Sustainable Wireworm Control in Wheat via Selected Bacillus thuringiensis Strains: A Biocontrol Perspective
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Sampling
2.2. Bioagents and Preparation of Working Cultures
2.3. Molecular Identification of Bacterial Isolates
2.4. Detection of Antibiotic- and Toxin-Producing Bacterial Genes
2.5. Detection of Bacterial Properties
2.5.1. Phosphate Solubilization and Siderophore Production
2.5.2. Enzymatic Activity
2.6. Compatibility of Bacterial Strains
2.7. Bioassays
2.8. Data Analysis
3. Results
3.1. Molecular Identification of Bacterial Isolates
3.2. Detection of Antibiotic- and Toxin-Producing Bacterial Genes
3.3. Bacterial Properties of Tested Bacillus thuringiensis Strains
3.4. Compatibility of Bacillus thuringiensis Strains
3.5. Biological Control of Agriotes lineatus Larvae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Bt | Bacillus thuringiensis |
bacA | Bacylisin |
bmyB | Bacyllomicin |
CAS | Chrome Azurol S |
Cry | Crystal protein |
CYT | Cytolytic toxin |
fenD | Fengycin |
ituC | Iturin |
krsA | Kurstakin |
NA | Nutrient agar |
NCBI | National Center for Biotechnology Information |
NJ | Neighbor-Joining phylogenetic tree |
PGP | Plant growth promotion |
Sip | Secreted insecticidal protein |
SMA | Skim milk agar |
spaS | Subtilin |
srfAA | Surfactin |
Vip | Vegetative insecticidal protein |
References
- Hokkanen, H.M.T.; Menzler-Hokkanen, I. Implications for management of wireworms: Insect pest suppressiveness of soils with plant functional diversity. Arthropod-Plant Interact. 2023, 17, 441–453. [Google Scholar] [CrossRef]
- Parker, W.E.; Howard, J.J. The biology and management of wireworms (Agriotes spp.) on potato with particular reference to the U.K. Agric. For. Entomol. 2001, 3, 85–98. [Google Scholar] [CrossRef]
- Vernon, B.; Lagasa, E.; Philip, H. Geographic and temporal distribution of Agriotes obscurus and A. lineatus (Coleoptera: Elateridae) in British Columbia and Washington as determined by pheromone trap surveys. J. Entomol. Soc. Brit. Columbia 2001, 98, 257–266. [Google Scholar]
- Horton, D.; Landolt, P. Orientation response of Pacific coast wireworm (Coleoptera: Elateridae) to food baits in laboratory and effectiveness of baits in field. Can. Entomol. 2002, 134, 357–367. [Google Scholar] [CrossRef]
- Furlan, L. An IPM approach targeted against wireworms: What has been done and what still has to be done. IOBC/WPRS Bull. 2005, 28, 91–100. [Google Scholar]
- Kleespies, R.G.; Ritter, C.; Zimmermann, G.; Burghause, F.; Feiertag, S.; Leclerque, A. A survey of microbial antagonists of Agriotes wireworms from Germany and Italy. J. Pest Sci. 2013, 86, 99–106. [Google Scholar] [CrossRef]
- Kabaluk, T. Targeting the click beetle Agriotes obscurus with entomopathogens as a concept for wireworm biocontrol. BioControl 2014, 59, 607–616. [Google Scholar] [CrossRef]
- Brandl, M.A.; Schumann, M.; Przyklenk, M.; Patel, A.; Vidal, S. Wireworm damage reduction in potatoes with an attract-and-kill strategy using Metarhizium brunneum. J. Pest. Sci. 2017, 90, 479–493. [Google Scholar] [CrossRef]
