Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (376)

Search Parameters:
Keywords = toroids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5793 KB  
Article
Computational Study of Hybrid Propeller Configurations
by Mingtai Chen, Tianming Liu, Jack Edwards and Tiegang Fang
Aerospace 2026, 13(1), 94; https://doi.org/10.3390/aerospace13010094 - 15 Jan 2026
Viewed by 74
Abstract
This study presents the first computational investigation of hybrid propeller configurations that combine toroidal and conventional blade geometries. Using Delayed Detached Eddy Simulation (DDES) with the Shear Stress Transport (SST) kω model for flow analysis and the Ffowcs Williams and Hawkings [...] Read more.
This study presents the first computational investigation of hybrid propeller configurations that combine toroidal and conventional blade geometries. Using Delayed Detached Eddy Simulation (DDES) with the Shear Stress Transport (SST) kω model for flow analysis and the Ffowcs Williams and Hawkings (FW–H) formulation for aeroacoustic prediction, five hybrid propeller designs were evaluated: a baseline model and four variants with modified loop-element spacing. The results show that the V-Gap-S configuration achieves the highest figure of merit (FM), producing over 10% improvement in propeller performance relative to the baseline, while also exhibiting the lowest turbulence kinetic energy (TKE) levels across multiple radial planes. Aeroacoustic analysis reveals quadrupole-like directivity for primary tonal noise, primarily driven by blade tip–vortex interactions, with primary tonal noise strongly correlated with thrust. Broadband noise and overall sound pressure level (OASPL) exhibited dipole-like patterns, influenced by propeller torque and FM, respectively. Comparisons of surface pressure, vorticity, and time derivatives of acoustic pressure further elucidate the mechanisms linking blade spacing to aerodynamic loading and noise generation. The results demonstrate that aerodynamic performance and aeroacoustics are strongly coupled and that meaningful noise reduction claims require performance conditions to be matched. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 10340 KB  
Article
Numerical Study on Thermal–Flow Characteristics of Liquid Metal Blankets in a Magnetic Field
by Shuaibing Chang, Feng Li and Jiewen Deng
Magnetochemistry 2026, 12(1), 10; https://doi.org/10.3390/magnetochemistry12010010 - 13 Jan 2026
Viewed by 120
Abstract
The tokamak is a toroidal device that utilizes magnetic confinement to achieve controlled nuclear fusion. One of the major technical challenges hindering the development of this technology lies in effectively dissipating the generated heat. In this study, the inner blanket structure of a [...] Read more.
The tokamak is a toroidal device that utilizes magnetic confinement to achieve controlled nuclear fusion. One of the major technical challenges hindering the development of this technology lies in effectively dissipating the generated heat. In this study, the inner blanket structure of a tokamak is selected as the research object, and a multi–physics numerical model coupling magnetic field, temperature field, and flow field is established. The effects of background magnetic field strength, blanket channel width, and inlet velocity of the liquid metal coolant on the thermal–flow characteristics of the blanket were systematically investigated. The results indicate that compared with the L-shaped channel, the U-shaped channel reduces flow resistance in the turning region by 6%, exhibits a more uniform temperature distribution, and decreases the outlet–inlet temperature difference by 4%, thereby significantly enhancing the heat transfer efficiency. An increase in background magnetic field strength suppresses coolant flow but has only a limited impact on the temperature field. When the background magnetic field reaches a certain strength, the magnetic field has a certain hindering effect on the flow of the working fluid. Increasing the thickness of the blankets appropriately can alleviate the hindering effect of the magnetic field on the flow and improve the velocity distribution in the outlet area. Full article
Show Figures

