Transcriptomic Profiling of Mouse Mesenchymal Stem Cells Exposed to Metal-Based Nanoparticles
Abstract
1. Introduction
2. Results
2.1. mRNA Analysis
2.2. mRNA Affected Pathways
2.3. miRNA
2.4. miRNA-Affected Pathways
2.5. miRNA–mRNA Interactions
3. Discussion
3.1. Detoxification of Metal Ions
3.2. Neutrophil Degranulation, Immune System, Innate Immune System, and Antiviral Mechanism by IFN-Stimulated Genes
3.3. HDL Remodeling
3.4. Calcium Regulation in Cardiac Cells, Calcium Signaling Pathway, cGMP–PKG Signaling Pathway, and Relaxin Signaling Pathway
3.5. Extracellular Matrix Organization, ECM–Receptor Interaction
3.6. Drug Metabolism-Cytochrome P450, Glutathione Conjugation, Fluid Shear Stress, and Atherosclerosis
3.7. Post-Translational Protein Phosphorylation, Regulation of Insulin-like Growth Factor (IGF) Transport and Uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs)
3.8. miRNA Profiling
4. Materials and Methods
4.1. Cell Culture
4.2. Nanomaterials and Exposure Design
4.3. RNA Isolation, Library Preparation, and Sequencing
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DEG | Differentially expressed gene |
DEmiRNA | Differentially expressed miRNA |
ECM | Extracellular matrix |
EV | Extracellular vesicle |
IFN-γ | Interferon γ |
MSCs | Mesenchymal stem cells |
NPs | Nanoparticles |
ROS | Reactive oxygen species |
References
- McIntyre, R.A. Common Nano-Materials and Their Use in Real World Applications. Sci. Prog. 2012, 95, 1–22. [Google Scholar] [CrossRef]
- Beyth, N.; Houri-Haddad, Y.; Domb, A.; Khan, W.; Hazan, R. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials. Evid. Based Complement. Altern. Med. 2015, 2015, 246012. [Google Scholar] [CrossRef]
- Oyarzun-Ampuero, F.; Vidal, A.; Concha, M.; Morales, J.; Orellana, S.; Moreno-Villoslada, I. Nanoparticles for the Treatment of Wounds. Curr. Pharm. Des. 2015, 21, 4329–4341. [Google Scholar] [CrossRef]
- Dusinska, M.; Tulinska, J.; El Yamani, N.; Kuricova, M.; Liskova, A.; Rollerova, E.; Rundén-Pran, E.; Smolkova, B. Immunotoxicity, Genotoxicity and Epigenetic Toxicity of Nanomaterials: New Strategies for Toxicity Testing? Food Chem. Toxicol. 2017, 109, 797–811. [Google Scholar] [CrossRef]
- Ajdary, M.; Moosavi, M.A.; Rahmati, M.; Falahati, M.; Mahboubi, M.; Mandegary, A.; Jangjoo, S.; Mohammadinejad, R.; Varma, R.S. Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity. Nanomaterials 2018, 8, 634. [Google Scholar] [CrossRef]
- Sima, M.; Vrbova, K.; Zavodna, T.; Honkova, K.; Chvojkova, I.; Ambroz, A.; Klema, J.; Rossnerova, A.; Polakova, K.; Malina, T.; et al. The Differential Effect of Carbon Dots on Gene Expression and DNA Methylation of Human Embryonic Lung Fibroblasts as a Function of Surface Charge and Dose. Int. J. Mol. Sci. 2020, 21, 4763. [Google Scholar] [CrossRef] [PubMed]
- Šíma, M.; Líbalová, H.; Závodná, T.; Vrbová, K.; Kléma, J.; Rössner, P. Gene Expression Profiles and Protein-Protein Interaction Networks in THP-1 Cells Exposed to Metal-Based Nanomaterials. Environ. Toxicol. Pharmacol. 2024, 108, 104469. [Google Scholar] [CrossRef] [PubMed]
- Butler, K.S.; Peeler, D.J.; Casey, B.J.; Dair, B.J.; Elespuru, R.K. Silver Nanoparticles: Correlating Nanoparticle Size and Cellular Uptake with Genotoxicity. Mutagenesis 2015, 30, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Hanot-Roy, M.; Tubeuf, E.; Guilbert, A.; Bado-Nilles, A.; Vigneron, P.; Trouiller, B.; Braun, A.; Lacroix, G. Oxidative Stress Pathways Involved in Cytotoxicity and Genotoxicity of Titanium Dioxide (TiO2) Nanoparticles on Cells Constitutive of Alveolo-Capillary Barrier in Vitro. Toxicol. Vitr. 2016, 33, 125–135. [Google Scholar] [CrossRef]