- Ansari, M.A.; Evans, M.; Butt, T.M. Identification of pathogenic strains of entomopathogenic nematodes and fungi for wireworm control. Crop. Prot. 2009, 28, 269–272. [Google Scholar] [CrossRef]
- Campos-Herrera, R.; Gutiérrez, C. Screening Spanish isolates of steinernematid nematodes for use as biological control agents through laboratory and greenhouse microcosm studies. J. Invertebr. Pathol. 2009, 100, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kamle, M.; Borah, R.; Mahato, D.K.; Sharma, B. Bacillus thuringiensis as microbial biopesticide: Uses and application for sustainable agriculture. Egypt. J. Biol. Pest Control 2021, 31, 95. [Google Scholar] [CrossRef]
- Danismazoglu, M.; Demir, İ.; Sevim, A.; Demirbag, Z.; Nalcacioglu, R. An investigation on the bacterial flora of Agrioteslineatus (Coleoptera: Elateridae) and pathogenicity of the flora members. Crop Prot. 2012, 40, 1–7. [Google Scholar] [CrossRef]
- Palma, L.; Muñoz, D.; Berry, C.; Murillo, J.; Caballero, P. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins 2014, 6, 3296–3325. [Google Scholar] [CrossRef]
- Noran, E.M.; Amin, M.K.; Abdelsalam, A.; Elashtokhy, M.M. Isolation and characterization of halophilic Bacillus thuringiensis from local Egyptian sites and their potential against Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Egypt. J. Biol. Pest Control 2024, 34, 62. [Google Scholar] [CrossRef]
- Bravo, A.; Gill, S.S.; Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef]
- Vachon, V.; Laprade, R.; Schwartz, J.-L. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. J. Invertebr. Pathol. 2012, 111, 1–12. [Google Scholar] [CrossRef]
- Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 775–806. [Google Scholar] [CrossRef]
- van Herk, W.G.; Vernon, R.S.; Roitberg, B.D. Repellency of a wireworm, Agriotes obscurus (Coleoptera: Elateridae), on exposure to synthetic insecticides in a soil-less bioassay. Environ. Entomol. 2008, 37, 534–545. [Google Scholar] [CrossRef]
- Mampallil, L.J.; Faizal, M.H.; Anith, K.N. Bacterial bioagents for insect pest management. J. Entomol. Zool. Stud. 2017, 5, 2237–2244. [Google Scholar]
- Wang, M.; Geng, L.; Sun, X.; Shu, C.; Song, F.; Zhang, J. Screening of Bacillus thuringiensis strains to identify new potential biocontrol agents against Sclerotinia sclerotiorum and Plutellaxylostella in Brassica campestris L. Biol. Control 2020, 145, 104262. [Google Scholar] [CrossRef]
- Gupta, R.; Keppanan, R.; Leibman-Markus, M.; Elbaz, M.; Bar, M.; Ment, D.; Yedidia, I. Bacillus thuringiensis promotes systemic immunity in tomato, controlling pests and pathogens and promoting yield. Food Sec. 2024, 16, 675–690. [Google Scholar] [CrossRef]
- Morales-Rodriguez, A.; Ospina, A.; Wanner, K.W. Evaluation of four bait traps for sampling wireworm (Coleoptera: Elateridae) infesting cereal crops in Montana. Int. J. Insect Sci. 2017, 9, 1179543317709275. [Google Scholar] [CrossRef] [PubMed]
- Furlan, L.; Benvegnù, I.; Bilò, M.F.; Lehmhus, J.; Ruzzier, E. Species Identification of Wireworms (Agriotes spp.; Coleoptera: Elateridae) of Agricultural Importance in Europe: A New “Horizontal Identification Table”. Insects 2021, 12, 534. [Google Scholar] [CrossRef] [PubMed]
