Study on Impact of Managerial Effectiveness and Digitalization on Green Total Factor Productivity of Enterprises: Sample of Listed Heavy-Polluting Enterprises in China
Abstract
1. Introduction
2. Literature Review
2.1. Measurement and Determinants of Green Total Factor Productivity (GTFP)
2.2. Influencing Factors of Green Total Factor Productivity
2.3. Impact of Managerial Characteristics on Development of Enterprises
2.4. Innovativeness of This Study
2.5. Theoretical Analysis
2.5.1. Impact of Managerial Effectiveness on Green Total Factor Productivity of Enterprises
2.5.2. Regulatory Role of Enterprise Digitalization
2.5.3. Threshold Role of Debt Repayment Pressure
3. Design of Research
3.1. Main Variables
3.1.1. Explained Variables
3.1.2. Explain Variables
3.1.3. Control Variables
3.2. Model Design
4. Empirical Analyses
4.1. Data Selection and Processing
4.2. Descriptive Statistics
4.3. Correlation Analysis
4.4. Impact of Managerial Effectiveness on Green Total Factor Productivity
4.5. Robustness Check
4.6. Further Analyses
4.6.1. Intermediary Effect of Financial Constraints
4.6.2. Regulatory Effect of Enterprise Digitization
4.6.3. Threshold Regression
5. Conclusions and Suggestions
5.1. Conclusions
5.2. Countermeasures and Suggestions
5.3. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, D.; Wang, C.; Sun, T.; Wen, D. The Impact of Service Experience on Sustainable Customer Engagement: The Mediation of Green Perceived Value and Customer Satisfaction. Corp. Soc. Responsib. Environ. Manag. 2024, 31, 2175–2194. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y. Does environmental investment improve corporate productivity? Evidence from Chinese listed firms. Struct. Change Econ. Dyn. 2024, 70, 398–409. [Google Scholar] [CrossRef]
- Niu, H.Y.; Zhao, X.F.; Luo, Z.L.; Gong, Y.X.; Zhang, X.H. Green credit and enterprise green operation: Based on the perspective of enterprise green transformation. Front. Psychol. 2022, 13, 1041798. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Chen, Y.; Tian, G.; Huang, W.; Hu, C. The role of digital transformation practices in the operations improvement in manufacturing firms: A practice–based view. Int. J. Prod. Econ. 2023, 262, 108929. [Google Scholar] [CrossRef]
- Da, Y.; Luo, D. Digital economy, structural dividends, and green total factor productivity. J. Southwest Minzu Univ. 2023, 44, 107–118. [Google Scholar] [CrossRef]
- Chung, Y.; Fare, R. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Chen, G. Data Envelopment Analysis and MaxDEA; Intellectual Property Publishing House: Beijing, China, 2014. [Google Scholar]
- Wang, H.; Zhang, Y.; Liu, Z.; Liu, R.; Li, K. The impact and mechanisms of the Shanghai pilot free-trade zone on the green total factor productivity of the Yangtze River Delta Urban Agglomeration. Environ. Sci. Pollut. Res. 2022, 29, 40997–41011. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xia, Q.; Li, Z.Y. Green innovation and enterprise green total factor productivity at a micro level: A perspective of technical distance. J. Clean. Prod. 2022, 344, 131070. [Google Scholar] [CrossRef]