- Åkerlund, E.; Islam, M.S.; McCarrick, S.; Alfaro-Moreno, E.; Karlsson, H.L. Inflammation and (Secondary) Genotoxicity of Ni and NiO Nanoparticles. Nanotoxicology 2019, 13, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Jeyaraj, M.; Kang, M.-H.; Kim, J.-H. The Effects of Apigenin-Biosynthesized Ultra-Small Platinum Nanoparticles on the Human Monocytic THP-1 Cell Line. Cells 2019, 8, 444. [Google Scholar] [CrossRef]
- Safar, R.; Doumandji, Z.; Saidou, T.; Ferrari, L.; Nahle, S.; Rihn, B.H.; Joubert, O. Cytotoxicity and Global Transcriptional Responses Induced by Zinc Oxide Nanoparticles NM 110 in PMA-Differentiated THP-1 Cells. Toxicol. Lett. 2019, 308, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Tang, Q.; Zhou, X.; Momeni, M.R. Antibiotic Resistance and Nanotechnology: A Narrative Review. Microb. Pathog. 2024, 193, 106741. [Google Scholar] [CrossRef] [PubMed]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef] [PubMed]
- Mendes, C.R.; Dilarri, G.; Forsan, C.F.; Sapata, V.d.M.R.; Lopes, P.R.M.; de Moraes, P.B.; Montagnolli, R.N.; Ferreira, H.; Bidoia, E.D. Antibacterial Action and Target Mechanisms of Zinc Oxide Nanoparticles against Bacterial Pathogens. Sci. Rep. 2022, 12, 2658. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Burmistrov, D.E.; Fomina, P.A.; Validov, S.Z.; Kozlov, V.A. Antibacterial Properties of Copper Oxide Nanoparticles (Review). Int. J. Mol. Sci. 2024, 25, 11563. [Google Scholar] [CrossRef]
- Jha, S.; Rani, R.; Singh, S. Biogenic Zinc Oxide Nanoparticles and Their Biomedical Applications: A Review. J. Inorg. Organomet. Polym. Mater. 2023, 33, 1437–1452. [Google Scholar] [CrossRef]
- Devaraji, M.; Thanikachalam, P.V.; Elumalai, K. The Potential of Copper Oxide Nanoparticles in Nanomedicine: A Comprehensive Review. Biotechnol. Notes 2024, 5, 80–99. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X.; Zhang, W.; Li, B.; Liu, F.; Zhang, Y.; Han, Y. Nanozyme Coating-Mediated Mitochondrial Metabolic Reprogramming of Macrophages for Immunomodulatory Osseointegration in Rheumatoid Arthritis Case. ACS Nano 2025, 19, 26127–26146. [Google Scholar] [CrossRef]
- Qi, X.; Li, Y.; Xiang, Y.; Chen, Y.; Shi, Y.; Ge, X.; Zeng, B.; Shen, J. Hyperthermia-Enhanced Immunoregulation Hydrogel for Oxygenation and ROS Neutralization in Diabetic Foot Ulcers. Cell Biomater. 2025, 1, 100020. [Google Scholar] [CrossRef]
- Abumaree, M.; Al Jumah, M.; Pace, R.A.; Kalionis, B. Immunosuppressive Properties of Mesenchymal Stem Cells. Stem Cell Rev. Rep. 2012, 8, 375–392. [Google Scholar] [CrossRef]
- English, K. Mechanisms of Mesenchymal Stromal Cell Immunomodulation. Immunol. Cell Biol. 2013, 91, 19–26. [Google Scholar] [CrossRef]
- Holan, V.; Hermankova, B.; Bohacova, P.; Kossl, J.; Chudickova, M.; Hajkova, M.; Krulova, M.; Zajicova, A.; Javorkova, E. Distinct Immunoregulatory Mechanisms in Mesenchymal Stem Cells: Role of the Cytokine Environment. Stem Cell Rev. Rep. 2016, 12, 654–663. [Google Scholar] [CrossRef]
- Squillaro, T.; Peluso, G.; Galderisi, U. Clinical Trials with Mesenchymal Stem Cells: An Update. Cell Transplant. 2016, 25, 829–848. [Google Scholar] [CrossRef]
- Sengstock, C.; Diendorf, J.; Epple, M.; Schildhauer, T.A.; Köller, M. Effect of Silver Nanoparticles on Human Mesenchymal Stem Cell Differentiation. Beilstein J. Nanotechnol. 2014, 5, 2058–2069. [Google Scholar] [CrossRef]
- Hackenberg, S.; Scherzed, A.; Kessler, M.; Hummel, S.; Technau, A.; Froelich, K.; Ginzkey, C.; Koehler, C.; Hagen, R.; Kleinsasser, N. Silver Nanoparticles: Evaluation of DNA Damage, Toxicity and Functional Impairment in Human Mesenchymal Stem Cells. Toxicol. Lett. 2011, 201, 27–33. [Google Scholar] [CrossRef]
