Microstructure (EBSD-KAM)-Informed Selection of Single-Powder Soft Magnetics for Molded Inductors
Highlights
- EBSD KAM links deformation substructure to hysteresis loss (Kh).
- Particle size and shell control eddy loss (Ke); fine SiO2-coated Fe lowers Ke.
- FeSiCr shows the highest μi despite the lowest density; coarse size reduces pinning.
- DC-bias L retention: CIP > RIP > CIP-P > FeSiCr at 15 A (67.9 > 55.7 > 48.8 > 33.2%).
- Microstructure-informed map guides single-powder selection for inductors.
- Balance μi, loss, bias, and corrosion via size and shell chemistry.
- RIP offers lower loss, greater durability, and greater sustainability vs. FeSiCr/CIP-P.
- EBSD/KAM becomes a fast-screening metric for bias and loss.
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.2.1. Mixing and Granulation
2.2.2. Compaction and Curing
2.3. Characterization Methods
2.3.1. Compositional and Physical Analyses
2.3.2. Structural Analysis (XRD)
2.3.3. Measurements of Magnetic Properties
2.3.4. Corrosion Resistance (Salt-Spray)
2.3.5. Lattice-Strain Analysis (EBSD-KAM)
3. Results and Discussion
3.1. Characterization of Raw Powders
3.2. Effect of Iron-Powder Type on Composite Soft Magnetic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, A.; Moradpour, M.; Losito, M.; Franke, W.-T.; Ramasamy, S.; Baccoli, R.; Gatto, G. Wide band gap devices and their application in power electronics. Energies 2022, 15, 9172. [Google Scholar] [CrossRef]
- He, J.; Yuan, H.; Nie, M.; Guo, H.; Yu, H.; Liu, Z.; Sun, R. Soft magnetic materials for power inductors: State of art and future development. Mater. Today Electron. 2023, 6, 100066. [Google Scholar] [CrossRef]
- Périgo, E.A.; Weidenfeller, B.; Kollár, P.; Füzer, J. Past, present, and future of soft magnetic composites. Appl. Phys. Rev. 2018, 5, 031301. [Google Scholar] [CrossRef]
- Shokrollahi, H.; Janghorban, K. Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 2007, 189, 1–12. [Google Scholar] [CrossRef]
- Silveyra, J.M.; Ferrara, E.; Huber, D.L.; Monson, T.C. Soft magnetic materials for a sustainable and electrified world. Science 2018, 362, aao0195. [Google Scholar] [CrossRef] [PubMed]
- Hsiang, H.-I.; Fan, L.-F. Magnetic properties of soft magnetic composites prepared using mixtures of carbonyl iron, FeSiCr, and FeSiAl alloy powders. Materials 2023, 16, 6033. [Google Scholar] [CrossRef] [PubMed]
- Hsiang, H.-I.; Wu, L.-C.; Chen, C.-C.; Lee, W.-H. Power molding inductors prepared using amorphous FeSiCrB alloy powder, carbonyl iron powder, and silicone resin. Materials 2022, 15, 3681. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.S.; Wu, K.Y.; Chen, Y.C. Development of finely reduced iron powder (FRIP) for metal injection molding. China Steel Tech. Rep. 2024, 37, 58–66. [Google Scholar]
- Jikar, B.; Lokesh, N.A.; Panchal, S. Overview on production of reduced iron powder from mill scale waste. Mater. Today Proc. 2021, 46, 8175–8180. [Google Scholar] [CrossRef]
- Bloemacher, D. Carbonyl iron powders: Its production and new developments. Met. Powder Rep. 1990, 45, 117–119. [Google Scholar] [CrossRef]
- Sista, S.K.; Sahu, A.; Reddy, M.S.; Bose, S. Carbonyl iron powders as absorption material for electromagnetic wave attenuation: A review. J. Alloys Compd. 2021, 857, 158275. [Google Scholar]
- Li, S.; Ju, N.; Wang, J.; Zou, R.; Lin, S.; Yang, M. Microstructure and Magnetic Property Evolution Induced by Heat Treatment in Fe-Si/SiO2 Soft Magnetic Composites. Magnetochemistry 2023, 9, 169. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, W.; Miao, Y.; Zuo, S.; Gao, S. A dynamic hysteresis model considering the eddy current field inside the metal particle from a microscopic perspective. J. Magn. Magn. Mater. 2025, 630, 173387. [Google Scholar] [CrossRef]