- Knežević, M.; Berić, T.; Buntić, A.; Delić, D.; Nikolić, I.; Stanković, S.; Stajković-Srbinović, O. Potential of root nodule nonrhizobial endophytic bacteria for growth promotion of Lotus corniculatus L. and Dactylis glomerata L. J. Appl. Microbiol. 2021, 131, 2929–2940. [Google Scholar] [CrossRef]
- Dimkić, I.; Živković, S.; Berić, T.; Ivanović, Ž.; Gavrilović, V.; Stanković, S.; Fira, D. Characterization and evaluation of two Bacillus strains, SS-12.6 and SS-13.1, as potential agents for the control of phytopathogenic bacteria and fungi. Biol. Control 2013, 65, 312–321. [Google Scholar] [CrossRef]
- Oro, V.; Knežević, M.; Dinić, Z.; Delić, D. Bacterial microbiota isolated from cysts of Globodera rostochiensis (Nematoda: Heteroderidae). Plants 2020, 9, 1146. [Google Scholar] [CrossRef]
- Mora, I.M.R.; Cabrefiga, J.; Montesinos, E. Antimicrobial peptide genes in Bacillus strains from plant environments. Int. Microbiol. 2011, 14, 213–223. [Google Scholar] [CrossRef]
- Jelušić, A.; Popović, T.; Dimkić, I.; Mitrović, P.; Peeters, K.; Miklavčič Višnjevec, A.; Tavzes, Č.; Stanković, S.; Berić, T. Changes in the winter oilseed rape microbiome affected by Xanthomonas campestris pv. campestris and biocontrol potential of the indigenous Bacillus and Pseudomonas isolates. Biol. Control 2021, 160, 104695. [Google Scholar] [CrossRef]
- Jain, D.; Sunda, S.D.; Sanadhya, S.; Nath, D.J.; Khandelwal, S.K. Molecular characterization and PCR-based screening of cry genes from Bacillus thuringiensis strains. 3 Biotech 2017, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Thammasittirong, A.; Attathom, T. PCR-based method for the detection of cry genes in local isolates of Bacillus thuringiensis from Thailand. J. Invertebr. Pathol. 2008, 98, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, M.; Amaresan, N.; Sankaranarayanan, A. Plant-Microbe Interactions; Springer Protocols Handbooks; Springer: Berlin/Heidelberg, Germany, 2021; pp. 249–251. [Google Scholar]
- Ibarra, J.E.; Rincon, M.C.; Orduz, S. Diversity of Bacillus thuringiensis strains from Latin America. Appl. Environ. Microbiol. 2003, 69, 5269–5274. [Google Scholar] [CrossRef] [PubMed]
- Rokhbakhsh-Zamin, F.; Sachdev, D.; Kazemi-Pour, N.; Engineer, A.; Pardesi, K.R.; Zinjarde, S.; Dhakephalkar, P.K.; Chopade, B.A. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J. Microbiol. Biotechnol. 2011, 21, 556–566. [Google Scholar] [CrossRef]
- Milagres, A.M.; Machuca, A.; Napoleão, D. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J. Microbiol. Methods 1999, 37, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Figueira, C.; Ferreira, M.J.; Silva, H.; Cunha, A. Improved germination efficiency of Salicornia ramosissima seeds inoculated with Bacillus aryabhattai SP101620. Ann. Appl. Biol. 2019, 174, 319–328. [Google Scholar] [CrossRef]
- Mihajlovski, K.R.; Radovanović, N.R.; Miljković, M.G.; Šiler-Marinković, S.; Rajilić-Stojanović, M.D.; Dimitrijević-Branković, S.I. β-Amylase production from packaging-industry wastewater using a novel strain Paenibacillus chitinolyticus CKS 1. RSC Adv. 2015, 5, 90895–90903. [Google Scholar] [CrossRef]
