Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,232)

Search Parameters:
Keywords = total pressure ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5152 KiB  
Article
Assessment of Emergy, Environmental and Economic Sustainability of the Mango Orchard Production System in Hainan, China
by Yali Lei, Xiaohui Zhou and Hanting Cheng
Sustainability 2025, 17(15), 7030; https://doi.org/10.3390/su17157030 - 2 Aug 2025
Viewed by 252
Abstract
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the [...] Read more.
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the economic benefits and environmental impact during its planting and management process remain unclear. This paper combines emergy, life cycle assessment (LCA), and economic analysis to compare the system sustainability, environmental impact, and economic benefits of the traditional mango cultivation system (TM) in Dongfang City, Hainan Province, and the early-maturing mango cultivation system (EM) in Sanya City. The emergy evaluation results show that the total emergy input of EM (1.37 × 1016 sej ha−1) was higher than that of TM (1.32 × 1016 sej ha−1). From the perspective of the emergy index, compared with TM, EM exerted less pressure on the local environment and has better stability and sustainability. This was due to the higher input of renewable resources in EM. The LCA results showed that based on mass as the functional unit, the potential environmental impact of the EM is relatively high, and its total environmental impact index was 18.67–33.19% higher than that of the TM. Fertilizer input and On-Farm emissions were the main factors causing environmental consequences. Choosing alternative fertilizers that have a smaller impact on the environment may effectively reduce the environmental impact of the system. The economic analysis results showed that due to the higher selling price of early-maturing mango, the total profit and cost–benefit ratio of the EM have increased by 55.84% and 36.87%, respectively, compared with the TM. These results indicated that EM in Sanya City can enhance environmental sustainability and boost producers’ annual income, but attention should be paid to the negative environmental impact of excessive fertilizer input. These findings offer insights into optimizing agricultural inputs for Hainan mango production to mitigate multiple environmental impacts while enhancing economic benefits, aiming to provide theoretical support for promoting the sustainable development of the Hainan mango industry. Full article
Show Figures

Graphical abstract

15 pages, 5904 KiB  
Study Protocol
Protocol for the Digital, Individualized, and Collaborative Treatment of Type 2 Diabetes in General Practice Based on Decision Aid (DICTA)—A Randomized Controlled Trial
by Sofie Frigaard Kristoffersen, Jeanette Reffstrup Christensen, Louise Munk Ramo Jeremiassen, Lea Bolette Kylkjær, Nanna Reffstrup Christensen, Sally Wullf Jørgensen, Jette Kolding Kristensen, Sonja Wehberg, Ilan Esra Raymond, Dorte E. Jarbøl, Jesper Bo Nielsen, Jens Søndergaard, Michael Hecht Olsen, Jens Steen Nielsen and Carl J. Brandt
Nutrients 2025, 17(15), 2494; https://doi.org/10.3390/nu17152494 - 30 Jul 2025
Viewed by 239
Abstract
Background: Despite significant advancements in diabetes care, many individuals with type 2 diabetes (T2D) do not receive optimal care and treatment. Digital interventions promoting behavioral changes have shown promising long-term results in supporting healthier lifestyles but are not implemented in most healthcare [...] Read more.
Background: Despite significant advancements in diabetes care, many individuals with type 2 diabetes (T2D) do not receive optimal care and treatment. Digital interventions promoting behavioral changes have shown promising long-term results in supporting healthier lifestyles but are not implemented in most healthcare offerings, maybe due to lack of general practice support and collaboration. This study evaluates the efficacy of the Digital, Individualized, and Collaborative Treatment of T2D in General Practice Based on Decision Aid (DICTA), a randomized controlled trial integrating a patient-centered smartphone application for lifestyle support in conjunction with a clinical decision support (CDS) tool to assist general practitioners (GPs) in optimizing antidiabetic treatment. Methods: The present randomized controlled trial aims to recruit 400 individuals with T2D from approximately 70 GP clinics (GPCs) in Denmark. The GPCs will be cluster-randomized in a 2:3 ratio to intervention or control groups. The intervention group will receive one year of individualized eHealth lifestyle coaching via a smartphone application, guided by patient-reported outcomes (PROs). Alongside this, the GPCs will have access to the CDS tool to optimize pharmacological decision-making through electronic health records. The control group will receive usual care for one year, followed by the same intervention in the second year. Results: The primary outcome is the one-year change in estimated ten-year cardiovascular risk, assessed by SCORE2-Diabetes calculated from age, smoking status, systolic blood pressure, total and high-density lipoprotein cholesterol, age at diabetes diagnosis, HbA1c, and eGFR. Conclusions: If effective, DICTA could offer a scalable, digital-first approach for improving T2D management in primary care by combining patient-centered lifestyle coaching with real-time pharmacological clinical decision support. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