Figure 1

26 pages, 11216 KB  
Article
Comparative Study on the Performance of a Conventional Two-Blade and a Three-Blade Toroidal Propeller for UAVs
by Daniel Mariuta, Claudiu Ignat and Grigore Cican
Eng 2026, 7(1), 42; https://doi.org/10.3390/eng7010042 - 13 Jan 2026
Viewed by 206
Abstract
This paper presents an integrated study on the design, simulation, manufacturing, and experimental testing of a three-blade tritoroidal propeller compared to a conventional two-blade configuration for small UAVs. The aerodynamic analysis was performed in ANSYS Fluent 2022 R1 using the k–ω SST turbulence [...] Read more.
This paper presents an integrated study on the design, simulation, manufacturing, and experimental testing of a three-blade tritoroidal propeller compared to a conventional two-blade configuration for small UAVs. The aerodynamic analysis was performed in ANSYS Fluent 2022 R1 using the k–ω SST turbulence model at 6000 rpm, while structural integrity was assessed through FEM simulations in ANSYS Mechanical 2022 R1. Both propellers were fabricated via SLA additive manufacturing using Rigid 4000 resin and evaluated on an RCbenchmark 1585 test stand. The CFD results revealed smoother flow attachment and reduced tip vortex intensity for the tritoroidal geometry, while FEM analyses confirmed lower deformation and a more uniform stress distribution. Experimental tests showed that the tritoroidal propeller produces thrust comparable to the conventional one (within 1%) but at a 58% higher torque, resulting in slightly lower efficiency. However, vibration amplitude decreased by up to 70%, and the SPL was reduced by 0.1–6.2 dB at low and moderate speeds. These results validate the tritoroidal concept as a structurally robust and acoustically efficient alternative, with strong potential for optimization in low-noise UAV propulsion systems. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

20 pages, 3101 KB  
Article
Electromagnetic Analysis and Experimental Study of Laminated Mn-Zn Toroidal Ferrite Cores for High-Frequency Inductance and Impedance Enhancement
by Penghui Guan, Yong Ren, Chunhua Tang, Li Wang, Bin Luo and Yingcheng Lin
Micromachines 2026, 17(1), 43; https://doi.org/10.3390/mi17010043 - 29 Dec 2025
Viewed by 275
Abstract
To achieve high-frequency inductance and impedance enhancement for effective electromagnetic interference (EMI) mitigation in power electronics, this paper presents an electromagnetic analysis and experimental study of laminated Mn-Zn toroidal ferrite cores. The electromagnetic field is analyzed using a 2D analytical solution based on [...] Read more.
To achieve high-frequency inductance and impedance enhancement for effective electromagnetic interference (EMI) mitigation in power electronics, this paper presents an electromagnetic analysis and experimental study of laminated Mn-Zn toroidal ferrite cores. The electromagnetic field is analyzed using a 2D analytical solution based on a simplified Cartesian approximation. Although neglecting curvature, this approach enables efficient eigenfunction expansion and is rigorously validated against cylindrical finite difference (FDM) and 3D finite element (FEM) benchmarks. The results demonstrate that lamination effectively interrupts eddy current loops; notably, a four-layer structure increases the resonant frequency by approximately 2.8 times compared to a monolithic core. Experimental measurements confirm that this design significantly mitigates the skin effect and extends the stable frequency bandwidth. This study establishes a validated, computationally efficient methodology for optimizing core geometries to prevent impedance degradation. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

17 pages, 8229 KB  
Article
The One-Fault Directed Dimension-Balanced Hamiltonian Problem in Directed Toroidal Mesh Graphs
by Yancy Yu-Chen Chang and Justie Su-Tzu Juan
Appl. Sci. 2025, 15(24), 13166; https://doi.org/10.3390/app152413166 - 15 Dec 2025
Viewed by 306
Abstract
Hamiltonian cycle problems play a central role in graph theory and have wide-ranging applications in network-on-chip architectures, interconnection networks, and large-scale parallel systems. When a network contains faulty nodes or faulty links, the feasibility of certain paths becomes restricted, making the construction of [...] Read more.
Hamiltonian cycle problems play a central role in graph theory and have wide-ranging applications in network-on-chip architectures, interconnection networks, and large-scale parallel systems. When a network contains faulty nodes or faulty links, the feasibility of certain paths becomes restricted, making the construction of Hamiltonian cycles substantially more difficult and increasingly important for ensuring reliable communication. A dimension-balanced Hamiltonian cycle is a special type of cycle that maintains an even distribution of edges across multiple dimensions of a network. Its directed counterpart extends this idea to symmetric directed networks by balancing the number of edges used in each positive and negative direction. Such cycles are desirable because they support uniform traffic distribution and reduce communication contention in practical systems. Previous research has examined the existence of directed dimension-balanced Hamiltonian cycles in directed toroidal mesh networks and has shown that some configurations permit directed dimension-balanced Hamiltonian cycles while others do not. Building on this foundation, this paper investigates the fault-tolerant properties of such networks by analyzing whether directed dimension-balanced Hamiltonian cycles still exist when a single vertex (node) or a single edge (link) is faulty. Our results extend the current understanding of Hamiltonian robustness in symmetric directed networks. Full article
(This article belongs to the Topic Innovation, Communication and Engineering)
Show Figures