- Vernon, R.S.; Van Herk, W.; Tolman, J.; Ortiz Saavedra, H.; Clodius, M.; Gage, B. Transitional sublethal and lethal effects of insecticides after dermal exposures to five economic species of wireworms (Coleoptera: Elateridae). J. Econ. Entomol. 2008, 101, 365–374. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Bajsa, N.; Fabiano, E.; Rivas-Franco, F. Biological control of phytopathogens and insect pests in agriculture: An overview of 25 years of research in Uruguay. Environ. Sustain. 2023, 6, 121–133. [Google Scholar] [CrossRef]
- Sindhu, S.S.; Sehrawat, A.; Sharma, R.; Khandelwal, A. Biological control of insect pests for sustainable agriculture. In Advances in Soil Microbiology: Recent Trends and Future Prospects; Adhya, T., Mishra, B., Annapurna, K., Verma, D., Kumar, U., Eds.; Microorganisms for Sustainability; Springer: Singapore, 2017; Volume 4, pp. 189–218. [Google Scholar] [CrossRef]
- Poggi, S.; Le Cointe, R.; Lehmhus, J.; Plantegenest, M.; Furlan, L. Alternative strategies for controlling wireworms in field crops: A review. Agriculture 2021, 11, 436. [Google Scholar] [CrossRef]
- Khan, A.R.; Mustafa, A.; Hyder, S.; Valipour, M.; Rizvi, Z.F.; Gondal, A.S.; Yousuf, Z.; Iqbal, R.; Daraz, U. Bacillus spp. as bioagents: Uses and application for sustainable agriculture. Biology 2022, 11, 1763. [Google Scholar] [CrossRef] [PubMed]
- Ajuna, H.B.; Lim, H.I.; Moon, J.H.; Won, S.J.; Choub, V.; Choi, S.I.; Yun, J.Y.; Ahn, Y.S. The prospect of hydrolytic enzymes from Bacillus species in the biological control of pests and diseases in forest and fruit tree production. Int. J. Mol. Sci. 2023, 24, 16889. [Google Scholar] [CrossRef]
- Wei, J.Z.; Hale, K.; Carta, L.; Platzer, E.; Wong, C.; Fang, S.C.; Aroian, R.V. Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl. Acad. Sci. USA 2003, 100, 2760–2765. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Arrizabalaga, M.; Villanueva, M.; Escriche, B.; Ancín-Azpilicueta, C.; Caballero, P. Insecticidal activity of Bacillus thuringiensis proteins against Coleopteran pests. Toxins 2020, 12, 430. [Google Scholar] [CrossRef] [PubMed]
- de Maagd, R.A.; Bravo, A.; Berry, C.; Crickmore, N.; Schnepf, H.E. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu. Rev. Genet. 2003, 37, 409–433. [Google Scholar] [CrossRef] [PubMed]
- Federici, B.A.; Bauer, L.S. Cyt1Aa protein of Bacillus thuringiensis is toxic to the cottonwood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3Aa. Appl. Environ. Microbiol. 1998, 64, 4368–4371. [Google Scholar] [CrossRef]
- Mahmoud, S.B.; Ramos, J.E.; Shatters, R.G.; Hall, D.G.; Lapointe, S.L.; Niedz, R.P.; Rougé, P.; Cave, D.; Borovsky, D. Expression of Bacillus thuringiensis cytolytic toxin (Cyt2Ca1) in citrus roots to control Diaprepesabbreviatus larvae. Pestic. Biochem. Physiol. 2017, 136, 1–11. [Google Scholar] [CrossRef]
- Fira, D.; Dimkić, I.; Berić, T.; Lozo, J.; Stanković, S. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 2018, 285, 44–55. [Google Scholar] [CrossRef]
- Nihorimbere, G.; Korangi-Alleluya, V.; Nimbeshaho, F.; Nihorimbere, V.; Legrève, A.; Ongena, M. Bacillus-based biocontrol beyond chemical control in Central Africa: The challenge of turning myth into reality. Front. Plant Sci. 2024, 15, 1349357. [Google Scholar] [CrossRef]
