Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,717)

Search Parameters:
Keywords = toxin effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1292 KB  
Review
Ricin and Abrin in Biosecurity: Detection Technologies and Strategic Responses
by Wojciech Zajaczkowski, Ewelina Bojarska, Elwira Furtak, Michal Bijak, Rafal Szelenberger, Marcin Niemcewicz, Marcin Podogrocki, Maksymilian Stela and Natalia Cichon
Toxins 2025, 17(10), 494; https://doi.org/10.3390/toxins17100494 - 3 Oct 2025
Abstract
Plant-derived toxins such as ricin and abrin represent some of the most potent biological agents known, posing significant threats to public health and security due to their high toxicity, relative ease of extraction, and widespread availability. These ribosome-inactivating proteins (RIPs) have been implicated [...] Read more.
Plant-derived toxins such as ricin and abrin represent some of the most potent biological agents known, posing significant threats to public health and security due to their high toxicity, relative ease of extraction, and widespread availability. These ribosome-inactivating proteins (RIPs) have been implicated in politically and criminally motivated events, underscoring their critical importance in the context of biodefense. Public safety agencies, including law enforcement, customs, and emergency response units, require rapid, sensitive, and portable detection methods to effectively counteract these threats. However, many existing screening technologies lack the capability to detect biotoxins unless specifically designed for this purpose, revealing a critical gap in current biodefense preparedness. Consequently, there is an urgent need for robust, field-deployable detection platforms that operate reliably under real-world conditions. End-users in the security and public health sectors demand analytical tools that combine high specificity and sensitivity with operational ease and adaptability. This review provides a comprehensive overview of the biochemical characteristics of ricin and abrin, their documented misuse, and the challenges associated with their detection. Furthermore, it critically assesses key detection platforms—including immunoassays, mass spectrometry, biosensors, and lateral flow assays—focusing on their applicability in operational environments. Advancing detection capabilities within frontline services is imperative for effective prevention, timely intervention, and the strengthening of biosecurity measures. Full article
Show Figures

Figure 1

17 pages, 2248 KB  
Article
Expression of L-Amino Acid Oxidase (Ml-LAAO) from the Venom of the Micrurus lemniscatus Snake in a Mammalian Cell System
by Ari Junio de Oliveira Costa, Alessandra Matavel, Patricia Cota Campos, Jaqueline Leal dos Santos, Ana Caroline Zampiroli Ataide, Sophie Yvette Leclercq, Valéria Gonçalves de Alvarenga, Sergio Caldas, William Castro-Borges and Márcia Helena Borges
Toxins 2025, 17(10), 491; https://doi.org/10.3390/toxins17100491 - 2 Oct 2025
Abstract
Animal venoms are rich in bioactive molecules with promising biotechnological potential. They comprise both protein and non-protein toxins. Among the protein toxins are enzymes, such as phospholipases A2, proteases and L-amino acid oxidases (LAAOs). LAAOs exhibit antimicrobial, antiparasitic, antiviral, and anticancer [...] Read more.
Animal venoms are rich in bioactive molecules with promising biotechnological potential. They comprise both protein and non-protein toxins. Among the protein toxins are enzymes, such as phospholipases A2, proteases and L-amino acid oxidases (LAAOs). LAAOs exhibit antimicrobial, antiparasitic, antiviral, and anticancer effects, making them potential candidates for biotechnological applications. These activities are linked to their ability to catalyze oxidative reactions that convert L-amino acids into α-keto acids, releasing ammonia and hydrogen peroxide, which contribute to the immune response, pathogen elimination, and oxidative stress. However, in snakes of the Micrurus genus, LAAOs generally represent a small portion of the venom (up to ~7%), which limits their isolation and study. To overcome this, the present study aimed to produce Ml-LAAO, the enzyme from Micrurus lemniscatus, through heterologous expression in mammalian cells. The gene sequence was inferred from its primary structure and synthesized into the pSecTag2B vector for expression in HEK293T cells. After purification using a His Trap-HP column, the presence of recombinant Ml-LAAO (Ml-LAAOrec) was confirmed by Western blot and mass spectrometry, validating its identity. These results support successful recombinant expression of Ml-LAAO and highlight its potential for scalable production and future biotechnological applications. Full article
(This article belongs to the Special Issue Biochemistry, Pathology and Applications of Venoms)
Show Figures