Figure 1

16 pages, 3143 KB  
Article
Multi-Objective Structural Optimization of a 10 kV/1 MVar Superconducting Toroidal Air-Core Reactor
by Qingchuan Xu, Haoyang Tian, Honglei Li, Lei Su, Bengang Wei, Shuhao Peng, Jie Sheng and Zhijian Jin
Energies 2025, 18(23), 6261; https://doi.org/10.3390/en18236261 - 28 Nov 2025
Viewed by 265
Abstract
With the increase in urban cableization rate and cable length, the overvoltage problem caused by the capacitive effect becomes more and more serious. To limit overvoltage and achieve regional reactive power balance, shunt reactors are installed in substations. Based on a series of [...] Read more.
With the increase in urban cableization rate and cable length, the overvoltage problem caused by the capacitive effect becomes more and more serious. To limit overvoltage and achieve regional reactive power balance, shunt reactors are installed in substations. Based on a series of previous research, a type of superconducting toroidal air-core reactor is presented in this paper. The aim is to improve the power density of reactive power compensation and reduce magnetic leakage and noise pollution. In this paper, the structural optimized design of a 10 kV/1 MVar reactor is carried out based on COMSOL and MATLAB. In consideration of the usage of high-temperature superconducting tapes and AC loss of the reactor, combined with critical current, this paper uses corresponding finite element method (FEM) models and the optimal solution set is obtained via multi-objective genetic algorithm (MOGA). Finally, the solutions are analyzed economically and the set of solutions with the lowest cost is obtained, which provides a reference for the actual fabrication of a toroidal reactor in Shanghai, and can be used in the design of superconducting reactors at higher voltage levels. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

18 pages, 6604 KB  
Article
Effect of H3PO4 Coating, Polyimide Binder, and MoS2/Graphite Lubricants on the Formability and Electromagnetic Properties of Fe-5.0 wt.%Si SMC Toroidal Cores
by Seongsu Kang and Seonbong Lee
Metals 2025, 15(11), 1247; https://doi.org/10.3390/met15111247 - 14 Nov 2025
Viewed by 546
Abstract
This study examined the effects of phosphoric acid (H3PO4), polyimide (PI), and lubricants (MoS2, graphite) on the phase stability, microstructure, and magnetic performance of Fe-5.0 wt.%Si soft magnetic composites (SMCs). Warm compaction (≤550 °C) and annealing at [...] Read more.
This study examined the effects of phosphoric acid (H3PO4), polyimide (PI), and lubricants (MoS2, graphite) on the phase stability, microstructure, and magnetic performance of Fe-5.0 wt.%Si soft magnetic composites (SMCs). Warm compaction (≤550 °C) and annealing at 700 °C were applied to samples prepared under a full factorial design. X-ray diffraction confirmed stable α-Fe(Si) phases without secondary phases. SEM and TEM–EDS revealed interfacial insulating layers mainly composed of Si-O, with localized phosphorus and carbon. Additive composition strongly influenced magnetic and physical properties. Increasing H3PO4 and PI reduced the density from 7.50 to 7.27 g/cm3 and lowered the permeability (from 189 at 1 kHz to 156), due to thicker interparticle layers that restricted metallic contact and domain wall motion. In contrast, Q-values rose significantly with frequency: for H3PO4 0.25 wt.% + PI 0.25 wt.% + graphite 0.3 wt.%, Q increased from 0.39 (1 kHz) to 2.91 (10 kHz), reflecting effective eddy current suppression. Lubricant type further influenced performance: graphite consistently outperformed MoS2, with 0.3 wt.% graphite providing the best balance of high density, permeability, and a frequency-stable Q-value. Overall, Fe-5.0 wt.%Si performance is governed not by bulk phase changes but by the trade-off between densification and insulation at particle interfaces. The optimal combination of low H3PO4 and PI with 0.3 wt.% graphite offers practical guidelines for designing high-frequency, high-efficiency motor materials. Full article
(This article belongs to the Special Issue Metallic Magnetic Materials: Manufacture, Properties and Applications)
Show Figures