- Béchet, M.; Caradec, T.; Hussein, W.; Abderrahmani, A.; Chollet, M.; Leclère, V.; Dubois, T.; Lereclus, D.; Pupin, M.; Jacques, P. Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Appl. Microbiol. Biot. 2012, 95, 593–600. [Google Scholar] [CrossRef]
- Gélis-Jeanvoine, S.; Canette, A.; Gohar, M.; Caradec, T.; Lemy, C.; Gominet, M.; Jacques, P.; Lereclus, D.; Slamti, L. Genetic and functional analyses of krs, a locus encoding Kurstakin, a lipopeptide produced by Bacillus thuringiensis. Res. Microbiol. 2017, 168, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Raymond, B.; Johnston, P.R.; Nielsen-LeRoux, C.; Lereclus, D.; Crickmore, N. Bacillus thuringiensis: An impotent pathogen? Trends Microbiol. 2010, 18, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Dubois, T.; Faegri, K.; Perchat, S.; Lemy, C.; Buisson, C.; Nielsen-LeRoux, C.; Gohar, M.; Jacques, P.; Ramarao, N.; Kolsto, A.B.; et al. Necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis. PLoS Pathog. 2012, 8, e1002629. [Google Scholar] [CrossRef]
- Raddadi, N.; Cherif, A.; Ouzari, H.; Marzorati, M.; Brusetti, L.; Boudabous, A.; Daffonchio, D. Bacillus thuringiensis beyond insect biocontrol: Plant growth promotion and biosafety of polyvalent strains. Ann. Microbiol. 2007, 57, 481–494. [Google Scholar] [CrossRef]
- Ruiu, L. Plant-growth-promoting bacteria (PGPB) against insects and other agricultural pests. Agronomy 2020, 10, 861. [Google Scholar] [CrossRef]
- Rakshiya, Y.S.; Verma, M.K.; Sindhu, S.S. Efficacy of antagonistic soil bacteria in management of subterranean termites (Isoptera). Res. Environ. Life Sci. 2016, 9, 949–955. [Google Scholar]
- Knežević, M.; Dervišević, M.; Jovković, M.; Jevđenović, G.; Maksimović, J.; Buntić, A. Versatile role of Bacillus velezensis: Biocontrol of Fusarium poae and wireworms and barley plant growth promotion. Biol. Control 2025, 145, 105789. [Google Scholar] [CrossRef]
- Rocha, G.T.; Queiroz, P.R.M.; Grynberg, P.; Togawa, R.C.; de Lima Ferreira, A.D.C.; Do Nascimento, I.N.; Gomes, A.C.M.M.; Monnerat, R. Biocontrol potential of bacteria belonging to the Bacillus subtilis group against pests and diseases of agricultural interest through genome exploration. Antonie Leeuwenhoek 2023, 116, 599–614. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer | Sequence (5′ → 3′) | Product Size (bp) | Reference |
---|---|---|---|---|
fenD | FEND-F | GGCCCGTTCTCTAAATCCAT | 269 | [25] |
FEND-R | GTCATGCTGACGAGAGCAAA | |||
bmyB | BMYB-F | GAATCCCGTTGTTCTCCAAA | 370 | |
BMYB-R | GCGGGTATTGAATGCTTGTT | |||
ituC | ITUC-F | GGCTGCTGCAGATGCTTTAT | 423 | |
ITUC-R | TCGCAGATAATCGCAGTGAG | |||
srfAA | SRFA-F | TCGGGACAGGAAGACATCAT | 201 | |
SRFA-R | CCACTCAAACGGATAATCCTGA | |||
bacA | BAC-F | CAGCTCATGGGAATGCTTTT | 498 | |
BAC-R | CTCGGTCCTGAAGGGACAAG | |||
spaS | SPAS-F | GGTTTGTTGGATGGAGCTGT | 375 | |
SPAS-R | GCAAGGAGTCAGAGCAAGGT | |||
krsA | AKS-F | TCHACWGGRAATCCAAAGGG | 1125, 1152, 1161, 1167, 1173 | [26] |
TKS-R | CCACCDKTCAAAKAARKWATC | |||
cry11 | Un11-F | TTCCAACCCAACTTTCAAGC | 305 | [27] |