Figure 1

16 pages, 2336 KB  
Article
Bioremediation of Contaminated Water: The Potential of Aquatic Plants Ceratophyllum demersum and Pistia stratiotes Against Toxic Bloom
by Fatma Zohra Tamer, Hadjer Zaidi, Hichem Nasri, Larisa Lvova, Nada Nouri, Fateh Sedrati, Amina Amrani, Nassima Beldjoudi and Xi Li
Toxins 2025, 17(10), 490; https://doi.org/10.3390/toxins17100490 - 2 Oct 2025
Abstract
Toxic cyanobacteria, including Microcystis, produce harmful toxins that affect aquatic ecosystems and human health. Biotreatment using macrophytes shows promise in mitigating these blooms. This study investigates the bioaccumulation dynamics and biochemical responses of two aquatic macrophytes, Pistia stratiotes and Ceratophyllum demersum, [...] Read more.
Toxic cyanobacteria, including Microcystis, produce harmful toxins that affect aquatic ecosystems and human health. Biotreatment using macrophytes shows promise in mitigating these blooms. This study investigates the bioaccumulation dynamics and biochemical responses of two aquatic macrophytes, Pistia stratiotes and Ceratophyllum demersum, in removing microcystin from contaminated water. P. stratiotes showed high initial bioaccumulation rates with rapid microcystin uptake, which is effective for short-term bioremediation. C. demersum has shown stable bioaccumulation. Biochemical analyses have revealed the activation of plant antioxidant defenses, with both macrophytes showing an increase in carotenoids, glutathione (GSH), and antioxidant enzymes such as superoxide dismutase (SOD) and glutathione-S-transferase (GST) concentrations. In particular, C. demersum has maintained higher antioxidant levels, contributing to its sustained capacity and resilience. Fluctuations in malondialdehyde (MDA) indicated oxidative stress, with P. stratiotes managing such stress through its defenses. Principal Component Analysis (PCA) supports these findings: Pistia’s first two components explained 25.09% and 20.71% of the variance, with Carotenoid and Chl contributing strongly to PC1, and MDA and GST influencing both components. For C. demersum, PC1 and PC2 explained 21.79% and 19.78% of the variance, with Carotenoid and Chl a being major contributors, while SOD and GSH played significant roles in sample differentiation. Integrating both plants into bioremediation strategies could optimize microcystin removal: P. stratiotes offers rapid initial detoxification, while C. demersum ensures continuous, long-term remediation. This combined approach enhances the efficiency and sustainability of phytoremediation. Future research should optimize environmental conditions and explore synergistic effects among multiple plant species for more effective and sustainable bioremediation solutions. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

17 pages, 1269 KB  
Article
Mutual Effects of Carassius carassius and Microcystis aeruginosa on Growth Dynamics and Water Quality
by Zhenjiang Yang, Guoxi Li, Jianhua Wang, Jianshe Zhou, Wanliang Wang and Jiangtao Guo
Fishes 2025, 10(10), 486; https://doi.org/10.3390/fishes10100486 - 1 Oct 2025
Abstract
An experimental study was conducted in the laboratory to investigate the interactive effects of fish and algae on growth patterns and water quality. Body length and body weight of Carassius carassius, Microcystis aeruginosa (M. aeruginosa) density, and concentrations of nutrients [...] Read more.
An experimental study was conducted in the laboratory to investigate the interactive effects of fish and algae on growth patterns and water quality. Body length and body weight of Carassius carassius, Microcystis aeruginosa (M. aeruginosa) density, and concentrations of nutrients were monitored continuously over a period of 92 days. It was noted that fish growth was significantly higher in the absence of M. aeruginosa compared to its presence (p < 0.05). This can be partly attributed to toxin production by M. aeruginosa. The densities and growth rates of M. aeruginosa in groups with Carassius carassius were significantly higher than those in fishless groups (p < 0.05), and this was attributable to fish metabolism and bioturbation, which led to a considerable increase in ammonia and total dissolved nitrogen concentrations, as well as a significant impact on proportions of nutrients. The growth rate of Carassius carassius firstly increased and then decreased with increasing M. aeruginosa densities, and a quantitative relationship was established using the Gompertz equation and Logistic equation (R2 = 0.914–0.955). Based on the above results, we concluded that interactions between fish and algae are greatly related to their consequences on water qualities, by employing equations, a more detailed interpretation of the processes occurring in the fish–algae system can be achieved. Full article
Show Figures