15 pages, 664 KiB  
Article
Real-World Safety of Vedolizumab in Inflammatory Bowel Disease: A Retrospective Cohort Study Supported by FAERS Signal Analysis
by Bojana Milašinović, Sandra Vezmar Kovačević, Srđan Marković, Marija Jovanović, Tamara Knežević Ivanovski, Đorđe Kralj, Petar Svorcan, Branislava Miljković and Katarina Vučićević
Pharmaceuticals 2025, 18(8), 1127; https://doi.org/10.3390/ph18081127 - 28 Jul 2025
Viewed by 410
Abstract
Background/Objectives: Vedolizumab is a gut-selective anti-integrin monoclonal antibody approved for the treatment of inflammatory bowel disease (IBD). While clinical trials have demonstrated a favorable safety profile, real-world studies are essential for identifying rare adverse events (AEs) and evaluating post-marketing safety. This study [...] Read more.
Background/Objectives: Vedolizumab is a gut-selective anti-integrin monoclonal antibody approved for the treatment of inflammatory bowel disease (IBD). While clinical trials have demonstrated a favorable safety profile, real-world studies are essential for identifying rare adverse events (AEs) and evaluating post-marketing safety. This study assessed vedolizumab’s safety in a real-world cohort and supported the detection of potential safety signals. Methods: A retrospective chart review was conducted on adult IBD patients treated with vedolizumab at a tertiary center in the Republic of Serbia between October 2021 and August 2022. Data included demographics, AEs, and newly reported extraintestinal manifestations (EIMs). Exposure-adjusted incidence rates were calculated per 100 patient-years (PYs). Disproportionality analysis using the FDA Adverse Event Reporting System (FAERS) was performed to identify safety signals, employing reporting odds ratios (RORs) and proportional reporting ratios (PRRs) for AEs also observed in the cohort. Prior IBD therapies and reasons for discontinuation were evaluated. Results: A total of 107 patients (42.1% Crohn’s disease, 57.9% ulcerative colitis) were included, with a median vedolizumab exposure of 605 days. There were 92 AEs (56.51/100 PYs), most frequently infections (23.95/100 PYs), gastrointestinal disorders (4.30/100 PYs), and skin disorders (4.30/100 PYs). The most frequently reported preferred terms (PTs) included COVID-19, COVID-19 pneumonia, nephrolithiasis, and nasopharyngitis. Arthralgia (12.90/100 PYs) was the most frequent newly reported EIM. No discontinuations due to vedolizumab AEs occurred. FAERS analysis revealed potential signals for events not listed in prescribing information but observed in the cohort: nephrolithiasis, abdominal pain, diarrhea, malaise, cholangitis, gastrointestinal infection, blood pressure decreased, weight decreased, female genital tract fistula, respiratory symptom, and appendicectomy. Most patients had received three prior therapies, often stopping one due to AEs. Conclusions: Vedolizumab demonstrated a favorable safety profile in the IBD cohort. However, FAERS-identified signals, such as nephrolithiasis, gastrointestinal infections, and decreased blood pressure, warrant further investigation in larger, more diverse populations. Full article
(This article belongs to the Special Issue Therapeutic Drug Monitoring and Adverse Drug Reactions: 2nd Edition)
Show Figures