- Tong, L.; Chiappetta Jabbour, C.J.; Belgacem, S.B.; Najam, H.; Abbas, J. Role of environmental regulations, green finance, and investment in green technologies in green total factor productivity: Empirical evidence from Asian region. J. Clean. Prod. 2022, 380 Pt 2, 134930. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Wang, W.; Wu, H. How does digital transformation drive green total factor productivity? Evidence from Chinese listed enterprises. J. Clean. Prod. 2023, 406, 136954. [Google Scholar] [CrossRef]
- Wen, H.-X.; Cui, T.; Wu, X.-Q.; Nie, P.-Y. Environmental insurance and green productivity: Afirm-level evidence from China. J. Clean. Prod. 2024, 435, P140482. [Google Scholar] [CrossRef]
- Di, K.; Xu, R.; Liu, Z.; Liu, R. How do enterprises’ green collaborative innovation network locations affect their green total factor productivity? Empirical analysis based on social network analysis. J. Clean. Prod. 2024, 438, 140766. [Google Scholar] [CrossRef]
- Halbert, L.; Henneberry, J.; Mouzakis, F. Finance, business property and urban and regional development. Reg. Stud. 2014, 48, 421–424. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, T.; Chen, G. The path of financial development affecting green total factor productivity—Efficiency channel and technology channel. Financ. Forum 2022, 27, 16–24+54. [Google Scholar] [CrossRef]
- Xiang, D.; Zhang, Y.; Worthington, A.C. Determinants of the use of fintech finance among Chinese small and medium–sized enterprises. In Proceedings of the 2018 IEEE International Symposium on Innovation and Entrepreneurship (TEMS–ISIE), Beijing, China, 30 March–1 April 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Tian, Z.; Si, H.; Ren, Y.; Mao, C. Under the “dual carbon” target, the transformation and upgrading of industries and the improvement of green total factor productivity in the three major river basins. Contemp. Econ. Res. 2023, 4, 100–114. [Google Scholar]
- Li, C.; Xia, W.; Wang, L. The transfer mechanism of pollution industry in China under multi-factor combination model—Based on the perspective of industry, location, and environment. Environ. Sci. Pollut. Res. 2021, 28, 60167–60181. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, Z.; Liu, Y.; Bian, P. Research on the impact of new energy demonstration city construction on green total factor productivity. Macroecon. Res. 2022, 134–146. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, L. Research on the impact of government environmental information disclosure on green total factor productivity: Empirical experience from Chinese provinces. Int. J. Environ. Res. Public Health 2022, 19, 729. [Google Scholar] [CrossRef] [PubMed]
- Mao, K.; Failler, P. Local government debt and green total factor productivity—Empirical evidence from Chinese cities. Int. J. Environ. Res. Public Health 2022, 19, 12425. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, B.; Wang, J.; Kwek, K. The impact of climate change on China’s agricultural green total factor productivity. Technol. Forecast. Soc. Change 2022, 185, 122054. [Google Scholar] [CrossRef]