- Zhang, R.; Lee, P.; Lui, V.C.H.; Chen, Y.; Liu, X.; Lok, C.N.; To, M.; Yeung, K.W.K.; Wong, K.K.Y. Silver Nanoparticles Promote Osteogenesis of Mesenchymal Stem Cells and Improve Bone Fracture Healing in Osteogenesis Mechanism Mouse Model. Nanomedicine 2015, 11, 1949–1959. [Google Scholar] [CrossRef]
- He, W.; Kienzle, A.; Liu, X.; Müller, W.E.G.; Feng, Q. In Vitro 30 Nm Silver Nanoparticles Promote Chondrogenesis of Human Mesenchymal Stem Cells. RSC Adv. 2015, 5, 49809–49818. [Google Scholar] [CrossRef]
- Qin, H.; Zhu, C.; An, Z.; Jiang, Y.; Zhao, Y.; Wang, J.; Liu, X.; Hui, B.; Zhang, X.; Wang, Y. Silver Nanoparticles Promote Osteogenic Differentiation of Human Urine-Derived Stem Cells at Noncytotoxic Concentrations. Int. J. Nanomed. 2014, 9, 2469–2478. [Google Scholar] [CrossRef] [PubMed]
- Syama, S.; Sreekanth, P.J.; Varma, H.K.; Mohanan, P.V. Zinc Oxide Nanoparticles Induced Oxidative Stress in Mouse Bone Marrow Mesenchymal Stem Cells. Toxicol. Mech. Methods 2014, 24, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Ickrath, P.; Wagner, M.; Scherzad, A.; Gehrke, T.; Burghartz, M.; Hagen, R.; Radeloff, K.; Kleinsasser, N.; Hackenberg, S. Time-Dependent Toxic and Genotoxic Effects of Zinc Oxide Nanoparticles after Long-Term and Repetitive Exposure to Human Mesenchymal Stem Cells. Int. J. Environ. Res. Public Health 2017, 14, 1590. [Google Scholar] [CrossRef]
- Foroutan, T.; Mousavi, S. The Effects of Zinc Oxide Nanoparticles on Differentiation of Human Mesenchymal Stem Cells to Osteoblast. Nanomed. J. 2014, 1, 308–314. [Google Scholar] [CrossRef]
- Norozi, S.; Ghollasi, M.; Salimi, A.; Halabian, R.; Shahrousvad, M. Mesenchymal Stem Cells Osteogenic Differentiation by ZnO Nanoparticles and Polyurethane Bimodal Foam Nanocomposites. Cell Tissue Bank. 2024, 25, 167–185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, P.; Chen, W.; Zheng, B.; Mao, Z.; Antipov, A.; Correia, M.; Larsen, E.H.; Gao, C. Genotoxicity of Copper Oxide Nanoparticles with Different Surface Chemistry on Rat Bone Marrow Mesenchymal Stem Cells. J. Nanosci. Nanotechnol. 2016, 16, 5489–5497. [Google Scholar] [CrossRef] [PubMed]
- Echalar, B.; Dostalova, D.; Palacka, K.; Javorkova, E.; Hermankova, B.; Cervena, T.; Zajicova, A.; Holan, V.; Rossner, P. Effects of Antimicrobial Metal Nanoparticles on Characteristics and Function Properties of Mouse Mesenchymal Stem Cells. Toxicol. Vitr. 2023, 87, 105536. [Google Scholar] [CrossRef]
- Rossner, P.; Cervena, T.; Echalar, B.; Palacka, K.; Milcova, A.; Novakova, Z.; Sima, M.; Simova, Z.; Vankova, J.; Holan, V. Metal Nanoparticles with Antimicrobial Properties: The Toxicity Response in Mouse Mesenchymal Stem Cells. Toxics 2023, 11, 253. [Google Scholar] [CrossRef]
- Sabella, S.; Carney, R.P.; Brunetti, V.; Malvindi, M.A.; Al-Juffali, N.; Vecchio, G.; Janes, S.M.; Bakr, O.M.; Cingolani, R.; Stellacci, F.; et al. A General Mechanism for Intracellular Toxicity of Metal-Containing Nanoparticles. Nanoscale 2014, 6, 7052–7061. [Google Scholar] [CrossRef]
- Souza, L.R.R.; da Silva, V.S.; Franchi, L.P.; de Souza, T.A.J. Toxic and Beneficial Potential of Silver Nanoparticles: The Two Sides of the Same Coin. Adv. Exp. Med. Biol. 2018, 1048, 251–262. [Google Scholar] [CrossRef]
- Du, J.; Fu, L.; Li, H.; Xu, S.; Zhou, Q.; Tang, J. The Potential Hazards and Ecotoxicity of CuO Nanoparticles: An Overview. Toxin Rev. 2021, 40, 460–472. [Google Scholar] [CrossRef]
- Singh, S. Zinc Oxide Nanoparticles Impacts: Cytotoxicity, Genotoxicity, Developmental Toxicity, and Neurotoxicity. Toxicol. Mech. Methods 2019, 29, 300–311. [Google Scholar] [CrossRef]
- Yang, R.; Roshani, D.; Gao, B.; Li, P.; Shang, N. Metallothionein: A Comprehensive Review of Its Classification, Structure, Biological Functions, and Applications. Antioxidants 2024, 13, 825. [Google Scholar] [CrossRef]