Figure 1

21 pages, 4796 KiB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Viewed by 340
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

9 pages, 888 KiB  
Article
Association of Magnesium Deficiency and Reduction in Blood Pressure After Chemotherapy in Previously Hypertensive Cancer Patients: The Role of Chemotherapy and Magnesium Levels
by Aurora Soldado, Kevin Doello, Jose Prados, Cristina Mesas and Consolacion Melguizo
Medicina 2025, 61(8), 1357; https://doi.org/10.3390/medicina61081357 - 26 Jul 2025
Viewed by 190
Abstract
Background and Objectives: A commonly observed phenomenon in outpatient oncological patients is the appearance of hypotension not attributable to other causes in hypertensive patients undergoing oncological treatment. Once antihypertensive treatment is discontinued, patients remain normotensive after the oncological treatment ends. The objective [...] Read more.
Background and Objectives: A commonly observed phenomenon in outpatient oncological patients is the appearance of hypotension not attributable to other causes in hypertensive patients undergoing oncological treatment. Once antihypertensive treatment is discontinued, patients remain normotensive after the oncological treatment ends. The objective of this research is to analyze our experience with this phenomenon and try to provide an explanation. Materials and Methods: A retrospective case-control study was conducted with a total sample of 302 hypertensive oncological patients, with cases presenting symptomatic hypotension and controls not. Descriptive and inferential statistics were performed, with the latter focusing on studies by Odds Ratio, Chi-square, Z test for comparison of two proportions, and multivariate regression. Results: Regarding the results obtained, it is noteworthy that in both the univariate and multivariate models, treatment with cisplatin showed statistical significance (Univariate, OR 3.06 (CI 1.82–5.11). Z 4.45, p < 0.0001; multivariate, p < 0.001, Nagelkerke R2 74.8%). Cisplatin treatment and the study phenomenon were correlated with magnesium levels (Chi-square 8.2, p = 0.017), relating hypotension to hypertensive patients with low magnesium levels. Conclusions: CDDP treatment is associated with hypotension or normotension in previously hypertensive cancer patients. This may be related to peripheral vascular fragility induced by oncological drugs, leading to reduced vascular resistance. Although magnesium deficiency is generally linked to hypertension, chemotherapy-related shifts in magnesium levels due to impaired renal handling may play a role. These findings may help improve the understanding of blood pressure regulation in oncology patients. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

12 pages, 1018 KiB  
Article
Manufacturing Considerations in the Aerodynamic Design Process of Turbomachinery Components
by Christian Effen, Benedikt Riegel, Nicklas Gerhard, Stefan Henninger, Pascal Behrens genannt Wäcken, Peter Jeschke, Viktor Rudel and Thomas Bergs
Processes 2025, 13(8), 2363; https://doi.org/10.3390/pr13082363 - 24 Jul 2025
Viewed by 434
Abstract
This paper presents a CFD-based method for the aerodynamic design of a high-pressure compressor rotor blisk, taking into account manufacturing constraints. Focus is placed on the influence of geometric deviations caused by the dynamic constraints of the milling machine. Special attention is given [...] Read more.
This paper presents a CFD-based method for the aerodynamic design of a high-pressure compressor rotor blisk, taking into account manufacturing constraints. Focus is placed on the influence of geometric deviations caused by the dynamic constraints of the milling machine. Special attention is given to the leading edge region of the blade, where high curvature results in increased sensitivity in both aerodynamic behavior and manufacturability. The generic blisk geometry on which this study is based is characterized by an elliptical leading edge. For the optimization, the leading edge is described by Bézier curves that transition smoothly to the suction and pressure sides with continuous curvature and a non-dimensional length ratio. In steady-state RANS parameter studies, the length ratio is systematically varied while the chord length is kept constant. For the aerodynamic evaluation of the design’s key performance parameters such as blade pressure distribution, total pressure loss and compressor efficiency are considered. To evaluate the machine dynamics for a given design, compliance with the nominal feed rate and the deviation between the planned and actual tool tip positions were used as evaluation parameters. Compared to the reference geometry with an elliptical leading edge, the purely aerodynamic optimization achieved an isentropic efficiency improvement of +0.24 percentage points in the aerodynamic design point and a profile deviation improvement of 3 µm in the 99th quantile. The interdisciplinary optimization achieved an improvement of +0.20 percentage points and 30 µm, respectively. This comparative study illustrates the potential of multidisciplinary design approaches that balance aerodynamic performance goals with manufacturability via a novel approach for Design-to-Manufacture-to-Design. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