Figure 1

21 pages, 4001 KB  
Article
Exploring the Venom Diversity of Australian Taipans: Comparative Characterization of Oxyuranus microlepidotus and Oxyuranus scutellatus
by Guilherme Gonelli Paz, Patrick Jack Spencer, Daniel Carvalho Pimenta and Emidio Beraldo-Neto
Toxins 2025, 17(10), 488; https://doi.org/10.3390/toxins17100488 - 1 Oct 2025
Abstract
The genus Oxyuranus, which includes some of the most venomous snakes in the world, presents a complex venom composition with potent neurotoxic and procoagulant effects. This study provides a comparative proteomic analysis of the venom of Oxyuranus microlepidotus (Inland Taipan) and Oxyuranus [...] Read more.
The genus Oxyuranus, which includes some of the most venomous snakes in the world, presents a complex venom composition with potent neurotoxic and procoagulant effects. This study provides a comparative proteomic analysis of the venom of Oxyuranus microlepidotus (Inland Taipan) and Oxyuranus scutellatus (Coastal Taipan), aiming to elucidate the molecular basis underlying their distinct toxicological profiles. Using high-resolution chromatographic fractionation and LC-MS/MS, we identified a core set of nine protein families shared between both species, including phospholipases A2 (PLA2), three-finger toxins (3FTx), natriuretic peptides (NTP), nerve growth factors (NGF), and prothrombin activators (PTA). O. microlepidotus venom exhibited greater diversity of 3FTxs and unique protein families, such as Waprin and 5′-nucleotidases, suggesting lineage-specific functional adaptations. Quantitative analysis revealed a greater relative abundance of PLA2s in O. scutellatus (66%) compared to O. microlepidotus (47%), whereas 3FTXs were more prominent in O. microlepidotus (33% vs. 9%). These interspecific differences likely underlie the distinct clinical manifestations of envenomation and reflect evolutionary divergence in the venom composition. Our findings provide molecular insights into taipan venom complexity and highlight novel toxin candidates with potential biomedical applications in neurobiology, hemostasis, and anti-infective therapy. Full article
(This article belongs to the Special Issue Animal Venoms: Unraveling the Molecular Complexity (2nd Edition))
Show Figures

Figure 1

13 pages, 1734 KB  
Article
Chimeric Fimbrial Multiepitope Antigen Fused to Double-Mutant LT (dmLT) Induces Antibodies That Inhibit Enterotoxigenic E. coli Adhesion in Porcine IPEC-J2 Cells
by Jinxin He, Hongrui Liu, Yuexin Li, Jiashu Chang, Yayun Yang and Shaopeng Gu
Animals 2025, 15(19), 2858; https://doi.org/10.3390/ani15192858 - 30 Sep 2025
Abstract
This study focused on utilizing the double-mutant heat-labile toxin (R192G/L211A) (dmLT) as a backbone protein, into which neutralizing epitopes of ETEC (FaeG, FedF, FanC, FasA, and Fim41a) were embedded. A combination of computational modeling and immunogenicity analysis was conducted to evaluate the dmLT [...] Read more.
This study focused on utilizing the double-mutant heat-labile toxin (R192G/L211A) (dmLT) as a backbone protein, into which neutralizing epitopes of ETEC (FaeG, FedF, FanC, FasA, and Fim41a) were embedded. A combination of computational modeling and immunogenicity analysis was conducted to evaluate the dmLT(R192G/L211A) multiepitope fusion antigen (MEFA). Both the computational modeling and experimental results confirmed that all relevant epitopes were clearly exposed on the surface of the MEFA. Subcutaneous immunizations of rabbits with the MEFA protein yielded the development of IgG antibodies that targeted all five fimbriae. Furthermore, these antibodies demonstrated significant inhibition of adhesion for K88+, K99+, 987P+, F18+, and F41+ ETEC strains to porcine small intestinal epithelial cell line IPEC-J2 cells. These results indicated that the dmLT toxoid-based MEFA protein effectively elicits high-titer, functional antibodies capable of neutralizing the attachment of multiple prevalent ETEC fimbrial types, highlighting its potential as a broad-spectrum vaccine candidate. Consequently, it shows promising potential as a broad and effective vaccine against ETEC. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