- Xie, D.; Hu, S. Green finance, industrial structure and urban industrial green total factor productivity. Stud. Int. Financ. 2023, 46–56. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, B. Development of digital economy and improvement of green total factor productivity. J. Audit Econ. 2023, 107–115. [Google Scholar]
- Heubeck, T.; Ahrens, A. Sustainable by ideology? The influence of CEO political ideology and Ivy League education on ESG (environmental, social, and governance) performance. Bus. Strategy Environ. 2025, 34, 4785–4810. [Google Scholar] [CrossRef]
- Hu, G.; Xiao, Z. Stock mispricing, managerial shareholdings and firms’ R&D investment—Empirical evidence from China’s high-tech listed firms. Collect. Essays Financ. Econ. 2018, 34, 58–68. [Google Scholar] [CrossRef]
- Wang, S.; Wang, B. Independent director system, corporate governance, and governance culture of state-owned enterprises. Soc. Sci. Front 2022, 101–112. [Google Scholar]
- Hu, H.; Bai, Z.; Wang, A. A study on the influence of management overconfidence on company’s illegal behavior. Econ. Surv. 2022, 39, 89–98. [Google Scholar] [CrossRef]
- Wang, Z.; Tan, H. Research on the impact of board faultlines on the high-quality development of enterprises. China Soft Sci. 2023, 134–146. [Google Scholar]
- Pu, G.; Xie, Y.; Wang, K. Board faultlines and risk-taking. Financ. Res. Lett. 2023, 51, 103404. [Google Scholar] [CrossRef]
- Fu, J.; Yang, J.; Xia, Y.; Mo, Y. Managerial ability and enterprise strategic risk taking: “March forward” or “shrink back”? Collect. Essays Financ. Econ. 2022, 38, 69–79. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, X. Heterogeneous pay equity preference of different female managers—Based on the comparison of directors and supervisors. China Soft Sci. 2022, S1, 193–203. [Google Scholar]
- Fan, Q.; Qiu, J. Does the social network of independent directors affect company performance forecasts? Based on the perspective of opportunistic governance by management. Financ. Account. Mon. 2023, 44, 84–93. [Google Scholar] [CrossRef]
- Demerjian, P.; Lev, B.; McVay, S. Quantifying managerial ability: A new measure and validity tests. Manag. Sci. 2012, 58, 1229–1248. [Google Scholar] [CrossRef]
- Zhao, Z.; Yan, J. The impact of investor sentiment on firms’ green total factor productivity—Facilitator or inhibitor? Environ. Sci. Pollut. Res. 2023, 30, 70303–70314. [Google Scholar] [CrossRef] [PubMed]
- Hua, J.; Jiang, Z.; Lang, Y. Managerial ability, internal control and markups of enterprises. Econ. Probl. 2022, 123–129. [Google Scholar] [CrossRef]
- Barzegar, R.; Martin, B.; Fleming, G.; Jatana, V.; Popat, H. Implementation of the ‘picnic’ handover huddle: A quality improvement project to improve the transition of infants between paediatric and neonatal intensive care units. J. Paediatr. Child Health 2022, 58, 2016–2022. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yoon, S.S. Does technology innovation in finance alleviate financing constraints and reduce debt-financing costs? Evidence from China. Asia Pac. Bus. Rev. 2022, 28, 467–492. [Google Scholar] [CrossRef]
- Li, J. Analysis on the relationship between financing constraints and research and development from the perspective of the location of top management network. Discret. Dyn. Nat. Soc. 2022, 2022, 8690801. [Google Scholar] [CrossRef]