- Wilkinson, A.J.; Randman, D. Determination of elastic strain fields and geometrically necessary dislocation distributions near nanoindents using electron back scatter diffraction. Philos. Mag. 2010, 90, 1159–1177. [Google Scholar] [CrossRef]
- Rui, S.S.; Kondo, K.; Roters, F.; Raabe, D. Diffraction-based misorientation mapping: A continuum mechanics approach. J. Mech. Phys. Solids 2019, 124, 103709. [Google Scholar] [CrossRef]
- Konijnenberg, P.J.; Zaefferer, S.; Raabe, D. Assessment of geometrically necessary dislocation levels derived by 3D EBSD. Acta Mater. 2015, 99, 402–414. [Google Scholar] [CrossRef]
- Pantleon, W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scr. Mater. 2008, 58, 994–997. [Google Scholar] [CrossRef]
- Jiles, D. Introduction to Magnetism and Magnetic Materials, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Bertotti, G. General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 1988, 24, 621–630. [Google Scholar] [CrossRef]
- Reinert, J.; Brockmeyer, A.; De Doncker, R.W.A.A. Calculation of losses in ferro- and ferrimagnetic materials based on the modified Steinmetz equation. IEEE Trans. Ind. Appl. 2001, 37, 1055–1061. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-Ray Diffraction, 2nd ed.; Addison-Wesley Publishing Company, Inc.: London, UK, 1978. [Google Scholar]
- Martin, J.W. Metals and alloys. In Materials for Engineering, 3rd ed.; Martin, J.W., Ed.; Woodhead Publishing: Cambridge, UK, 2006; pp. 71–132. [Google Scholar]
- Pan, H.; He, Y.; Zhang, X. Interactions between Dislocations and Boundaries during Deformation. Materials 2021, 14, 1012. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.S.; Bae, J.S.; Kim, H.J.; Lee, H.M.; Lee, T.D.; Lavernia, E.J.; Lee, Z.H. Ordering–disordering phenomena and micro-hardness characteristics of B2 phase in Fe–(5–6.5%)Si alloys. Mater. Sci. Eng. A 2005, 407, 282–290. [Google Scholar]
- Li, S.; Peng, K.; Zou, L. The improved magnetic properties of FeSi powders cores composed with different size particles. J. Mater. Sci.: Mater. Electron. 2022, 33, 18501–18510. [Google Scholar] [CrossRef]
- Wu, Y.-P.; Hsiang, H.-I. Sintering temperature and atmosphere effects on electric and magnetic properties of multilayer FeSiCr alloy inductors. Mater. Sci. Eng. B 2022, 275, 115523. [Google Scholar]
- Wu, S.; Sun, A.; Zhai, F.; Wang, J.; Zhang, Q.; Xu, W.; Logan, P.; Volinsky, A.A. Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites. J. Magn. Magn. Mater. 2012, 324, 818–822. [Google Scholar] [CrossRef]
- Hsiang, H.-I.; Fan, L.-F.; Hung, J.-J. Effects of the sodium stearate addition on the corrosion resistance and electromagnetic properties of phosphatized iron-based SMCs. J. Magn. Magn. Mater. 2019, 490, 165532. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, T.; Wang, X.; Shi, T. Influence of Cr content on electronic structures and electromagnetic properties of FeSiCr powders. Rare Met. Mater. Eng. 2013, 42, 313–316. [Google Scholar]
- Yu, H.; Zhou, S.; Zhang, G.; Dong, B.; Meng, L.; Li, Z.; Dong, Y.; Cao, X. The phosphating effect on the properties of FeSiCr alloy powder. J. Magn. Magn. Mater. 2022, 552, 168741. [Google Scholar]
- Hsiang, H.-I.; Fan, L.-F.; Hung, J.-J. Phosphoric acid addition effect on the microstructure and magnetic properties of iron-based soft magnetic composites. J. Magn. Magn. Mater. 2018, 447, 1–8. [Google Scholar] [CrossRef]