18 pages, 3941 KB  
Article
Cerebellar Contributions to Spatial Learning and Memory: Effects of Discrete Immunotoxic Lesions
by Martina Harley Leanza, Elisa Storelli, David D’Arco, Gioacchino de Leo, Giulio Kleiner, Luciano Arancio, Giuseppe Capodieci, Rosario Gulino, Antonio Bava and Giampiero Leanza
Int. J. Mol. Sci. 2025, 26(19), 9553; https://doi.org/10.3390/ijms26199553 - 30 Sep 2025
Abstract
Evidence of possible cerebellar involvement in spatial processing, place learning and other types of higher order functions comes mainly from clinical observations, as well as from mutant mice and lesion studies. The latter, in particular, have reported deficits in spatial learning and memory [...] Read more.
Evidence of possible cerebellar involvement in spatial processing, place learning and other types of higher order functions comes mainly from clinical observations, as well as from mutant mice and lesion studies. The latter, in particular, have reported deficits in spatial learning and memory following surgical or neurotoxic cerebellar ablation. However, the low specificity of such manipulations has often made it difficult to precisely dissect the cognitive components of the observed behaviors. Likewise, due to conflicting data coming from lesion studies, it has not been possible so far to conclusively address whether a cerebellar dysfunction is sufficient per se to induce learning deficits, or whether concurrent damage to other regulatory structure(s) is necessary to significantly interfere with cognitive processing. In the present study, the immunotoxin 192 IgG-saporin, selectively targeting cholinergic neurons in the basal forebrain and a subpopulation of cerebellar Purkinje cells, was administered to adult rats bilaterally into the basal forebrain nuclei, the cerebellar cortices or both areas combined. Additional animals underwent injections of the toxin into the lateral ventricles. Starting from two–three weeks post-lesion, the animals were tested on paradigms of motor ability as well as spatial learning and memory and then sacrificed for post-mortem morphological analyses. All lesioned rats showed no signs of ataxia and no motor deficits that could impair their performance in the water maze task. The rats with discrete cerebellar lesions exhibited fairly normal performance and did not differ from controls in any aspect of the task. By contrast, animals with double lesions, as well as those with 192 IgG-saporin given intraventricularly did manifest severe impairments in both reference and working memory. Histo- and immunohistochemical analyses confirmed the effects of the toxin conjugate on target neurons and fairly similar patterns of Purkinje cell loss in the animals with cerebellar lesion only, basal forebrain-cerebellar double lesions and bilateral intraventricular injections of the toxin. No such loss was by contrast seen in the basal forebrain-lesioned animals, whose Purkinje cells were largely spared and exhibited a normal distribution pattern. The results suggest important functional interactions between the ascending regulatory inputs from the cerebellum and those arising in the basal forebrain nuclei that would act together to modulate the complex sensory–motor and cognitive processes required to control whole body movement in space. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

13 pages, 937 KB  
Article
Sustainable Wireworm Control in Wheat via Selected Bacillus thuringiensis Strains: A Biocontrol Perspective
by Marina Dervišević Milenković, Magdalena Knežević, Marina Jovković, Jelena Maksimović, Uroš Buzurović, Jelena Pavlović and Aneta Buntić
Agriculture 2025, 15(19), 2049; https://doi.org/10.3390/agriculture15192049 - 29 Sep 2025
Abstract
Wireworms are often referred as a hardly manageable group of pests due to their unstable lifestyle and uneven distribution in soils. The current strategy of wireworm control involves the heavy use of chemical pesticides. To find an effective and eco-friendly biological control agent [...] Read more.
Wireworms are often referred as a hardly manageable group of pests due to their unstable lifestyle and uneven distribution in soils. The current strategy of wireworm control involves the heavy use of chemical pesticides. To find an effective and eco-friendly biological control agent against wireworms, evaluation of bacterial properties and insecticidal effects of six Bacillus thuringiensis (Bt) strains against Agriotes lineatus was performed under laboratory conditions. The presence of cry11, cyt2 and krsA gene was detected in Bt strain BHC 2.4, while the same strain had the ability to produce siderophores, protease, amylase and cellulase. Single inoculums of Bt strains (BHC 2.4; BHC 4.5; BHC 4.7; 1.5; 4.3; 6.1) showed mortality against Agriotes lineatus larvae in the range of 6.67–72.22%. However, the compatible Bt dual cultures showed significantly higher efficiency in comparison with the single inoculums, with the highest efficiency of 79.63% recorded for Bt strain BHC 2.4 + Bt strain 1.5. The efficiency of applied Bt strains might be associated with the presence of genes coding for antibiotics and toxins. Therefore, the use of selected Bt strains applied in a form of compatible mixes could offer a sustainable solution for wireworm management in wheat. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