23 pages, 556 KiB  
Article
Study on Impact of Managerial Effectiveness and Digitalization on Green Total Factor Productivity of Enterprises: Sample of Listed Heavy-Polluting Enterprises in China
by Jun Yan and Zexia Zhao
Sustainability 2025, 17(15), 6700; https://doi.org/10.3390/su17156700 - 23 Jul 2025
Viewed by 307
Abstract
In the process of evaluating the quality of a company’s development, the issues related to production capacity and environmental pollution have emerged as significant concerns. Drawing on the methodologies employed in previous related research, this study utilizes the Data Envelopment Analysis with relaxation [...] Read more.
In the process of evaluating the quality of a company’s development, the issues related to production capacity and environmental pollution have emerged as significant concerns. Drawing on the methodologies employed in previous related research, this study utilizes the Data Envelopment Analysis with relaxation variables and the Global Malmquist–Luenberger index to measure the green total factor productivity of Chinese heavy-polluting enterprises. The main findings of this study are as follows: (1) It is clearly demonstrated that higher managerial effectiveness has a substantial positive impact on the improvement of a company’s green total factor productivity; (2) the digitalization progress within enterprises serves as a moderating factor in the relationship between managerial effectiveness and green total factor productivity; (3) the extent of financial constraints acts as a mediating variable, intervening in the relationship between managerial efficiency and green total factor productivity; and (4) a threshold effect is detected between managerial effectiveness and the debt repayment pressure faced by enterprises. When the threshold values of managerial effectiveness or the quick ratio are surpassed, the influence of managerial effectiveness on the green total factor productivity of enterprises will undergo a change. Full article
(This article belongs to the Special Issue Sustainable Corporate Governance and Firm Performance)
Show Figures

Figure 1

22 pages, 7942 KiB  
Article
Research on the Influence of Impeller Oblique Cutting Angles on the Performance of Double-Suction Pumps
by Zhongsheng Wang, Xinxin Li, Jun Liu, Ji Pei, Wenjie Wang, Kuilin Wang and Hongyu Wang
Energies 2025, 18(15), 3907; https://doi.org/10.3390/en18153907 - 22 Jul 2025
Viewed by 180
Abstract
Double-suction centrifugal pumps are extensively employed in industrial applications owing to their high efficiency, low vibration, superior cavitation resistance, and operational durability. This study analyzes how impeller oblique cutting angles (0°, 6°, 9°, 12°) affect a double-suction pump at a fixed 4% trimming [...] Read more.
Double-suction centrifugal pumps are extensively employed in industrial applications owing to their high efficiency, low vibration, superior cavitation resistance, and operational durability. This study analyzes how impeller oblique cutting angles (0°, 6°, 9°, 12°) affect a double-suction pump at a fixed 4% trimming ratio and constant average post-trim diameter. Numerical simulations and tests reveal that under low-flow (0.7Qd) and design-flow conditions, the flat-cut (0°) minimizes reflux ratio and maximizes efficiency by aligning blade outlet flow with the mainstream. Increasing oblique cutting angles disrupts this alignment, elevating reflux and reducing efficiency. Conversely, at high flow (1.3Qd), the 12° bevel optimizes outlet flow, achieving peak efficiency. Pressure pulsation at the volute tongue (P11) peaks at the blade-passing frequency, with amplitudes significantly higher for 9°/12° bevels than for 0°/6°. The flat-cut suppresses wake vortices and static–rotor interaction, but oblique cutting angle choice critically influences shaft-frequency pulsation. Entropy analysis identifies the volute as the primary loss source. Larger oblique cutting angles intensify wall effects, increasing total entropy; pump chamber losses rise most sharply due to worsened outlet velocity non-uniformity and turbulent dissipation. The flat-cut yields minimal entropy at Qd. These findings provide a basis for tailoring impeller trimming to specific operational requirements. Furthermore, the systematic analysis provides critical guidance for impeller trimming strategies in other double-suction pumps and pumps as turbines in micro hydropower plants. Full article
(This article belongs to the Special Issue Optimization Design and Simulation Analysis of Hydraulic Turbine)
Show Figures