- Nakagawa, K.; Hayashi, M.; Takano-Satoh, K.; Matsunaga, H.; Mori, H.; Maki, K.; Onuki, Y.; Suzuki, S.; Sato, S. Characterization of Dislocation Rearrangement in FCC Metals during Work Hardening Using X-Ray Diffraction Line-Profile Analysis. Quantum Beam Sci. 2020, 4, 36. [Google Scholar]
- Zhou, T.D.; Tang, J.K.; Wang, Z.Y. Influence of Cr content on structure and magnetic properties of Fe–Si–Al–Cr powders. J. Magn. Magn. Mater. 2010, 322, 2589–2592. [Google Scholar]
- Hu, X.; Fu, Z.; Zhang, J.; Long, Y. The effect of heat treatment on microstructure and magnetic domain related to magnetization characteristics in Q345R steels. J. Magn. Magn. Mater. 2022, 555, 169377. [Google Scholar] [CrossRef]
- Tan, J.; Gao, J.; Qin, X.; Fan, G.; He, Y.; Zhou, J.; Ke, H.; Yang, Q.; Hu, S. Soft magnetic composites insulating coating technology: A review. Mater. Today Commun. 2025, 48, 113395. [Google Scholar] [CrossRef]
- Daou, T.J.; Begin-Colin, S.; Grenèche, J.M.; Thomas, F.; Derory, A.; Bernhardt, P.; Legaré, P.; Pourroy, G. Phosphate Adsorption Properties of Magnetite-Based Nanoparticles. Chem. Mater. 2007, 19, 4494–4505. [Google Scholar] [CrossRef]
- Wilkinson, A.J.; Britton, T.B. Strains, planes, and EBSD in materials science. Mater. Today 2012, 15, 366–376. [Google Scholar] [CrossRef]
- Han, L.; Maccari, F.; Souza Filho, I.R.; Peter, N.J.; Wei, Y.; Gault, B.; Gutfleisch, O.; Li, Z.; Raabe, D. A mechanically strong and ductile soft magnet with extremely low coercivity. Nature 2022, 608, 310–316. [Google Scholar] [CrossRef]










| Powder | Fe (wt%) | Si (wt%) | Cr (wt%) | P (wt%) | Remarks |
|---|---|---|---|---|---|
| FeSiCr (matrix) | 88.5 | 5.1 | 6.1 | n.d. | Fe–Si–Cr solid solution |
| RIP (SiO2-coated) | >98 | trace | n.d. | n.d. | Si from silica shell |
| CIP (SiO2-coated) | >98 | trace | n.d. | n.d. | Si from silica shell |
| CIP-P (phosphate-coated) | >98 | n.d. | n.d. | trace | P from phosphate shell |
| Powder | D10 (µm) | D50 (µm) | D90 (µm) | Span = (D90 − D10)/D50 |
|---|---|---|---|---|
| FeSiCr | 12.4 | 17.8 | 30.6 | 1.02 |
| RIP | 2.4 | 4.6 | 9.1 | 1.46 |
| CIP | 2.7 | 5.5 | 9.8 | 1.29 |
| CIP-P | 2.5 | 4.9 | 9 | 1.33 |
| Powder (T-Core) | Relative Compaction Density (%) |
|---|---|
| CIP | 74.4 |
| CIP-P | 73.9 |
| RIP | 72.3 |
| FeSiCr alloy | 71.7 |
| Sample | Retention of L at 15 A (%) |
|---|---|
| CIP-P | 48.8 |
| CIP | 67.9 |
| RIP | 55.7 |
| FeSiCr | 33.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.-T.; Huang, Y.-F.; Tien, C.-W.; Wu, K.-Y.; Huang, H.-S.; Hsiang, H.-I. Microstructure (EBSD-KAM)-Informed Selection of Single-Powder Soft Magnetics for Molded Inductors. Materials 2025, 18, 5016. https://doi.org/10.3390/ma18215016
Yang C-T, Huang Y-F, Tien C-W, Wu K-Y, Huang H-S, Hsiang H-I. Microstructure (EBSD-KAM)-Informed Selection of Single-Powder Soft Magnetics for Molded Inductors. Materials. 2025; 18(21):5016. https://doi.org/10.3390/ma18215016
Chicago/Turabian StyleYang, Chang-Ting, Yu-Fang Huang, Chun-Wei Tien, Kun-Yang Wu, Hung-Shang Huang, and Hsing-I Hsiang. 2025. "Microstructure (EBSD-KAM)-Informed Selection of Single-Powder Soft Magnetics for Molded Inductors" Materials 18, no. 21: 5016. https://doi.org/10.3390/ma18215016
APA StyleYang, C.-T., Huang, Y.-F., Tien, C.-W., Wu, K.-Y., Huang, H.-S., & Hsiang, H.-I. (2025). Microstructure (EBSD-KAM)-Informed Selection of Single-Powder Soft Magnetics for Molded Inductors. Materials, 18(21), 5016. https://doi.org/10.3390/ma18215016