26 pages, 1290 KB  
Review
Liquid Gold with a Dark Side—A Toxicological Overview of Bioactive Components in Honey
by Maciej Kulawik, Anna Kulawik, Judyta Cielecka-Piontek and Przemysław Zalewski
Molecules 2025, 30(19), 3925; https://doi.org/10.3390/molecules30193925 - 29 Sep 2025
Abstract
Honey is a valuable natural product prized for its nutritional and therapeutic properties, including antioxidant, antimicrobial, and anti-inflammatory effects. However, in addition to health-promoting compounds, honey may also contain plant-derived toxins, contaminants, and degradation products. Certain phytotoxins—such as pyrrolizidine alkaloids, grayanotoxins, triptolide, celastrol, [...] Read more.
Honey is a valuable natural product prized for its nutritional and therapeutic properties, including antioxidant, antimicrobial, and anti-inflammatory effects. However, in addition to health-promoting compounds, honey may also contain plant-derived toxins, contaminants, and degradation products. Certain phytotoxins—such as pyrrolizidine alkaloids, grayanotoxins, triptolide, celastrol, gelsedine-type alkaloids, and tutin—can be transferred to honey from specific plant sources and pose health risks, particularly at high doses or with long-term exposure. Furthermore, compounds like 5-hydroxymethylfurfural, trace metals, pesticide residues, and Clostridium botulinum spores may present additional risks, especially to sensitive groups such as infants. Consumers often assume that natural products are inherently safe, which may lead to unintentional exposure to harmful substances. Adverse effects can range from chronic toxicity to, in extreme cases, death. Therefore, raising awareness among consumers and vendors is essential to reduce the intake of honey from unverified sources. Continuous monitoring of honey composition and further studies on the toxicodynamics of rare contaminants are crucial to ensuring safety while preserving the therapeutic benefits of this remarkable natural substance. Full article
Show Figures

Figure 1

16 pages, 1512 KB  
Article
The Effect of Intraocular Haloperidol on Motor Function in Models of Two Neuropsychiatric Disorders: Implications for the Origin and Treatment of Parkinson’s Disease, Psychosis and Drug Addiction
by Gregory L. Willis
Brain Sci. 2025, 15(10), 1062; https://doi.org/10.3390/brainsci15101062 - 29 Sep 2025
Abstract
Background: It has recently been proposed that the retina plays an important modulatory role in the control of motor function that is usually attributed exclusively to the function of the nigro-striatal dopamine (NSD) system. Indeed, it has been proposed further that Parkinson’s disease [...] Read more.
Background: It has recently been proposed that the retina plays an important modulatory role in the control of motor function that is usually attributed exclusively to the function of the nigro-striatal dopamine (NSD) system. Indeed, it has been proposed further that Parkinson’s disease (PD) begins in and progresses from the retina and may be effectively treated from there. While previous intraocular work has employed intravitreal (IVIT) administration of toxins to induce experimental PD, the first study series reported here examines the effect of IVIT haloperidol on motor performance while the second study examines the effect of IVIT haloperidol on the unilateral rotation model of PD, both in a circadian context. Methods: Motor tests included open field performance and the latency to perform three motor tests after the IVIT injection of haloperidol with and without amphetamine pretreatment. In a second study, IVIT injections of the melatonin antagonist ML-23 or L-dopa were made after unilateral lesions of the NSD in rats that were placed in a rotometer examining spontaneous ipsilateral and contralateral turning. Results: IVIT haloperidol produced robust changes in several motor parameters during the light and dark phase of the LD cycle which were enhanced by amphetamine pretreatment. In the second study, while IVIT L-dopa had only a minor effect on spontaneous rotation during the light phase, IVIT haloperidol produced a robust effect upon ipsilateral turning. The reduction in spontaneous ipsilateral turning was seen after IVIT injections into the eye ipsilateral or contralateral to the hemisphere in which NSD destruction occurred. Reduced turning was seen during both the light and dark phases of the L/D cycle. Conclusions: These results illustrate that IVIT injections of DA and melatonin receptor antagonists can differentially alter motor function via the retina. This suggests that the retina may be a treatment target not only for PD but also for other DA- and melatonin-mediated disorders such as drug addiction, psychosis and schizophrenia. Full article
Show Figures