- Balfourier, A.; Marty, A.P.; Gazeau, F. Importance of Metal Biotransformation in Cell Response to Metallic Nanoparticles: A Transcriptomic Meta-Analysis Study. ACS Nanosci. Au 2023, 3, 46–57. [Google Scholar] [CrossRef]
- Wei, Q.; Liu, X.; Su, J.L.; Wang, Y.X.; Chu, Z.Q.; Ma, K.; Huang, Q.L.; Li, H.H.; Fu, X.B.; Zhang, C.P. Small Extracellular Vesicles from Mesenchymal Stem Cells: A Potential Weapon for Chronic Non-Healing Wound Treatment. Front. Bioeng. Biotechnol. 2023, 10, 1083459. [Google Scholar] [CrossRef]
- Braga, C.L.; da Silva, L.R.; Santos, R.T.; de Carvalho, L.R.P.; Mandacaru, S.C.; de Oliveira Trugilho, M.R.; Rocco, P.R.M.; Cruz, F.F.; Silva, P.L. Proteomics Profile of Mesenchymal Stromal Cells and Extracellular Vesicles in Normoxic and Hypoxic Conditions. Cytotherapy 2022, 24, 1211–1224. [Google Scholar] [CrossRef] [PubMed]
- van Balkom, B.W.M.; Gremmels, H.; Giebel, B.; Lim, S.K. Proteomic Signature of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles. Proteomics 2019, 19, e1800163. [Google Scholar] [CrossRef]
- Shimoda, M. Extracellular Vesicle-Associated MMPs: A Modulator of the Tissue Microenvironment. Adv. Clin. Chem. 2019, 88, 35–66. [Google Scholar] [CrossRef] [PubMed]
- Kou, M.; Huang, L.; Yang, J.; Chiang, Z.; Chen, S.; Liu, J.; Guo, L.; Zhang, X.; Zhou, X.; Xu, X.; et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Immunomodulation and Regeneration: A next Generation Therapeutic Tool? Cell Death Dis. 2022, 13, 580. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Hu, D.; Cheng, E.W.C.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of Copper Oxide Nanoparticles for Antimicrobial Applications. Int. J. Antimicrob. Agents 2009, 33, 587–590. [Google Scholar] [CrossRef]
- Holan, V.; Cervena, T.; Zajicova, A.; Hermankova, B.; Echalar, B.; Palacka, K.; Rossner, P.; Javorkova, E. The Impact of Metal Nanoparticles on the Immunoregulatory and Therapeutic Properties of Mesenchymal Stem Cells. Stem Cell Rev. Rep. 2023, 19, 1360–1369. [Google Scholar] [CrossRef]
- Lasrich, D.; Bartelt, A.; Grewal, T.; Heeren, J. Apolipoprotein E Promotes Lipid Accumulation and Differentiation in Human Adipocytes. Exp. Cell Res. 2015, 337, 94–102. [Google Scholar] [CrossRef]
- Zhou, L.; Sun, S.; Zhang, T.; Yu, Y.; Xu, L.; Li, H.; Wang, M.; Hong, Y. ATP-Binding Cassette G1 Regulates Osteogenesis via Wnt/β-Catenin and AMPK Signaling Pathways. Mol. Biol. Rep. 2020, 47, 7439–7449. [Google Scholar] [CrossRef]
- Scheideler, M.; Elabd, C.; Zaragosi, L.E.; Chiellini, C.; Hackl, H.; Sanchez-Cabo, F.; Yadav, S.; Duszka, K.; Friedl, G.; Papak, C.; et al. Comparative Transcriptomics of Human Multipotent Stem Cells during Adipogenesis and Osteoblastogenesis. BMC Genom. 2008, 9, 340. [Google Scholar] [CrossRef]
- He, W.; Zheng, Y.; Feng, Q.; Elkhooly, T.A.; Liu, X.; Yang, X.; Wang, Y.; Xie, Y. Silver Nanoparticles Stimulate Osteogenesis of Human Mesenchymal Stem Cells through Activation of Autophagy. Nanomedicine 2020, 15, 337–353. [Google Scholar] [CrossRef]
- He, W.; Elkhooly, T.A.; Liu, X.; Cavallaro, A.; Taheri, S.; Vasilev, K.; Feng, Q. Silver Nanoparticle Based Coatings Enhance Adipogenesis Compared to Osteogenesis in Human Mesenchymal Stem Cells through Oxidative Stress. J. Mater. Chem. B 2016, 4, 1466–1479. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; He, W.; Fang, Z.; Kienzle, A.; Feng, Q. Influence of Silver Nanoparticles on Osteogenic Differentiation of Human Mesenchymal Stem Cells. J. Biomed. Nanotechnol. 2014, 10, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Horsley, V. Adipocyte Plasticity in Tissue Regeneration, Repair, and Disease. Curr. Opin. Genet. Dev. 2022, 76, 101968. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, Y.; Liu, X.; He, W.; Huang, Q.; Feng, Q. Nanoparticles and Their Effects on Differentiation of Mesenchymal Stem Cells. Biomater. Transl. 2020, 1, 58. [Google Scholar] [CrossRef]