Graphical abstract

33 pages, 35880 KB  
Article
A Boundary Element Method for the Hydrodynamic Analysis of Toroidal Propellers
by Seungnam Kim
J. Mar. Sci. Eng. 2025, 13(11), 2142; https://doi.org/10.3390/jmse13112142 - 12 Nov 2025
Viewed by 711
Abstract
Toroidal propellers have emerged as a promising substitute for next-generation marine propulsors due to their potential advantages in hydrodynamic efficiency and noise control. This article presents a hydrodynamic analysis of toroidal propellers using a potential-based boundary element method (BEM) that enables rapid computations [...] Read more.
Toroidal propellers have emerged as a promising substitute for next-generation marine propulsors due to their potential advantages in hydrodynamic efficiency and noise control. This article presents a hydrodynamic analysis of toroidal propellers using a potential-based boundary element method (BEM) that enables rapid computations of complex geometries when compared with computationally demanding viscous simulations. The method predicts the inviscid flow characteristics, forces, and circulation distributions of toroidal propellers and is validated against Reynolds-averaged Navier–Stokes (RANS) simulations under various loading conditions and geometric configurations. The comparison shows that the BEM successfully reproduces the overall thrust and torque trends observed in the viscous simulations, although discrepancies arise due to flow separation and the absence of leading-edge vortices that dominate the suction side dynamics in RANS results. The wake alignment model in the BEM captures the overall trajectories of the shed vortices with good consistency, though its concentrated wake representation occasionally brings the trailing wake substantially close to the rear blade surface, which causes locally low pressures that are not present in RANS where boundary layers prevent direct wake impingement. The BEM was further extended for a parametric study that varied pitch, axial spacing, and lateral angle, showing that pitch variations have the most significant influence on propeller loading and thrust characteristics. Overall, the present work demonstrates that the proposed BEM provides a computationally efficient and physically reasonable framework for predicting the performance of toroidal propellers, especially for early-stage geometric design and optimization. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

36 pages, 5189 KB  
Article
Multi-Polar Approach to Parasitic Suppression in Smart Electromagnetic Skins (SESs)
by Shahid Ayaz and Paola Pirinoli
Appl. Sci. 2025, 15(22), 11977; https://doi.org/10.3390/app152211977 - 11 Nov 2025
Viewed by 463
Abstract
Smart Electromagnetic Skins (SESs) provide a cost-effective and efficient alternative to increasing the number of Base Stations (BSs) for improving the performance of next-generation communication networks and contribute to the implementation of Smart Radio Environments (SREs). SESs generalize the concept of ReflectArrays (RAs) [...] Read more.
Smart Electromagnetic Skins (SESs) provide a cost-effective and efficient alternative to increasing the number of Base Stations (BSs) for improving the performance of next-generation communication networks and contribute to the implementation of Smart Radio Environments (SREs). SESs generalize the concept of ReflectArrays (RAs) because they redirect the incident field in a non-specular direction. However, as the difference between the pointing and specular directions increases, specular and parasitic effects arise, which affect the radiation pattern, energy efficiency, and pointing direction. The techniques generally adopted for SES design, using homogenized-effective-medium model, are unable to overcome this drawback efficiently. Starting with initial SES design based on the Phase-Gradient (PG) approach, the suppression of the higher order modes has been achieved by incorporating volumetric charge-current distributions when defining radiation modes, using theory of electromagnetic-multipoles. This approach reveals formation of anapoles in single-layer SESs/RAs for first time ever. By combining both local and non-local approaches in super-cell design, higher-order symmetry-breaking of unit cells is utilized to exploit anapole formation as a parasitic mode suppression method. Numerical analysis of SESs with increasing size confirms the effectiveness of the proposed approach, which allows for a drastic reduction in parasitic modes while leaving the performance of the desired mode unchanged. Adopting a multipole perspective enhances the understanding of SES radiation mechanisms, unlocks their unexploited performance potential, and opens new opportunities for multifunctional design. Full article
(This article belongs to the Special Issue Recent Advances in Reflectarray and Transmitarray Antennas)
Show Figures