Figure 1

15 pages, 6800 KiB  
Article
Urbanization Compromises the Sustainability of Coastal Ecosystems: Insights from the Reproductive Traits of the Bioindicator Clam Donax trunculus
by Mohamed Ben-Haddad, Sara Hajji, Mohamed Rida Abelouah and Aicha Ait Alla
Sustainability 2025, 17(14), 6622; https://doi.org/10.3390/su17146622 - 20 Jul 2025
Viewed by 347
Abstract
The sustainability of coastal ecosystems, associated fisheries, and environmental quality is increasingly threatened by anthropogenic activities and rapidly expanding urbanization. This study investigated the ecological impacts of increased coastal urbanization on intertidal sediment quality and the biological parameters of the wedge clam Donax [...] Read more.
The sustainability of coastal ecosystems, associated fisheries, and environmental quality is increasingly threatened by anthropogenic activities and rapidly expanding urbanization. This study investigated the ecological impacts of increased coastal urbanization on intertidal sediment quality and the biological parameters of the wedge clam Donax trunculus along the central Moroccan Atlantic coast. Between 2018 and 2022, a period characterized by intensified urban activity, total organic matter (TOM) in sediment significantly increased, whereas temperature and pH remained stable. Concurrently, D. trunculus populations experienced notable declines in abundance and biomass, along with marked disruptions in reproductive dynamics. The proportion of sexually mature individuals decreased, while spent individuals and male-biased sex ratios became more prominent. These findings suggest that urbanization-related pressures such as sediment enrichment, pollution, and physical disturbance are exerting measurable stress on this key bioindicator species. The results highlight the need for improved coastal management to mitigate the ecological consequences of rapid urban expansion on coastal sustainability. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

17 pages, 1774 KiB  
Article
A Randomized Double-Blind Trial of the Effect of Liupao Tea on Metabolic Parameters, Body Composition, and Gut Microbiota in Adults with Metabolic Syndrome
by Yuyang Wang, Qiang Hu, Qiliu Jiang, Jiamin Jiang, Biandi Li and Defu Ma
Nutrients 2025, 17(14), 2371; https://doi.org/10.3390/nu17142371 - 19 Jul 2025
Viewed by 639
Abstract
Background: Metabolic syndrome (MetS) represents a significant global health challenge. Liupao tea (LPT), a post-fermented dark tea, has shown potential metabolic benefits, but clinical evidence remains limited. Objectives: This study aimed to investigate the effects of LPT with varying aging durations [...] Read more.
Background: Metabolic syndrome (MetS) represents a significant global health challenge. Liupao tea (LPT), a post-fermented dark tea, has shown potential metabolic benefits, but clinical evidence remains limited. Objectives: This study aimed to investigate the effects of LPT with varying aging durations on clinical parameters, body composition and gut microbiota in individuals with MetS. Methods: In a randomized, double-blind trial, patients with MetS were randomly assigned to intervention groups, receiving 6 g/day of LPT aged for 1, 4, 7, or 10 years, respectively, over a 90-day intervention period. Blood pressure, lipid and glucose levels, body weight, body composition, and gut microbiota were assessed at baseline and post-intervention. Results: A total of 71 participants, with a mean age of 53.5 years, were included. At the final assessment, significant reductions in both systolic and diastolic blood pressure were observed in the 10-year-aged groups (p < 0.05). In terms of lipid profiles, the 1-year-aged group showed a significant decrease in total cholesterol (TC), while low-density lipoprotein cholesterol (LDL-C) levels significantly decreased in the 1-, 4-, 7-, and 10-year-aged groups (p < 0.05). All intervention groups showed significant reductions in body weight, body fat mass (BFM), along with an increase in muscle mass (MM) (p < 0.05). A decrease in the Firmicutes/Bacteroides (F/B) ratio was observed in the 10-year-aged group. No significant differences in clinical parameters or body composition regulation were observed between groups with varying aging durations (p > 0.05). Conclusions: LPT intervention effectively improves metabolic health and modulates gut microbiota in MetS patients, irrespective of aging duration. These findings support LPT as a functional beverage for the management of MetS. Full article
Show Figures