- Dayem, A.A.; Lee, S.B.; Cho, S.G. The Impact of Metallic Nanoparticles on Stem Cell Proliferation and Differentiation. Nanomaterials 2018, 8, 761. [Google Scholar] [CrossRef]
- Lee, M.S.; Wang, J.; Yuan, H.; Jiao, H.; Tsai, T.L.; Squire, M.W.; Li, W.J. Endothelin-1 Differentially Directs Lineage Specification of Adipose- and Bone Marrow–Derived Mesenchymal Stem Cells. FASEB J. 2018, 33, 996. [Google Scholar] [CrossRef]
- Kao, R.; Lu, W.; Louie, A.; Nissenson, R. Cyclic AMP Signaling in Bone Marrow Stromal Cells Has Reciprocal Effects on the Ability of Mesenchymal Stem Cells to Differentiate into Mature Osteoblasts versus Mature Adipocytes. Endocrine 2012, 42, 622–636. [Google Scholar] [CrossRef]
- Madrigal, A.; Tan, L.; Zhao, Y. Expression Regulation and Functional Analysis of RGS2 and RGS4 in Adipogenic and Osteogenic Differentiation of Human Mesenchymal Stem Cells. Biol. Res. 2017, 50, 43. [Google Scholar] [CrossRef]
- Brizzi, M.F.; Tarone, G.; Defilippi, P. Extracellular Matrix, Integrins, and Growth Factors as Tailors of the Stem Cell Niche. Curr. Opin. Cell Biol. 2012, 24, 645–651. [Google Scholar] [CrossRef]
- Chen, Q.; Shou, P.; Zhang, L.; Xu, C.; Zheng, C.; Han, Y.; Li, W.; Huang, Y.; Zhang, X.; Shao, C.; et al. An Osteopontin-Integrin Interaction Plays a Critical Role in Directing Adipogenesis and Osteogenesis by Mesenchymal Stem Cells. Stem Cells 2014, 32, 327–337. [Google Scholar] [CrossRef]
- Carvalho, M.S.; Silva, J.C.; Hoff, C.M.; Cabral, J.M.S.; Linhardt, R.J.; da Silva, C.L.; Vashishth, D. Loss and Rescue of Osteocalcin and Osteopontin Modulate Osteogenic and Angiogenic Features of Mesenchymal Stem/Stromal Cells. J. Cell. Physiol. 2020, 235, 7496–7515. [Google Scholar] [CrossRef]
- Tucker, R.P.; Degen, M. The Expression and Possible Functions of Tenascin-W during Development and Disease. Front. Cell Dev. Biol. 2019, 7, 439535. [Google Scholar] [CrossRef]
- Zhang, X.; Alanazi, Y.F.; Jowitt, T.A.; Roseman, A.M.; Baldock, C. Elastic Fibre Proteins in Elastogenesis and Wound Healing. Int. J. Mol. Sci. 2022, 23, 4087. [Google Scholar] [CrossRef]
- Bauman, J.W.; Liu, J.; Klaassen, C.D. Production of Metallothionein and Heat-Shock Proteins in Response to Metals. Fundam. Appl. Toxicol. Off. J. Soc. Toxicol. 1993, 21, 15–22. [Google Scholar] [CrossRef]
- Foldbjerg, R.; Jiang, X.; Micləuş, T.; Chen, C.; Autrup, H.; Beer, C. Silver Nanoparticles—Wolves in Sheep’s Clothing? Toxicol. Res. 2015, 4, 563–575. [Google Scholar] [CrossRef]
- Kanda, Y.; Hinata, T.; Kang, S.W.; Watanabe, Y. Reactive Oxygen Species Mediate Adipocyte Differentiation in Mesenchymal Stem Cells. Life Sci. 2011, 89, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Tormos, K.V.; Anso, E.; Hamanaka, R.B.; Eisenbart, J.; Joseph, J.; Kalyanaraman, B.; Chandel, N.S. Mitochondrial Complex III ROS Regulate Adipocyte Differentiation. Cell Metab. 2011, 14, 537–544. [Google Scholar] [CrossRef]
- Youssef, A.; Aboalola, D.; Han, V.K.M. The Roles of Insulin-Like Growth Factors in Mesenchymal Stem Cell Niche. Stem Cells Int. 2017, 9453108. [Google Scholar] [CrossRef]
- Petrocelli, G.; Pampanella, L.; Abruzzo, P.M.; Ventura, C.; Canaider, S.; Facchin, F. Endogenous Opioids and Their Role in Stem Cell Biology and Tissue Rescue. Int. J. Mol. Sci. 2022, 23, 3819. [Google Scholar] [CrossRef] [PubMed]