- Scherer, J.; Biemans, W.G. Unite and conquer–end-to-end value creation through intra-organizational purchasing-sales integration. Ind. Mark. Manag. 2025, 126, 236–250. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, S.; Lyulyov, O.; Pimonenko, T. China’s digital economy development: Incentives and challenges. Technol. Econ. Dev. Econ. 2023, 29, 518–538. [Google Scholar] [CrossRef]
- Zarte, M.; Pechmann, A.; Nunes, I.L. Knowledge framework for production planning and controlling considering sustainability aspects in smart factories. J. Clean. Prod. 2022, 363, 132283. [Google Scholar] [CrossRef]
- Beaulieu, M.; Bentahar, O. Digitalization of the healthcare supply chain: A roadmap to generate benefits and effectively support healthcare delivery. Technol. Forecast. Soc. Change 2021, 167, 120717. [Google Scholar] [CrossRef]
- Guan, K.; Zhu, H. Capital market liberalization and corporate leverage manipulation: Empirical evidence from the Shanghai-Hong Kong and Shenzhen-Hong Kong stock connect. World Econ. Stud. 2023, 4, 73–86+135. [Google Scholar] [CrossRef]
- Kini, O.; Shenoy, J.; Subramaniam, V. Impact of financial leverage on the incidence and severity of product failures: Evidence from product recalls. Rev. Financ. Stud. 2017, 30, 1790–1829. [Google Scholar] [CrossRef]
- Shen, G.; Zhang, Y.; Wang, R. Structural tax reduction and corporate deleveraging. J. Financ. Res. 2018, 105–122. [Google Scholar]
- de Melo, G.A.; Peixoto, M.G.M.; Barbosa, S.B.; Alves, A.J.S.; Souza, A.C.L.; Mendonça, M.C.A.; de Castro Júnior, L.G.; Santos, P.G.D.; Serrano, A.L.M. Generating insights to improve the performance of communities supported agriculture: An analysis focused on female participation, governance structure and volume of food distributed. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Hadlock, C.J.; Pierce, J.R. New evidence on measuring financial constraints: Moving beyond the KZ index. Rev. Financ. Stud. 2010, 23, 1909–1940. [Google Scholar] [CrossRef]
- Young, A. The tyranny of numbers: Confronting the statistical realities of the East Asian growth experience. Q. J. Econ. 1995, 110, 641–680. [Google Scholar] [CrossRef]
- Chambers, R.G.; Chung, Y.; Färe, R. Benefit and distance functions. J. Econ. Theory 1996, 70, 407–419. [Google Scholar] [CrossRef]
- Fukuyama, H.; Weber, W.L. A directional slacks-based measure of technical inefficiency. Socio-Econ. Plan. Sci. 2009, 43, 274–287. [Google Scholar] [CrossRef]
- Wang, P.; Huang, S.; Yang, Z.; Guo, F. The impact of environmental protection tax on corporate green total factor productivity. Tax. Res. 2022, 11, 66–73. [Google Scholar] [CrossRef]
- Certo, S.T.; Busenbark, J.R.; Woo, H.; Semadeni, M. Sample selection bias and Heckman models in strategic management research. Strateg. Manag. J. 2016, 37, 2639–2657. [Google Scholar] [CrossRef]
- Xiao, J.; Peng, J.; Cheng, S. Factor market distortion, capital favoritism, and total factor productivity of energy enterprises. Manag. Rev. 2023, 35, 27–41. [Google Scholar] [CrossRef]
- Wen, Z.; Ye, B. Mediation effect analysis: Methods and model development. Adv. Psychol. Sci. 2014, 22, 731–745. [Google Scholar] [CrossRef]