Figure 1

17 pages, 4459 KB  
Article
Microstructure (EBSD-KAM)-Informed Selection of Single-Powder Soft Magnetics for Molded Inductors
by Chang-Ting Yang, Yu-Fang Huang, Chun-Wei Tien, Kun-Yang Wu, Hung-Shang Huang and Hsing-I Hsiang
Materials 2025, 18(21), 5016; https://doi.org/10.3390/ma18215016 - 4 Nov 2025
Viewed by 631
Abstract
This study systematically benchmarks the performance of four single soft magnetic powders—water-atomized Fe–Si–Cr (FeSiCr), silica-coated reduced iron powder (RIP), silica-coated carbonyl iron powder (CIP), and phosphate-coated CIP (CIP-P)—to establish quantitative relationships between powder attributes, deformation substructure, and high-frequency loss for molded power inductors [...] Read more.
This study systematically benchmarks the performance of four single soft magnetic powders—water-atomized Fe–Si–Cr (FeSiCr), silica-coated reduced iron powder (RIP), silica-coated carbonyl iron powder (CIP), and phosphate-coated CIP (CIP-P)—to establish quantitative relationships between powder attributes, deformation substructure, and high-frequency loss for molded power inductors (100 kHz–1 MHz). We prepared toroidal compacts at 200 MPa and characterized them by initial permeability (μi), core-loss (Pcv(f)), partitioning (Pcv(f) = Khf + Kef2, Kh, Ke: hysteresis and eddy-current loss coefficients), and EBSD (electron backscatter diffraction)-derived microstrain metrics (Kernel Average Misorientation, KAM; low-/high-angle grain-boundary fractions). Corrosion robustness was assessed using a 5 wt% NaCl, 35 °C, 24 h salt-spray protocol. Our findings reveal that FeSiCr achieves the highest μi across the frequency band, despite its lowest compaction density. This is attributed to its coarse particle size (D50 ≈ 18 µm) and the resulting lower intragranular pinning. The loss spectra are dominated by hysteresis over this frequency range, with FeSiCr exhibiting the largest Kh, while the fine, silica-insulated Fe powders (RIP/CIP) most effectively suppress Ke. EBSD analysis shows that the high coercivity and hysteresis loss in CIP (and, to a lesser extent, RIP) are correlated with dense, deformation-induced subgrain networks, as evidenced by higher mean KAM and a lower low-angle grain boundary fraction. In contrast, FeSiCr exhibits the lowest KAM, with strain confined primarily to particle contact regions. Corrosion testing ranked durability as FeSiCr ≳ CIP ≈ RIP ≫ CIP-P, which is consistent with the Cr-rich passivation of FeSiCr and the superior barrier properties of the SiO2 shells compared to low-dose phosphate. At 15 A, inductance retention ranks CIP (67.9%) > RIP (55.7%) > CIP-P (48.8%) > FeSiCr (33.2%), tracking a rise in effective anisotropy and—for FeSiCr—lower Ms that precipitate earlier roll-off. Collectively, these results provide a microstructure-informed selection map for single-powder formulations. We demonstrate that particle size and shell chemistry are the primary factors governing eddy currents (Ke), while the KAM-indexed substructure dictates hysteresis loss (Kh) and DC-bias superposition characteristics. This framework enables rational trade-offs between magnetic permeability, core loss, and environmental durability. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