Figure 1

22 pages, 2041 KiB  
Article
Development of Sustainable Technology for Effective Reject Water Treatment
by Aleksandra Szaja, Maria Sawicka and Rafał Smagała
Sustainability 2025, 17(14), 6548; https://doi.org/10.3390/su17146548 - 17 Jul 2025
Viewed by 373
Abstract
This study examined a strategy for effective reject water treatment involving hydrodynamic cavitation (HC) combined with subsequent adsorption using natural zeolites. Two experiments were conducted: The first involved the selection of optimal pre-treatment conditions of HC for biodegradability and to reduce the ammonium [...] Read more.
This study examined a strategy for effective reject water treatment involving hydrodynamic cavitation (HC) combined with subsequent adsorption using natural zeolites. Two experiments were conducted: The first involved the selection of optimal pre-treatment conditions of HC for biodegradability and to reduce the ammonium nitrogen and phosphate content. Three inlet pressures of 3, 5, and 7 bar and two types of cavitation inducers, i.e., multiple- and single-hole orifice plates, were evaluated. Adsorption experiments were conducted in batch mode using natural zeolite, and three doses of zeolite (50, 100, and 200 g/L) and six contact times (4–24 h) were examined. In the HC experiments, the application of 3 bar pressure, a single-hole cavitation inducer, and a cavitation time of 30 min resulted in the removal of ammonia nitrogen and phosphates amounting to 26.5 and 23%, respectively. In this case, 3.6-fold enhancement in the biodegradability index was also found. In the second experiment, the use of zeolite led to a decrease in the remaining content of both ammonia nitrogen and phosphates, improving the chemical oxygen demand-to-total nitrogen ratio. The highest removal efficacy was found for the highest zeolite dose of 200 g/L and the longest cavitation time of 24 h. Under these conditions, the ammonia nitrogen and phosphate removal rates were 70 and 94%, respectively. Full article
(This article belongs to the Special Issue Sustainable Solutions for Wastewater Treatment and Recycling)
Show Figures