- Fritton, J.C.; Kawashima, Y.; Mejia, W.; Courtland, H.W.; Elis, S.; Sun, H.; Wu, Y.; Rosen, C.J.; Clemmons, D.; Yakar, S. The Insulin-like Growth Factor-1 Binding Protein Acid-Labile Subunit Alters Mesenchymal Stromal Cell Fate. J. Biol. Chem. 2010, 285, 4709–4714. [Google Scholar] [CrossRef] [PubMed]
- Ushakov, R.E.; Aksenov, N.D.; Pugovkina, N.A.; Burova, E.B. Effects of IGFBP3 Knockdown on Human Endometrial Mesenchymal Stromal Cells Stress-Induced Senescence. Biochem. Biophys. Res. Commun. 2021, 570, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Yoon, S.M.; Song, S.U.; Park, S.G.; Kim, W.S.; Park, I.G.; Lee, J.; Sung, J.H. Hypoxia Suppresses Spontaneous Mineralization and Osteogenic Differentiation of Mesenchymal Stem Cells via IGFBP3 Up-Regulation. Int. J. Mol. Sci. 2016, 17, 1389. [Google Scholar] [CrossRef]
- Mukhiddin Ugli, M.; Ahmed, H.M.; Ismaeel, G.L.; Jebur, A.Q.; Jalib, H.H.; Faisal, A.N.; Yasin, H.A.; Jabbar, A.M.; Kadirova, D.; Turaeva, G.; et al. Dose-Dependent Effects of ZnO Nanoparticles on the Osteogenic Differentiation Potential of Rat-Derived MSCs. J. Nanostructures 2023, 13, 837–844. [Google Scholar] [CrossRef]
- Qu, Y.; Wu, J.; Deng, J.X.; Zhang, Y.P.; Liang, W.Y.; Jiang, Z.L.; Yu, Q.H.; Li, J. MicroRNA-126 Affects Rheumatoid Arthritis Synovial Fibroblast Proliferation and Apoptosis by Targeting PIK3R2 and Regulating PI3K-AKT Signal Pathway. Oncotarget 2016, 7, 74217–74226. [Google Scholar] [CrossRef]
- Paschalaki, K.E.; Zampetaki, A.; Baker, J.R.; Birrell, M.A.; Starke, R.D.; Belvisi, M.G.; Donnelly, L.E.; Mayr, M.; Randi, A.M.; Barnes, P.J. Downregulation of MicroRNA-126 Augments DNA Damage Response in Cigarette Smokers and Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2018, 197, 665–668. [Google Scholar] [CrossRef]
- Zampetaki, A.; Kiechl, S.; Drozdov, I.; Willeit, P.; Mayr, U.; Prokopi, M.; Mayr, A.; Weger, S.; Oberhollenzer, F.; Bonora, E.; et al. Plasma MicroRNA Profiling Reveals Loss of Endothelial MiR-126 and Other MicroRNAs in Type 2 Diabetes. Circ. Res. 2010, 107, 810–817. [Google Scholar] [CrossRef]
- Kong, R.; Gao, J.; Ji, L.; Zhao, D. MicroRNA-126 Promotes Proliferation, Migration, Invasion and Endothelial Differentiation While Inhibits Apoptosis and Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells. Cell Cycle 2020, 19, 2119–2138. [Google Scholar] [CrossRef]
- Houbaviy, H.B.; Murray, M.F.; Sharp, P.A. Embryonic Stem Cell-Specific MicroRNAs. Dev. Cell 2003, 5, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Kalinina, N.; Klink, G.; Glukhanyuk, E.; Lopatina, T.; Efimenko, A.; Akopyan, Z.; Tkachuk, V. MiR-92a Regulates Angiogenic Activity of Adipose-Derived Mesenchymal Stromal Cells. Exp. Cell Res. 2015, 339, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Chen, X.; Gao, X.; Dong, Y.; Zhao, Y.; Wei, M.; Fan, W.; Yang, G.; Liu, L. Chronic Myeloid Leukemia-Derived Exosomes Attenuate Adipogenesis of Adipose Derived Mesenchymal Stem Cells via Transporting MiR-92a-3p. J. Cell. Physiol. 2019, 234, 21274–21283. [Google Scholar] [CrossRef]
- Ewels, P.A.; Peltzer, A.; Fillinger, S.; Patel, H.; Alneberg, J.; Wilm, A.; Garcia, M.U.; Di Tommaso, P.; Nahnsen, S. The Nf-Core Framework for Community-Curated Bioinformatics Pipelines. Nat. Biotechnol. 2020, 38, 276–278. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Ru, Y.; Kechris, K.J.; Tabakoff, B.; Hoffman, P.; Radcliffe, R.A.; Bowler, R.; Mahaffey, S.; Rossi, S.; Calin, G.A.; Bemis, L.; et al. The MultiMiR R Package and Database: Integration of MicroRNA-Target Interactions along with Their Disease and Drug Associations. Nucleic Acids Res. 2014, 42, e133. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Vlachos, I.S.; Zagganas, K.; Paraskevopoulou, M.D.; Georgakilas, G.; Karagkouni, D.; Vergoulis, T.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-MiRPath v3.0: Deciphering MicroRNA Function with Experimental Support. Nucleic Acids Res. 2015, 43, W460–W466. [Google Scholar] [CrossRef] [PubMed]