13 pages, 3914 KB  
Article
Systematic Monte Carlo Analysis of Binary Compounds for Neutron Shielding in a Compact Nuclear Fusion Reactor
by Fabio Calzavara, Niccolò Di Eugenio, Federico Ledda, Daniele Torsello, Antonio Trotta, Erik Gallo and Francesco Laviano
Appl. Sci. 2025, 15(21), 11557; https://doi.org/10.3390/app152111557 - 29 Oct 2025
Viewed by 514
Abstract
Compact fusion reactors are receiving increasing interest as a promising route for accelerating the path toward commercial fusion, thanks to their reduced size and cost. However, this compactness introduces new technological challenges, including higher radiation loads on critical functional components, such as the [...] Read more.
Compact fusion reactors are receiving increasing interest as a promising route for accelerating the path toward commercial fusion, thanks to their reduced size and cost. However, this compactness introduces new technological challenges, including higher radiation loads on critical functional components, such as the magnet system. Neutron shielding is therefore of utmost importance to guarantee the expected lifetime of the device, and its selection must account for the harsh environment imposed by the high radiation flux. Shielding materials should be structurally stable, not melt within the operational temperature windows, and be relatively low-cost. For nuclear reactor applications, binary compounds are typically the preferred choice as they often meet these requirements, particularly in terms of availability and cost. In this work, we present a systematic Monte Carlo analysis of more than 700 binary compounds, exposed to the neutron spectrum at the most loaded position of the vacuum vessel in a simplified model of a compact fusion reactor. Shielding performances were evaluated in a toroidal geometry in terms of neutron attenuation, power deposition, and activation, leading to the identification of several promising compositions for effective neutron shielding in future fusion applications. Full article
Show Figures

Figure 1

15 pages, 1719 KB  
Article
CREATE-FXB, a Fixed Boundary Code Based on Finite Element Methods for the Solution of the Grad–Shafranov Equation and Optimization of Equilibrium Currents
by Raffaele Albanese, Marco Neri and Pasquale Zumbolo
Energies 2025, 18(21), 5663; https://doi.org/10.3390/en18215663 - 28 Oct 2025
Viewed by 346
Abstract
CREATE-FXB is a Finite Element Method solver specifically developed to address the fixed boundary problem, namely the determination of the Magnetohydrodynamic equilibrium of an axisymmetric plasma confined within a toroidal nuclear fusion device. Although several solvers are already available and widely used, CREATE-FXB [...] Read more.
CREATE-FXB is a Finite Element Method solver specifically developed to address the fixed boundary problem, namely the determination of the Magnetohydrodynamic equilibrium of an axisymmetric plasma confined within a toroidal nuclear fusion device. Although several solvers are already available and widely used, CREATE-FXB represents a valuable alternative with further improvements, as it introduces a set of distinctive capabilities that extend its applicability and accuracy in modelling this class of problems. Its key features include the design of plasma scenarios in tokamaks, the derivation of linearized plasma response with high accuracy, the treatment of a wide class of current density profiles including non-smooth distributions, and an improved capability of interfacing with other existing codes. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

22 pages, 4923 KB  
Article
Hydrodynamics of Toroidal Vortices in Torque-Flow Pumps
by Ivan Pavlenko, Vladyslav Kondus and Roman Puzik
Appl. Sci. 2025, 15(20), 11299; https://doi.org/10.3390/app152011299 - 21 Oct 2025
Viewed by 751
Abstract
This study investigates the role of toroidal vortex formation in torque-flow pumps and its influence on pump performance. A mathematical model of viscous fluid motion in toroidal coordinates was developed to describe the two-stage energy transfer mechanism, in which the impeller drives the [...] Read more.
This study investigates the role of toroidal vortex formation in torque-flow pumps and its influence on pump performance. A mathematical model of viscous fluid motion in toroidal coordinates was developed to describe the two-stage energy transfer mechanism, in which the impeller drives the toroidal vortex and the vortex subsequently imparts momentum to the main throughflow. The model identifies vortex deformation as a primary source of hydraulic losses. The theoretical framework was validated by computational fluid dynamics (CFD) simulations of a torque-flow pump. Analysis of the axial, circumferential, and vertical velocity components revealed a closed three-dimensional toroidal circulation loop within the free chamber, confirming the predictions of the mathematical model. A parametric study was conducted to assess the influence of impeller extension into the free chamber (Δb2) on pump performance. Three characteristic regimes were identified. At Δb2 ≈ 6 mm, the shaft power decreased to 120.3 kW (an 8.1% decrease compared to the baseline), with efficiency improving to 39.2%. At Δb2 ≈ 10 mm, the pump achieved its best balance of parameters: efficiency increased from 34.0% to 42.8% (+8.7 percentage points), while head rose from 32.8 m to 38.5 m (+17.4%), with moderate power demand (122.3 kW). At Δb2 ≈ 70 mm, the head reached 45.6 m (+39%), but power consumption rose to 146.9 kW (+12%), and the design shifted toward centrifugal-type operation, reducing reliability for abrasive fluids. Overall, the results provide both a validated mathematical description of toroidal vortex dynamics and practical guidelines for optimizing torque-flow pump design, with Δb2 ≈ 10 mm identified as the most rational configuration. Full article
Show Figures