Figure 1

11 pages, 421 KiB  
Article
Serum p-Cresyl Sulfate Is Independently Associated with Aortic Stiffness in Non-Dialysis Chronic Kidney Disease Patients
by Yahn-Bor Chern, Ken Lee Chia, Chin-Hung Liu, Yu-Li Lin, Jen-Pi Tsai and Bang-Gee Hsu
Life 2025, 15(7), 1116; https://doi.org/10.3390/life15071116 - 16 Jul 2025
Viewed by 244
Abstract
p-Cresyl sulfate (PCS), a gut-derived uremic toxin with proinflammatory and cytotoxic effects, has been implicated in cardiovascular injuries among patients with chronic kidney disease (CKD). Aortic stiffness (AS), assessed by carotid–femoral pulse wave velocity (cfPWV), is a recognized predictor of cardiovascular risk. [...] Read more.
p-Cresyl sulfate (PCS), a gut-derived uremic toxin with proinflammatory and cytotoxic effects, has been implicated in cardiovascular injuries among patients with chronic kidney disease (CKD). Aortic stiffness (AS), assessed by carotid–femoral pulse wave velocity (cfPWV), is a recognized predictor of cardiovascular risk. This study investigated the association between serum PCS levels and AS in patients with nondialysis-dependent CKD. In total, 165 patients with nondialysis-dependent CKD were enrolled. Clinical data and fasting blood samples were collected. Arterial stiffness (AS) was assessed bilaterally by measuring carotid–femoral pulse wave velocity (cfPWV) on both the left and right sides. A value above 10 m/s was considered indicative of increased stiffness. Serum PCS levels were quantified using high-performance liquid chromatography–mass spectrometry. Fifty patients (30.3%) had AS. The AS group was significantly older and had higher diabetes prevalence, systolic blood pressure, fasting glucose, urinary protein-creatinine ratio, and PCS levels than the control group. In the multivariate analysis, both PCS (odds ratio [OR]: 1.097; 95% confidence interval [CI]: 1.024–1.175; p = 0.008) and age (OR: 1.057; 95% CI: 1.025–1.090; p < 0.001) were independently associated with AS. In conclusion, elevated serum PCS and older age were independently associated with AS. Thus, PCS is a potential early marker of vascular damage in CKD. Full article
(This article belongs to the Special Issue Advances in Vascular Health and Metabolism)
Show Figures

Figure 1

27 pages, 2101 KiB  
Article
Optimizing Essential Oil Mixtures: Synergistic Effects on Cattle Rumen Fermentation and Methane Emission
by Memoona Nasir, María Rodríguez-Prado, Marica Simoni, Susana M. Martín-Orúe, José Francisco Pérez and Sergio Calsamiglia
Animals 2025, 15(14), 2105; https://doi.org/10.3390/ani15142105 - 16 Jul 2025
Viewed by 460
Abstract
Ruminant livestock contribute significantly to methane emissions, necessitating sustainable mitigation strategies. Essential oils (EOs) show promise for modulating ruminal fermentation, but their synergistic effects remain underexplored. Two 24 h in vitro experiments evaluated the synergistic effects of EO blends on rumen microbial fermentation. [...] Read more.
Ruminant livestock contribute significantly to methane emissions, necessitating sustainable mitigation strategies. Essential oils (EOs) show promise for modulating ruminal fermentation, but their synergistic effects remain underexplored. Two 24 h in vitro experiments evaluated the synergistic effects of EO blends on rumen microbial fermentation. Exp. 1 screened five oils using two triad combinations. Triad 1 tested 10 combinations of thyme (THY), peppermint (PPM), and cinnamon leaf (CIN) oils. Triad 2 tested 10 combinations of anise (ANI), clove leaf (CLO), and peppermint (PPM) oils. Each blend was tested at 400 mg/L, using batch culture methods measuring: pH, ammonia-N (NH3-N), and volatile fatty acids (VFAs). The two most effective blends, designated as T1 and T2, were selected for Exp. 2 to assess total gas and methane (CH4) production using pressure transducer methods. All treatments were incubated in a rumen fluid–buffer mix with a 50:50 forage-to-concentrate substrate (pH 6.6). In Exp. 1, data were analyzed according to the Simplex Centroid Design using R-Studio. In Exp. 2, an analysis was conducted using the MIXED procedure in SAS. Mean comparisons were assessed through Tukey’s test. The results from Exp. 1 identified CIN+PPM (80:20) and ANI+CLO (80:20) as optimal combinations, both increasing total VFAs while reducing acetate/propionate ratios and NH3-N concentrations. In Exp. 2, both combinations significantly reduced total gas and CH4 productions compared to the control, with CIN+PPM achieving the greatest methane reduction (similar to monensin, the positive control). Specific essential oil combinations demonstrated synergistic effects in modulating rumen fermentation and reducing methane emissions, offering potential for sustainable livestock production. Further in vivo validation is required to optimize dosing and assess long-term effects on animal performance. Full article
(This article belongs to the Special Issue Nutrients and Feed Additives in Ruminants)
Show Figures