NP | Dose | Down | Up | Total |
---|---|---|---|---|
Ag | Low | 80 | 136 | 216 |
Medium | 41 | 80 | 121 | |
High | 81 | 149 | 230 | |
CuO | Low | 66 | 63 | 129 |
Medium | 61 | 44 | 105 | |
High | 55 | 41 | 96 | |
ZnO | Low | 13 | 4 | 17 |
Medium | 43 | 84 | 127 | |
High | 58 | 56 | 114 |
NP | Ensembl ID | Gene | Log2FC | Adjusted p-Value |
---|---|---|---|---|
Ag | ENSMUSG00000028655 | Mfsd2a | −1.36 | 5.67 × 10−9 |
ENSMUSG00000060284 | Sp7 | −1.14 | 1.29 × 10−10 | |
ENSMUSG00000036264 | Fstl4 | −1.13 | 5.72 × 10−4 | |
ENSMUSG00000020542 | Myocd | −1.10 | 1.01 × 10−2 | |
ENSMUSG00000028766 | Alpl | −1.04 | 2.04 × 10−10 | |
ENSMUSG00000091971 | Hspa1a | 1.88 | 8.67 × 10−11 | |
ENSMUSG00000031765 | Mt1 | 2.02 | 1.17 × 10−12 | |
ENSMUSG00000064247 | Plcxd1 | 2.06 | 6.63 × 10−6 | |
ENSMUSG00000031762 | Mt2 | 2.32 | 8.69 × 10−12 | |
ENSMUSG00000022602 | Arc | 2.77 | 3.65 × 10−15 | |
CuO | ENSMUSG00000038642 | Ctss | −1.47 | 2.10 × 10−7 |
ENSMUSG00000025044 | Msr1 | −1.35 | 1.81 × 10−2 | |
ENSMUSG00000060284 | Sp7 | −1.35 | 1.66 × 10−15 | |
ENSMUSG00000046805 | Mpeg1 | −1.30 | 1.50 × 10−5 | |
ENSMUSG00000003283 | Hck | −1.14 | 4.06 × 10−4 | |
ENSMUSG00000033377 | Palmd | 0.88 | 2.59 × 10−4 | |
ENSMUSG00000031871 | Cdh5 | 0.90 | 2.71 × 10−3 | |
ENSMUSG00000020826 | Nos2 | 0.93 | 3.30 × 10−6 | |
ENSMUSG00000031765 | Mt1 | 1.16 | 2.52 × 10−5 | |
ENSMUSG00000031762 | Mt2 | 1.30 | 5.34 × 10−5 | |
ZnO | ENSMUSG00000046167 | Gldn | −1.27 | 1.29 × 10−6 |
ENSMUSG00000060284 | Sp7 | −1.14 | 2.81 × 10−12 | |
ENSMUSG00000004371 | Il11 | −1.09 | 2.24 × 10−11 | |
ENSMUSG00000028766 | Alpl | −0.97 | 1.65 × 10−31 | |
ENSMUSG00000046352 | Gjb2 | −0.67 | 4.62 × 10−5 | |
ENSMUSG00000037362 | Nov | 0.97 | 3.95 × 10−8 |
NP | Scheme | Pathway | Genes# | p-Value | Genes | |
---|---|---|---|---|---|---|
Ag_L | REACTOME | Neutrophil degranulation | 14 | 4.6 × 10−3 | ↑ | Anpep, Aldoc, Gca, Hspa1a, Hspa1b, H2-Q2, Hvcn1, Ifi205, Mndal, Pecam1, Syngr1, Trpm2 |
↓ | Mmp9, Slpi | |||||
REACTOME | HDL remodeling | 3 | 5.3 × 10−3 | ↑ | Abcg1, Apoe, Pltp | |
REACTOME | Innate Immune System | 19 | 1.4 × 10−2 | ↑ | Anpep, Aldoc, C1s2, Gca, Hspa1a, Hspa1b, H2-Q2, Hvcn1, Ifi205, Irf7, Mndal, Pecam1, Syngr1, Trpm2, Usp18 | |
↓ | Hck, Mmp9, Slpi, Tec | |||||
Ag_M | REACTOME | Antiviral mechanism by IFN-stimulated genes | 4 | 1.7 × 10−2 | ↑ | Isg15, Hspa1a, Hspa1b, Usp18 |
REACTOME | Neutrophil degranulation | 8 | 3.3 × 10−2 | ↑ | Hspa1a, Hspa1b, H2-Q2, Hvcn1, Mgam, Pecam1, Syngr1 | |
↓ | Mmp9 | |||||
WIKI | Calcium regulation in cardiac cells | 5 | 3.4 × 10−2 | ↑ | Rgs2 | |
↓ | Adcy1, Gjb2, Gjb3, Rgs4 | |||||
Ag_H | KEGG | Drug metabolism–cytochrome P450 | 10 | 1.8 × 10−7 | ↑ | Aox1, Fmo1, Fmo2, Gsta1, Gsta3, Gstm1, Gstm6, Gstp2, Mgst1, Mgst2 |
REACTOME | Glutathione conjugation | 7 | 7.3 × 10−6 | ↑ | Gsta1, Gsta3, Gstm1, Gstm6, Gstp2, Mgst1, Mgst2 | |
KEGG | Fluid shear stress and atherosclerosis | 11 | 1.1 × 10−5 | ↑ | Nqo1, Cdh5, Gsta1, Gsta3, Gstm1, Gstm6, Gstp2, Hmox1, Mgst1, Mgst2 | |
↓ | Mmp9 | |||||
CuO_L | REACTOME | Post-translational protein phosphorylation | 7 * | 2.5 × 10−4 | ↑ | Apoe, Igfbp3, Scg2, Trf |
REACTOME | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs) | 3.3 × 10−4 | ↓ | Notum, Penk, Spp1 | ||
KEGG | Calcium signaling pathway | 7 | 5.4 × 10−3 | ↑ | Ednrb, Fgf9, Gna14, Mst1r, Nos2 | |
↓ | Adcy1, Mylk2 | |||||
CuO_M | REACTOME | Post-translational protein phosphorylation | 4 * | 3.5 × 10−2 | ↑ | Vwa1 |