- Song, J.; Chen, L.; Ye, T. Managerial ability and corporate digital transformation: Enabling innovation under performance shortfalls. Mod. Financ. Econ. 2023, 43, 23–39. [Google Scholar] [CrossRef]
- Sribney, W.; Wiggins, V.; Drucker, D. Negative and missing R-squared for 2SLS/IV. Stata J. 2005, 5, 561–571. [Google Scholar]
- Li, F. Endogeneity in CEO power: A survey and experiment. Invest. Anal. J. 2016, 45, 149–162. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, P. The impact of managerial competence on corporate carbon performance: An empirical study based on Chinese heavy polluters. Front. Energy Res. 2023, 11, 1130339. [Google Scholar] [CrossRef]
Symbol | Item | Measurement and Calculation | |
---|---|---|---|
Explained variables | GTFP | Green total factor productivity | Combined with GML index, calculated using SBM model |
Explain variables | ME | Managerial effectiveness | Measurement using two-stage DEA–Tobit method |
Intermediary variables | Sa | Degree of financial constraints measured by stock age index | Constructing an indicator to measure the degree of financial constraints faced by enterprises based on the research of Hadlock & Pierce (2010) [49] |
Adjust variables | DGLR | The degree of digitalization of enterprises | The proportion of digital process expenses used by enterprises to their intangible asset expenses in the current year (%) |
Threshold variable | Atr | Acid–test ratio or quick ratio | Quick assets/current liabilities |
Control variables | Size | Enterprise scale | The natural logarithm of the total assets of the enterprise |
Lev | Asset–liability ratio | Assets/liabilities | |
TobinQ | Tobin Q Value | Market price of enterprise market price/reset cost | |
Age | Age of the enterprise | Years since the establishment of the enterprise (unit: year) | |
Top1 | The shareholding ratio of the largest shareholder | Shareholding ratio of the largest shareholder (%) | |
Board | Size of the board of directors | Ln (number of board members + 1) | |
Stock | Shareholding ratio of institutional investors | Shareholding ratio of institutional investors (%) |
Variable | SD | Mean | Min | p50 | Max |
---|---|---|---|---|---|
GTFP | 0.450 | 1.288 | 0.531 | 1.169 | 3.835 |
ME | 0.229 | −0.028 | −0.808 | −0.002 | 0.600 |
Sa | 0.212 | −3.875 | −4.371 | −3.877 | −3.140 |
DGLR | 0.084 | 0.032 | 0.000 | 0.006 | 0.614 |
Atr | 1.614 | 1.534 | 0.162 | 1.025 | 10.515 |
Size | 1.276 | 22.557 | 19.684 | 22.386 | 26.326 |
Lev | 0.205 | 0.421 | 0.057 | 0.412 | 0.965 |
TobinQ | 1.702 | 2.363 | 0.855 | 1.811 | 10.561 |
Age | 6.216 | 14.676 | 4.586 | 15.144 | 26.192 |
Top1 | 0.147 | 0.339 | 0.000 | 0.318 | 0.740 |
Board | 0.200 | 2.144 | 1.609 | 2.197 | 2.708 |
Stock | 0.231 | 0.458 | 0.008 | 0.481 | 0.922 |
GTFP | ME | Size | Lev | TobinQ | Age | Top1 | Board | Stock | |
---|---|---|---|---|---|---|---|---|---|
GTFP | 1 | ||||||||
ME | 0.231 *** | 1 | |||||||
Size | −0.022 | 0.141 *** | 1 | ||||||
Lev | −0.002 | 0.015 | 0.369 *** | 1 | |||||
TobinQ | 0.226 *** | −0.097 *** | −0.460 *** | −0.254 *** | 1 | ||||
Age | −0.035 * | −0.080 *** | 0.202 *** | 0.207 *** | −0.094 *** | 1 | |||