Figure 1

17 pages, 1247 KB  
Article
Nemertide Alpha-1 as a Biopesticide: Aphid Deterrence, Antimicrobial Activity, and Safety Aspects
by Quentin Laborde, Katarzyna Dancewicz, Erik Jacobsson, Adam A. Strömstedt, Taj Muhammad, Camilla Eriksson, Blazej Slazak, Ulf Göransson and Håkan S. Andersson
Mar. Drugs 2025, 23(10), 388; https://doi.org/10.3390/md23100388 - 29 Sep 2025
Abstract
Aphid control often relies on synthetic pesticides, but their overuse has raised concerns about resistance development and negative impact on wildlife and human health. Consequently, the search for new biopesticide agents has gained significant attention. Nemertide alpha-1, a peptide toxin from the marine [...] Read more.
Aphid control often relies on synthetic pesticides, but their overuse has raised concerns about resistance development and negative impact on wildlife and human health. Consequently, the search for new biopesticide agents has gained significant attention. Nemertide alpha-1, a peptide toxin from the marine nemertean worm Lineus longissimus (Gunnerus, 1770), is known for its pesticide activity but has less documented biological safety. This study investigates the aphid feeding deterrence and biological safety of the experimental biopesticide nemertide alpha-1. Nemertide alpha-1 demonstrated a clear dose-dependent repellent effect on the penetration behaviour of the green peach aphid (Myzus persicae, Sulzer). It also demonstrates bacteriostatic and bactericidal effects in an MIC (Minimum Inhibitory Concentration) assay, respectively, on E. coli (MIC: 112.5 µM) and S. aureus (MIC: 28.4 µM). In a bacterial liposome leakage assay, nemertide alpha-1 exhibits a less pronounced effect than the melittin control (20% maximum leakage at 100 µM), strengthening the hypothesis on the specificity of its neurotoxic mode of action. It is not toxic to mammalian cell U-937 GTB with only a slight decline in the percentage of survival at the highest concentration tested (80 µM). Finally, nemertide alpha-1 displays thermal stability over time for four weeks in three different conditions: cold (6 °C), room temperature (20–24 °C), and physiological temperature (37 °C). Nemertide alpha-1 deters green peach aphid feeding in the low micromolar range and exhibits low antimicrobial properties and very low toxicity to human cells. Its potential utility is further underscored by thermal stability over time. Full article
Show Figures

Graphical abstract

15 pages, 10820 KB  
Article
Wnt/β-Catenin Pathway Activation Confers Fumonisin B1 Tolerance in Chicken Intestinal Organoid Monolayers by Enhancing Intestinal Stem Cell Function
by Shuai Zhang, Yanan Cao, Yiyi Shan, Xueli Zhang, Liangxing Xia, Haifei Wang, Shenglong Wu and Wenbin Bao
Animals 2025, 15(19), 2850; https://doi.org/10.3390/ani15192850 - 29 Sep 2025
Abstract
Fumonisin B1 (FB1) is a prevalent mycotoxin in moldy grains and feeds, highly toxic to livestock and compromising product quality while threatening food safety. Poultry exhibit low susceptibility to FB1, but the underlying tolerance mechanisms remain unclear. Traditional 3D chicken intestinal organoid models [...] Read more.
Fumonisin B1 (FB1) is a prevalent mycotoxin in moldy grains and feeds, highly toxic to livestock and compromising product quality while threatening food safety. Poultry exhibit low susceptibility to FB1, but the underlying tolerance mechanisms remain unclear. Traditional 3D chicken intestinal organoid models cannot simulate direct interaction between the epithelial monolayer and FB1, limiting the study of FB1–chicken intestinal crosstalk. Here, we established a 2D chicken intestinal organoid monolayer model, derived from intestinal crypts of 18-day-old specific pathogen-free chicken embryos, to systematically explore poultry’s resistance mechanisms against FB1. Using this model, we compared FB1-induced effects with those in a porcine intestinal epithelial cell model. Results showed that FB1 exposure did not reduce transepithelial electrical resistance, induce abnormal expression of tight junction genes, or cause significant fluctuations in inflammatory factor levels in chicken intestinal organoid monolayers. Mechanistically, FB1 enhances chicken intestinal stem cell function by activating the Wnt/β-catenin pathway, thereby promoting epithelial regeneration and renewal to increase FB1 resistance and decrease toxin sensitivity in chickens. This study reveals a strategy for enhancing FB1 tolerance in poultry by promoting intestinal stem cell function, providing a new perspective for developing mycotoxin prevention and control strategies. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