Figure 1

19 pages, 4519 KiB  
Article
Kinetics of the Process DAF-Culture Nannochloropsis oculata Remove Nutrients, Improve Water Quality, and Evaluate Rheological Parameters, Providing an Ecological Method for Treating Complex Wastewater
by Solmaría Mandi Pérez-Guzmán, Alejandro Alvarado-Lassman, Eduardo Hernández-Aguilar, Roger Emmanuel Sales-Pérez and Juan Manuel Méndez-Contreras
Water 2025, 17(14), 2113; https://doi.org/10.3390/w17142113 - 16 Jul 2025
Viewed by 382
Abstract
Population growth has led to an increased volume of wastewater from industrial, domestic, and municipal sources, contaminating aquatic bodies in the state of Veracruz. This study aimed to assess the efficacy of a water treatment system incorporating a DAF stage, followed by the [...] Read more.
Population growth has led to an increased volume of wastewater from industrial, domestic, and municipal sources, contaminating aquatic bodies in the state of Veracruz. This study aimed to assess the efficacy of a water treatment system incorporating a DAF stage, followed by the cultivation of a microalgal consortium to eliminate pollutants from the blended effluent. The cultivation of Nannochloropsis oculata in wastewater entailed the assessment of a single variable (operating pressure) within the DAF system, in conjunction with two supplementary variables (residence time and F:M ratio), resulting in removal efficiencies of 70% for CODt, 77.24% for CODs, 78.34% for nitrogen, and 77% for total organic carbon. The water sample was found to contain elevated levels of organic matter and pollutants, beyond the permitted limits set forth in NOM-001-SEMARNAT-2021. The obtained removal percentages indicate that the suggested physicochemical–biological process (DAF-microalgae) is a suitable method for treating mixed wastewater. This approach reduces atmospheric pollution by sequestering greenhouse gases such as carbon dioxide through the photosynthetic activity of N. oculata cells, so facilitating the production of oxygen and biomass while limiting their accumulation in the atmosphere. Full article
(This article belongs to the Topic Advances in Organic Solid Waste and Wastewater Management)
Show Figures

Graphical abstract

14 pages, 9327 KiB  
Article
DFT Prediction of Structural and Physical Properties of Cr3AlC2 Under Pressure
by Jianhui Yang, Shenghai Fan, Haijun Hou and Qiang Fan
Nanomaterials 2025, 15(14), 1082; https://doi.org/10.3390/nano15141082 - 11 Jul 2025
Viewed by 250
Abstract
This work explores the physical properties of the MAX-phase material Cr3AlC2 through the application of density functional theory (DFT). The refined lattice parameters were determined through the minimization of the total energy. In order to explore the electronic properties and [...] Read more.
This work explores the physical properties of the MAX-phase material Cr3AlC2 through the application of density functional theory (DFT). The refined lattice parameters were determined through the minimization of the total energy. In order to explore the electronic properties and bonding features, we carried out computations on the band structure and charge density distribution. The calculated elastic constants (Cij) validated the mechanical stability of Cr3AlC2. To assess the material’s ductility or brittleness, we calculated Pugh’s ratio, Poisson’s ratio, and Cauchy pressure. The hardness was determined. This study examined the anisotropic behavior of Cr3AlC2 using directional analyses of its elastic properties and by computing relevant anisotropy indicators. We examined several key properties of Cr3AlC2, including the Grüneisen parameter, acoustic characteristics, Debye temperature, thermal conductivity, melting point, heat capacity, Helmholtz free energy, entropy, and internal energy. Phonon dispersion spectra were analyzed to assess the dynamic stability of Cr3AlC2. Full article
Show Figures

Figure 1

Back to TopTop