Un11-R | AGCTATGGCCTAAGGGGAAA | |||
cry1B | c1B-F | CAGAAACAACAGAACGACC | 921 | [28] |
c1B-R | CACTTCCCCACCATCCAT | |||
vip1 | Vip1-sc.fw | TATTAGATAAACAACAACAAGAATATCAATCTATTMGNTGGATHGG | 585 | [29] |
Vip1-sc.rev | GATCTATATCTCTAGCTGCTTTTTCATAATCTSARTANGGRTC | |||
vip2 | Vip2-sc.fw | GATAAAGAAAAAGCAAAAGAATGGGRNAARRA | 845 | |
Vip2-sc.rev | CCACACCATCTATATACAGTAATATTTTCTGGDATNGG | |||
cyt1 | cyt1gral-F | CCTCAATCAACAGCAGGGTTATT | 477–480 | [30] |
cyt1gral-R | TGCAAACAGGACATTGTATGTGTAATT | |||
cyt2 | cyt2gral-F | ATTACAAATTGCAAATGGTATTCC | 355–356 | |
cyt2gral-R | TTTCAACATCCACAGTAATTTCAAATGC |
Toxin-Producing Gene | Bacterial Strain | |||||
---|---|---|---|---|---|---|
B. thuringiensis BHC 2.4 | B. thuringiensis BHC 4.5 | B. thuringiensis BHC 4.7 | B. thuringiensis 1.5 | B. thuringiensis 4.3 | B. thuringiensis 6.1 | |
cry11 | + | – | – | – | – | – |
cry1B | – | + | + | + | + | – |
vip1 | – | – | – | – | – | – |
vip2 | – | – | – | – | – | – |
cyt1 | – | – | – | – | – | – |
cyt2 | + | – | – | – | – | – |
Bacterial Strains | Amylase | CMCase | Protease | Lipase | Phosphate Solubilization | Siderophore (mm) |
---|---|---|---|---|---|---|
B. thuringiensis BHC 2.4 | ++ | +++ | +++ | – | – | 17 ± 0.58 |
B. thuringiensis BHC 4.5 | ++ | ++ | ++ | + | + | 9 ± 0.29 |
B. thuringiensis BHC 4.7 | +++ | ++ | + | – | + | 7 ± 0.50 |
B. thuringiensis 1.5 | ++ | ++ * | + * | – | – * | 1.83 ± 0.58 * |
B. thuringiensis 4.3 | ++ | +++ * | ++ * | – | – * | – * |
B. thuringiensis 6.1 | ++ | + * | ++ * | – | – * | – * |
Bacterial Strain | BHC 2.4 | BHC 4.5 | BHC 4.7 | 1.5 | 4.3 | 6.1 |
---|---|---|---|---|---|---|
B. thuringiensis BHC 2.4 | – | – | + | + | – | |
B. thuringiensis BHC 4.5 | – | + | – | – | – | |
B. thuringiensis BHC 4.7 | – | + | – | + | – | |
B. thuringiensis 1.5 | + | – | – | + | – | |
B. thuringiensis 4.3 | + | – | + | + | – | |
B. thuringiensis 6.1 | – | – | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dervišević Milenković, M.; Knežević, M.; Jovković, M.; Maksimović, J.; Buzurović, U.; Pavlović, J.; Buntić, A. Sustainable Wireworm Control in Wheat via Selected Bacillus thuringiensis Strains: A Biocontrol Perspective. Agriculture 2025, 15, 2049. https://doi.org/10.3390/agriculture15192049
Dervišević Milenković M, Knežević M, Jovković M, Maksimović J, Buzurović U, Pavlović J, Buntić A. Sustainable Wireworm Control in Wheat via Selected Bacillus thuringiensis Strains: A Biocontrol Perspective. Agriculture. 2025; 15(19):2049. https://doi.org/10.3390/agriculture15192049
Chicago/Turabian StyleDervišević Milenković, Marina, Magdalena Knežević, Marina Jovković, Jelena Maksimović, Uroš Buzurović, Jelena Pavlović, and Aneta Buntić. 2025. "Sustainable Wireworm Control in Wheat via Selected Bacillus thuringiensis Strains: A Biocontrol Perspective" Agriculture 15, no. 19: 2049. https://doi.org/10.3390/agriculture15192049
APA StyleDervišević Milenković, M., Knežević, M., Jovković, M., Maksimović, J., Buzurović, U., Pavlović, J., & Buntić, A. (2025). Sustainable Wireworm Control in Wheat via Selected Bacillus thuringiensis Strains: A Biocontrol Perspective. Agriculture, 15(19), 2049. https://doi.org/10.3390/agriculture15192049