28 pages, 4500 KB  
Article
Proposal of Bacillus altaicus sp. nov. Isolated from Soil in the Altai Region, Russia
by Anton E. Shikov, Maria N. Romanenko, Fedor M. Shmatov, Mikhail V. Belousov, Alexei Solovchenko, Olga Chivkunova, Grigoriy K. Savelev, Irina G. Kuznetsova, Denis S. Karlov, Anton A. Nizhnikov and Kirill S. Antonets
Int. J. Mol. Sci. 2025, 26(19), 9517; https://doi.org/10.3390/ijms26199517 - 29 Sep 2025
Abstract
The Altai Republic remains a geographic region with an uncovered microbial diversity hiding yet undescribed potential species. Here, we describe the strain al37.1T from the Altai soil. It showed genomic similarity with the Bacillus mycoides strain DSM 2048T. However, the [...] Read more.
The Altai Republic remains a geographic region with an uncovered microbial diversity hiding yet undescribed potential species. Here, we describe the strain al37.1T from the Altai soil. It showed genomic similarity with the Bacillus mycoides strain DSM 2048T. However, the in silico DNA–DNA hybridization (DDH) was 61.6%, which satisfies the accepted threshold for delineating species. The isolate formed circular, smooth colonies, in contrast to the rhizoidal morphology typical of B. mycoides. The strain showed optimal growth under the following conditions: pH 6.5, NaCl concentration 0.5% w/v, and +30 °C. The major fraction of fatty acids was composed of C16:0 (34.77%), C18:1 (15.20%), C14:0 (9.06%), and C18:0 (7.88%), which were sufficiently lower in DSM 2048T (C16:0–15.6%, C14:0–3.7%). In contrast to DSM 2048T, al37.1T utilized glycerol, D-mannose, and D-galactose, while being unable to assimilate D-sorbitol, D-melibiose, and D-raffinose. The strain contains biosynthetic gene clusters (BGCs) associated with the production of fengycin, bacillibactin, petrobactin, and paeninodin, as well as loci coding for insecticidal factors, such as Spp1Aa, chitinases, Bmp1, and InhA1/InhA2. The comparative analysis with the 300 closest genomes demonstrated that these BGCs and Spp1Aa could be considered core for the whole group. Most of the strains, coupled with al37.1T, contained full nheABC and hblABC operons orchestrating the synthesis of enteric toxins. We observed a cytotoxic effect (≈19 and 22% reduction in viability) of the strain on the PANC-1 cell line. Given the unique morphological features and genome-derived data, we propose a new species, B. altaicus, represented by the type strain al37.1T. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

18 pages, 3841 KB  
Article
Bt Exposure-Induced Death of Dioryctria abietella (Lepidoptera: Pyralidae) Involvement in Alterations of Gene Expression and Enzyme Activity
by Xiaomei Wang, Jiaxing Sun, Ya Xing, Ruting Chen and Defu Chi
Insects 2025, 16(10), 1010; https://doi.org/10.3390/insects16101010 - 28 Sep 2025
Abstract
Dioryctria abietella (Lepidoptera: Pyralidae) is a destructive forest pest for coniferous trees. Bacillus thuringiensis has been widely applied in forestry as a biological control agent to control it. However, the mechanisms of Bt-induced mortality in D. abietella, particularly its effects on gene [...] Read more.
Dioryctria abietella (Lepidoptera: Pyralidae) is a destructive forest pest for coniferous trees. Bacillus thuringiensis has been widely applied in forestry as a biological control agent to control it. However, the mechanisms of Bt-induced mortality in D. abietella, particularly its effects on gene expression and enzyme activities, remain unclear. Here, bioassay, enzyme assay, transcriptome sequencing, and gene expression profiling were employed to explore the relationship between the toxin-receptor, defense, and lethal mechanisms of D. abietella after Bt exposure. In a toxicity bioassay, Bacillus thuringiensis galleriae 05041 strain (Bt05041) was the most toxic insecticide to the larvae of D. abietella, with LC50 values of 3.15 × 108 Colony-Forming Units (CFUs) mL−1 at 72 h after treatment. Transcriptome analysis revealed that the gene expression patterns of D. abietella after 8 h of Bt05041 exposure (Bt8) varied considerably from the Bt05041-treated for 2 h group (Bt2). In the Bt2 group, differentially expressed genes were significantly enriched in cellular and bioenergy pathways of lysosome, insulin signaling, cGMP-PKG signaling, etc. Immune-related pathways were activated, namely cAMP, AMPK, MAPK, Rap1, IMD, and Toll pathways. Meanwhile, Bt8 treatment caused metabolic changes in basic substances such as amino acids, glucose, nucleic acids, and fatty acids. Bt05041 exposure activated the activities of defense enzymes and induced gene expression changes in D. abietella larvae. Among them, most Bt-receptor genes had higher expression levels than defense enzyme genes. Overall, these findings reveal a possible mechanism underlying Bt-mediated death in D. abietella larvae. This work provides valuable information in terms of biological control strategies. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