Top1 | 0.035 * | 0.060 *** | 0.313 *** | 0.017 | −0.098 *** | 0.014 | 1 | ||
Board | −0.001 | 0.036 * | 0.310 *** | 0.147 *** | −0.141 *** | 0.166 *** | 0.042 ** | 1 | |
Stock | 0.075 *** | 0.024 | 0.498 *** | 0.162 *** | −0.118 *** | 0.377 *** | 0.486 *** | 0.237 *** | 1 |
Variable | VIF | 1/VIF |
---|---|---|
Size | 1.96 | 0.510 |
Stock | 1.94 | 0.515 |
Top1 | 1.42 | 0.706 |
TobinQ | 1.31 | 0.762 |
Age | 1.26 | 0.795 |
Lev | 1.21 | 0.823 |
Board | 1.14 | 0.876 |
ME | 1.04 | 0.963 |
Mean VIF | 1.41 |
(1) GTFP | (2) GTFP | |
---|---|---|
ME | 0.647 *** | 0.624 *** |
[0.070] | [0.071] | |
Size | 0.127 ** | |
[0.059] | ||
Lev | −0.121 | |
[0.159] | ||
TobinQ | 0.043 *** | |
[0.012] | ||
Age | 0.058 | |
[0.064] | ||
Top1 | 0.908 *** | |
[0.242] | ||
Board | 0.045 | |
[0.091] | ||
Stock | 0.154 | |
[0.164] | ||
Firm | yes | yes |
Year | yes | yes |
_cons | 1.306 *** | −2.951 * |
[0.002] | [1.558] | |
N | 2784 | 2784 |
Adj. R-sq | 0.343 | 0.362 |
(1) GTFP | (2) GTFP | (3) GTFP | ||
---|---|---|---|---|
MEF | 0.134 *** | |||
[0.033] | ||||
ME | 0.564 * | 1.047 * | ||
[0.307] | [0.556] | |||
Size | 0.088 | 0.209 *** | 0.105 ** | |
[0.071] | [0.052] | [0.043] | ||
Lev | −0.327 | −0.374 *** | −0.026 | |
[0.254] | [0.138] | [0.117] | ||
TobinQ | 0.047 *** | 0.077 *** | 0.065 *** | |
[0.017] | [0.014] | [0.010] | ||
Age | 0.115 ** | −0.107 *** | −0.178 *** | |
[0.047] | [0.019] | [0.011] | ||
Top1 | 0.873 *** | 0.631 ** | 0.885 *** | |
[0.327] | [0.260] | [0.206] | ||
Board | 0.185 | 0.177 | 0.045 | |
[0.167] | [0.122] | [0.106] | ||
Stock | 0.338 | 0.22 | 0.134 | |
[0.243] | [0.241] | [0.194] | ||
Under identification test | LM test | 27.104 | 10.054 | |
P | 0.000 | 0.002 | ||
Weak identification test | F test in first-stage regressions | 27.494 | 16.380 | |
P | 0.000 | 0.000 | ||
Firm | yes | yes | yes | |
Year | yes | yes | yes | |
_cons | −3.645 ** | |||
[1.699] | ||||
N | 1790 | 2048 | 2784 | |
Adj. R-sq | 0.214 | −0.236 | 0.142 |
(1) GTFP | (2) Sa | (3) roa | (4) GTFP | |
---|---|---|---|---|
Sa | −0.207 *** | −0.938 ** | ||
[0.079] | [0.371] | |||
roa | 0.822 *** | |||
[0.174] | ||||
ME | 0.624 *** | −0.019 *** | 0.047 *** | 0.564 *** |
[0.071] | [0.003] | [0.007] | [0.040] | |
Size | 0.127 ** | 0.002 | 0.079 *** | 0.065 |
[0.059] | [0.010] | [0.010] | [0.042] | |
Lev | −0.121 | −0.006 | −0.294 *** | 0.115 |
[0.159] | [0.015] | [0.027] | [0.118] | |
TobinQ | 0.043 *** | 0.008 *** | 0.008 *** | 0.045 *** |
[0.012] | [0.001] | [0.002] | [0.011] | |
Age | 0.058 | −0.002 | 0.029 *** | 0.032 |
[0.064] | [0.009] | [0.010] | [0.076] | |
Top1 | 0.908 *** | 0.048 | 0.070 ** | 0.904 *** |
[0.242] | [0.031] | [0.032] | [0.195] | |
Board | 0.045 | 0.005 | 0.022 | 0.033 |
[0.091] | [0.007] | [0.017] | [0.097] | |
Stock | 0.154 | 0.026 | −0.041 | 0.216 |
[0.164] | [0.018] | [0.028] | [0.165] | |
Firm | yes | yes | yes | yes |
Year | yes | yes | yes | yes |
_cons | −2.951 * | −3.942 *** | −2.914 *** | −4.924 ** |
[1.558] | [0.267] | [0.447] | [2.096] | |
N | 2784 | 2784 | 2784 | 2784 |
Adj. R-sq | 0.362 | 0.69 | 0.601 | 0.371 |
Coefficient | t-Value | p-Value | [95% Conf. Interval] | Coefficient | ||
---|---|---|---|---|---|---|
(1) | ME → GTFP | 0.5597 | 7.5642 | 0.0002 | 0.4225 | 0.7111 |