Figure 1

11 pages, 2467 KB  
Article
Scatterers of Non-Electric-Dipole Radiation
by Yafei Li, Zhihui Liu, Shuanglong Cheng, Mansha Li, Jianchao Meng, Tao Jiang, Jiani Li, Zhuangzhuang Xu, Xike Qian, Meng Wang and Ze Li
Nanomaterials 2025, 15(20), 1584; https://doi.org/10.3390/nano15201584 - 17 Oct 2025
Viewed by 623
Abstract
We theoretically demonstrate that nonmagnetic silicon nanodisk dimers, under plane-wave illumination, can achieve electric dipole mode-free by suppressing electric dipole responses at magnetic resonance frequencies through structural parameter tuning. This is enabled by the anapole mode, where destructive interference between Cartesian electric and [...] Read more.
We theoretically demonstrate that nonmagnetic silicon nanodisk dimers, under plane-wave illumination, can achieve electric dipole mode-free by suppressing electric dipole responses at magnetic resonance frequencies through structural parameter tuning. This is enabled by the anapole mode, where destructive interference between Cartesian electric and toroidal dipole moments results in low spherical electric dipole scattering. Furthermore, the magnetic resonance responses in this nanostructure are tunable within the visible spectrum and compatible with current nanofabrication technology. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

14 pages, 2439 KB  
Article
A Traceable Low-Frequency Attenuation Standard from 1 kHz to 10 MHz for Next-Generation Wireless and EMC Calibration
by Anton Widarta
Sensors 2025, 25(19), 6227; https://doi.org/10.3390/s25196227 - 8 Oct 2025
Viewed by 713
Abstract
The growing demand for traceable, high-precision attenuation measurements in electromagnetic compatibility (EMC) testing and low-frequency wireless communication systems has driven the development of a primary attenuation standard covering 1 kHz to 10 MHz. The system employs a dual channel null-detection method using an [...] Read more.
The growing demand for traceable, high-precision attenuation measurements in electromagnetic compatibility (EMC) testing and low-frequency wireless communication systems has driven the development of a primary attenuation standard covering 1 kHz to 10 MHz. The system employs a dual channel null-detection method using an inductive voltage divider (IVD) as a reference, ensuring the highest accuracy and traceability while eliminating sensitivity to detector nonlinearity. Attenuation at 1 kHz, 9 kHz, and 10 kHz is measured directly against the IVD ratio, while higher-frequency measurements (100 kHz–10 MHz) are performed via heterodyne detection, down-converting signals to 1 kHz for comparison. To ensure comparable accuracy at higher attenuation levels, a double-step method is applied at 9 kHz and 10 kHz to mitigate the increased IVD uncertainty above 1 kHz. Linearity is ensured by suppressing common-mode currents with toroidal ferrite chokes and minimizing inter-channel coupling. Type B (non-statistical) measurement uncertainties are evaluated, with major contributions from the IVD reference, system errors, and mismatch. The expanded uncertainties are 2.2 × 10−3 dB at 20 dB, 3.0 × 10−3 dB at 40 dB, and 4.0 × 10−3 dB at 60 dB attenuation. To facilitate wider dissemination and extend the calibration range, a resistive step attenuator with 10 dB pads is evaluated as a practical transfer standard, providing a simple and robust solution for traceable attenuation calibration in this frequency range. Full article
(This article belongs to the Special Issue Novel Signal Processing Techniques for Wireless Communications)
Show Figures

Figure 1

Back to TopTop