; Lee, Y. Characterization of Zinc Finger Protein 496 that Interacts with Jumonji/Jarid2. FEBS Lett. 2007, 581, 2633–2640. [Google Scholar] [CrossRef]
- Vinci, M.; Musumeci, A.; Papa, C.; Ragalmuto, A.; Saccone, S.; Federico, C.; Greco, D.; Greco, V.; Calì, F.; Treccarichi, S. Strengthening the Role of PSMC5 as a Potential Gene Associated with Neurodevelopmental Disorders. Int. J. Mol. Sci. 2025, 26, 6386. [Google Scholar] [CrossRef]
- Lahiri, D.K.; Bye, S.; Nurnberger, J.I.; Hodes, M.E.; Crisp, M. A Non-Organic and Non-Enzymatic Extraction Method Gives Higher Yields of Genomic DNA from Whole-Blood Samples than Do Nine Other Methods Tested. J. Biochem. Biophys. Methods 1992, 25, 193–205. [Google Scholar] [CrossRef]
- Quinodoz, M.; Royer-Bertrand, B.; Cisarova, K.; Di Gioia, S.A.; Superti-Furga, A.; Rivolta, C. DOMINO: Using Machine Learning to Predict Genes Associated with Dominant Disorders. Am. J. Hum. Genet. 2017, 101, 623–629. [Google Scholar] [CrossRef]
- Cheng, J.; Randall, A.; Baldi, P. Prediction of Protein Stability Changes for Single-site Mutations Using Support Vector Machines. Proteins Struct. Funct. Bioinform. 2006, 62, 1125–1132. [Google Scholar] [CrossRef]
Code | Criteria |
---|---|
PVS1 | Null variant (nonsense, frameshift, canonical ± 1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease. |
PM2 | Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium. |
PS2 | De novo (both maternity and paternity confirmed) in a patient with the disease and no family history. |
Protein A | Donor Residue | Donor Atom | Protein B | Acceptor Residue | Acceptor Atom | Distance (Å) |
---|---|---|---|---|---|---|
ZNF496 WT | Lys461 | NZ | JARID2 | Glu1133 | OE2 | 3.413 |
ZNF496 WT | Arg473 | NH1 | JARID2 | Ala908 | O | 3.289 |
ZNF496 WT | Arg473 | NH2 | JARID2 | Ala908 | O | 3.309 |
ZNF496 WT | Arg573 | NH2 | JARID2 | Glu26 | OE1 | 3.266 |
ZNF496 WT | Lys577 | NZ | JARID2 | Asp19 | OD1 | 2.661 |
ZNF496 WT | Lys577 | NZ | JARID2 | Asp19 | OD2 | 2.849 |
JARID2 | Lys816 | NZ | ZNF496 WT | Glu455 | OE2 | 2.769 |
Protein A | Donor Residue | Donor Atom | Protein B | Acceptor Residue | Acceptor Atom | Distance (Å) |
---|---|---|---|---|---|---|
ZNF496 MUT | Thr243 | OG1 | JARID2 | Thr689 | O | 2.389 |
ZNF496 MUT | Val351 | N | JARID2 | Ala340 | O | 2.803 |
ZNF496 MUT | Ile353 | N | JARID2 | Tyr338 | O | 2.787 |
ZNF496 MUT | Ile355 | N | JARID2 | Val336 | O | 3.153 |
ZNF496 MUT | Leu357 | N | JARID2 | Lys334 | O | 3.453 |
ZNF496 MUT | Ser359 | OG | JARID2 | Ser331 | OG | 3.208 |
ZNF496 MUT | Arg429 | NH1 | JARID2 | Gln691 | OE1 | 2.492 |
ZNF496 MUT | Arg429 | NH2 | JARID2 | Gln691 | OE1 | 2.448 |
JARID2 | Ser331 | OG | ZNF496 MUT | Ser359 | OG | 3.208 |
JARID2 | Val336 | N | ZNF496 MUT | Ile355 | O | 3.172 |
JARID2 | Lys337 | NZ | ZNF496 MUT | Glu354 | OE2 | 3.098 |
JARID2 | Tyr338 | N | ZNF496 MUT | Ile353 | O | 3.069 |
JARID2 | Ala340 | N | ZNF496 MUT | Val351 | O | 2.705 |
JARID2 | Val342 | N | ZNF496 MUT | Glu349 | O | 3.355 |
JARID2 | Lys378 | NZ | ZNF496 MUT | Glu282 | O | 2.897 |
JARID2 | Thr689 | OG1 | ZNF496 MUT | Pro240 | O | 3.048 |
JARID2 | Lys696 | NZ | ZNF496 MUT | Asp446 | OD2 | 2.063 |
JARID2 | Thr824 | OG1 | ZNF496 MUT | Glu432 | OE1 | 3.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calì, F.; Virgillito, M.; Treccarichi, S.; Musumeci, A.; Failla, P.; Papa, C.; Galati Rando, R.; Federico, C.; Saccone, S.; Vinci, M. ZNF496 as Candidate Gene for Neurodevelopmental Disorders: Identification of a Pathogenic De Novo Frameshift Variant. Int. J. Mol. Sci. 2025, 26, 7586. https://doi.org/10.3390/ijms26157586
Calì F, Virgillito M, Treccarichi S, Musumeci A, Failla P, Papa C, Galati Rando R, Federico C, Saccone S, Vinci M. ZNF496 as Candidate Gene for Neurodevelopmental Disorders: Identification of a Pathogenic De Novo Frameshift Variant. International Journal of Molecular Sciences. 2025; 26(15):7586. https://doi.org/10.3390/ijms26157586
Chicago/Turabian StyleCalì, Francesco, Miriam Virgillito, Simone Treccarichi, Antonino Musumeci, Pinella Failla, Carla Papa, Rosanna Galati Rando, Concetta Federico, Salvatore Saccone, and Mirella Vinci. 2025. "ZNF496 as Candidate Gene for Neurodevelopmental Disorders: Identification of a Pathogenic De Novo Frameshift Variant" International Journal of Molecular Sciences 26, no. 15: 7586. https://doi.org/10.3390/ijms26157586
APA StyleCalì, F., Virgillito, M., Treccarichi, S., Musumeci, A., Failla, P., Papa, C., Galati Rando, R., Federico, C., Saccone, S., & Vinci, M. (2025). ZNF496 as Candidate Gene for Neurodevelopmental Disorders: Identification of a Pathogenic De Novo Frameshift Variant. International Journal of Molecular Sciences, 26(15), 7586. https://doi.org/10.3390/ijms26157586