REACTOME | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs) | 4.0 × 10−2 | ↓ | Notum, Penk, Spp1 | ||
CuO_H | REACTOME | Innate Immune System | 11 | 2.8 × 10−2 | ↑ | Atp6v0a4, Hvcn1, Myh2, Nos2 |
↓ | Atp8a1, Adam8, Ctss, Hck, Lyz2, Mmp9, Slc11a1 | |||||
ZnO_M | REACTOME | Post-translational protein phosphorylation | 7 * | 1.1 × 10−4 | ↑ | Cp, Igfbp3, Scg2, Vwa1 |
REACTOME | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs) | 1.5 × 10−4 | ↓ | Notum, Penk, Spp1 | ||
REACTOME | Extracellular matrix organization | 8 | 1.2 × 10−3 | ↑ | Col28a1, Eln, Fbn2, Lum, Mfap4, Pecam1 | |
↓ | Spp1, Tnn | |||||
ZnO_H | KEGG | cGMP-PKG signaling pathway | 6 | 3.0 × 10−3 | ↑ | Ednrb, Rgs2 |
↓ | Adcy1, Adra2a, Nppb, Prkg2 | |||||
KEGG | ECM-receptor interaction | 4 | 1.5 × 10−2 | ↑ | Thbs4 | |
↓ | Npnt, Spp1, Tnn | |||||
KEGG | Relaxin signaling pathway | 4 | 3.9 × 10−2 | ↑ | Ednrb, Nos2 | |
↓ | Adcy1, Mmp9 |
NP | Concentration | Down | Up | Total |
---|---|---|---|---|
Ag | Low | 0 | 2 | 2 |
Medium | 1 | 2 | 3 | |
High | 20 | 26 | 46 | |
CuO | Low | 7 | 9 | 16 |
Medium | 0 | 2 | 2 | |
High | 1 | 1 | 2 | |
ZnO | Low | 0 | 1 | 1 |
Medium | 0 | 3 | 3 | |
High | 1 | 2 | 3 |
NP | KEGG Pathway | ID | p-Value | Genes# | miRNAs# |
---|---|---|---|---|---|
Ag High | Proteoglycans in cancer | mmu05205 | 2.47 × 10−5 | 8 | 34 |
Biosynthesis of unsaturated fatty acids | mmu01040 | 4.77 × 10−5 | 11 | 16 | |
Hippo signaling pathway | mmu04390 | 4.77 × 10−5 | 60 | 33 | |
Thyroid hormone signaling pathway | mmu04919 | 7.45 × 10−5 | 53 | 34 | |
MAPK signaling pathway | mmu04010 | 8.17 × 10−5 | 104 | 36 | |
CuO Low | Phosphatidylinositol signaling system | mmu04070 | 2.25 × 10−4 | 8 | 9 |
Thyroid hormone signaling pathway | mmu04919 | 2.25 × 10−4 | 25 | 11 | |
Axon guidance | mmu04360 | 2.25 × 10−4 | 31 | 12 | |
Proteoglycans in cancer | mmu05205 | 3.19 × 10−4 | 41 | 11 | |
Signaling pathways regulating pluripotency of stem cells | mmu04550 | 1.03 × 10−3 | 29 | 11 |
NP | Number of miRNAs | miRNA | Number of Interactions |
---|---|---|---|
Ag | 5 | mmu-miR-126a-3p | 33 |
mmu-miR-126a-5p | 4 | ||
mmu-miR-369-3p | 1 | ||
mmu-miR-379-3p | 1 | ||
mmu-miR-380-3p | 11 | ||
CuO | 3 | mmu-miR-126a-3p | 22 |
mmu-miR-126a-5p | 19 | ||
mmu-miR-142a-3p | 2 | ||
ZnO | 4 | mmu-miR-126a-3p | 3 |
mmu-miR-126a-5p | 2 | ||
mmu-miR-467d-3p | 3 | ||
mmu-miR-92a-1-5p | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sima, M.; Libalova, H.; Simova, Z.; Echalar, B.; Palacka, K.; Cervena, T.; Klema, J.; Krejcik, Z.; Holan, V.; Rossner, P. Transcriptomic Profiling of Mouse Mesenchymal Stem Cells Exposed to Metal-Based Nanoparticles. Int. J. Mol. Sci. 2025, 26, 7583. https://doi.org/10.3390/ijms26157583
Sima M, Libalova H, Simova Z, Echalar B, Palacka K, Cervena T, Klema J, Krejcik Z, Holan V, Rossner P. Transcriptomic Profiling of Mouse Mesenchymal Stem Cells Exposed to Metal-Based Nanoparticles. International Journal of Molecular Sciences. 2025; 26(15):7583. https://doi.org/10.3390/ijms26157583
Chicago/Turabian StyleSima, Michal, Helena Libalova, Zuzana Simova, Barbora Echalar, Katerina Palacka, Tereza Cervena, Jiri Klema, Zdenek Krejcik, Vladimir Holan, and Pavel Rossner. 2025. "Transcriptomic Profiling of Mouse Mesenchymal Stem Cells Exposed to Metal-Based Nanoparticles" International Journal of Molecular Sciences 26, no. 15: 7583. https://doi.org/10.3390/ijms26157583
APA StyleSima, M., Libalova, H., Simova, Z., Echalar, B., Palacka, K., Cervena, T., Klema, J., Krejcik, Z., Holan, V., & Rossner, P. (2025). Transcriptomic Profiling of Mouse Mesenchymal Stem Cells Exposed to Metal-Based Nanoparticles. International Journal of Molecular Sciences, 26(15), 7583. https://doi.org/10.3390/ijms26157583