(2) | ME → SA → GTFP | 0.0177 | 2.0019 | 0.0454 | 0.0004 | 0.0350 |
(3) | ME → roa → GTFP | 0.0421 | 3.1698 | 0.0015 | 0.0178 | 0.0710 |
(4) | ME → SA → roa → GTFP | 0.0033 | 2.1003 | 0.0357 | 0.0007 | 0.0070 |
(5) | total_effect | 0.6228 | 8.7713 | 0.0002 | 0.4865 | 0.7699 |
(1) GTFP | (2) GTFP | |
---|---|---|
ME × DGLR | 1.347 ** | |
[0.636] | ||
DGLR | 0.445 * | |
[0.259] | ||
ME | 0.624 *** | 0.609 *** |
[0.071] | [0.070] | |
Size | 0.127 ** | 0.125 * |
[0.059] | [0.068] | |
Lev | −0.121 | −0.099 |
[0.159] | [0.177] | |
TobinQ | 0.043 *** | 0.031 *** |
[0.012] | [0.011] | |
Age | 0.058 | 0.062 |
[0.064] | [0.068] | |
Top1 | 0.908 *** | 0.951 *** |
[0.242] | [0.255] | |
Board | 0.045 | 0.045 |
[0.091] | [0.091] | |
Stock | 0.154 | 0.181 |
[0.164] | [0.175] | |
Firm | yes | yes |
Year | yes | yes |
_cons | −2.951 * | −2.988 * |
[1.558] | [1.723] | |
N | 2784 | 2784 |
Adj. R-sq | 0.362 | 0.369 |
Threshold | RSS | MSE | Fstat | Prob | Crit10 | Crit5 | Crit1 | ||
---|---|---|---|---|---|---|---|---|---|
ME | (1) | −0.528 | 249.712 | 0.123 | 110.380 | 0.000 | 16.705 | 20.652 | 29.677 |
(2) | −0.251 | 247.980 | 0.123 | 14.130 | 0.280 | 87.497 | 107.587 | 126.564 | |
Atr | (3) | 4.488 | 182.048 | 0.127 | 36.540 | 0.003 | 17.980 | 21.250 | 29.567 |
(4) | 2.008 | 181.006 | 0.126 | 8.290 | 0.437 | 15.770 | 19.359 | 27.409 |
(1) GTFP | (2) GTFP | (3) GTFP | (4) GTFP | |
---|---|---|---|---|
ME < −0.528 | ME > −0.528 | Atr < 4.488 | Atr > 4.488 | |
ME | 0.137 ** | 1.049 *** | 0.584 *** | 1.865 *** |
[0.064] | [0.051] | [0.043] | [0.202] | |
Size | 0.071 * | 0.073 | ||
[0.040] | [0.054] | |||
Lev | −0.07 | 0.059 | ||
[0.107] | [0.155] | |||
TobinQ | 0.051 *** | 0.062 *** | ||
[0.010] | [0.012] | |||
Age | −0.200 *** | −0.173 *** | ||
[0.008] | [0.009] | |||
Top1 | 0.836 *** | 1.093 *** | ||
[0.194] | [0.241] | |||
Board | 0.072 | 0.026 | ||
[0.097] | [0.114] | |||
Stock | 0.136 | 0.087 | ||
[0.165] | [0.204] | |||
_cons | 2.029 ** | 1.676 | ||
[0.857] | [1.121] | |||
N | 2784 | 2784 | ||
Adj. R-sq | 0.222 | 0.166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Zhao, Z. Study on Impact of Managerial Effectiveness and Digitalization on Green Total Factor Productivity of Enterprises: Sample of Listed Heavy-Polluting Enterprises in China. Sustainability 2025, 17, 6700. https://doi.org/10.3390/su17156700
Yan J, Zhao Z. Study on Impact of Managerial Effectiveness and Digitalization on Green Total Factor Productivity of Enterprises: Sample of Listed Heavy-Polluting Enterprises in China. Sustainability. 2025; 17(15):6700. https://doi.org/10.3390/su17156700
Chicago/Turabian StyleYan, Jun, and Zexia Zhao. 2025. "Study on Impact of Managerial Effectiveness and Digitalization on Green Total Factor Productivity of Enterprises: Sample of Listed Heavy-Polluting Enterprises in China" Sustainability 17, no. 15: 6700. https://doi.org/10.3390/su17156700
APA StyleYan, J., & Zhao, Z. (2025). Study on Impact of Managerial Effectiveness and Digitalization on Green Total Factor Productivity of Enterprises: Sample of Listed Heavy-Polluting Enterprises in China. Sustainability, 17(15), 6700. https://doi.org/10.3390/su17156700