24 pages, 935 KB  
Review
Keystone Species Restoration: Therapeutic Effects of Bifidobacterium infantis and Lactobacillus reuteri on Metabolic Regulation and Gut–Brain Axis Signaling—A Qualitative Systematic Review (QualSR)
by Michael Enwere, Edward Irobi, Adamu Onu, Emmanuel Davies, Gbadebo Ogungbade, Omowunmi Omoniwa, Charles Omale, Mercy Neufeld, Victoria Chime, Ada Ezeogu, Dung-Gwom Pam Stephen, Terkaa Atim and Laurens Holmes
Gastrointest. Disord. 2025, 7(4), 62; https://doi.org/10.3390/gidisord7040062 - 28 Sep 2025
Abstract
Background: The human gut microbiome—a diverse ecosystem of trillions of microorganisms—plays an essential role in metabolic, immune, and neurological regulation. However, modern lifestyle factors such as antibiotic overuse, cesarean delivery, reduced breastfeeding, processed and high-sodium diets, alcohol intake, smoking, and exposure to [...] Read more.
Background: The human gut microbiome—a diverse ecosystem of trillions of microorganisms—plays an essential role in metabolic, immune, and neurological regulation. However, modern lifestyle factors such as antibiotic overuse, cesarean delivery, reduced breastfeeding, processed and high-sodium diets, alcohol intake, smoking, and exposure to environmental toxins (e.g., glyphosate) significantly reduce microbial diversity. Loss of keystone species like Bifidobacterium infantis (B. infantis) and Lactobacillus reuteri (L. reuteri) contributes to gut dysbiosis, which has been implicated in chronic metabolic, autoimmune, cardiovascular, and neurodegenerative conditions. Materials and Methods: This Qualitative Systematic Review (QualSR) synthesized data from over 547 studies involving human participants and standardized microbiome analysis techniques, including 16S rRNA sequencing and metagenomics. Studies were reviewed for microbial composition, immune and metabolic biomarkers, and clinical outcomes related to microbiome restoration strategies. Results: Multiple cohort studies have consistently reported a 40–60% reduction in microbial diversity among Western populations compared to traditional societies, particularly affecting short-chain fatty acid (SCFA)-producing bacteria. Supplementation with B. infantis is associated with a significant reduction in systemic inflammation—including a 50% decrease in C-reactive protein (CRP) and reduced tumor necrosis factor-alpha (TNF-α) levels—alongside increases in regulatory T cells and anti-inflammatory cytokines interleukin-10 (IL-10) and transforming growth factor-beta 1 (TGF-β1). L. reuteri demonstrates immunomodulatory and neurobehavioral benefits in preclinical models, while both probiotics enhance epithelial barrier integrity in a strain- and context-specific manner. In murine colitis, B. infantis increases ZO-1 expression by ~35%, and L. reuteri improves occludin and claudin-1 localization, suggesting that keystone restoration strengthens barrier function through tight-junction modulation. Conclusions: Together, these findings support keystone species restoration with B. infantis and L. reuteri as a promising adjunctive strategy to reduce systemic inflammation, reinforce gut barrier integrity, and modulate gut–brain axis (GBA) signaling, indicating translational potential in metabolic and neuroimmune disorders. Future research should emphasize personalized microbiome profiling, long-term outcomes, and transgenerational effects of early-life microbial disruption. Full article
(This article belongs to the Special Issue Feature Papers in Gastrointestinal Disorders in 2025–2026)
Show Figures

Figure 1

Back to TopTop