CREATE-FXB, a Fixed Boundary Code Based on Finite Element Methods for the Solution of the Grad–Shafranov Equation and Optimization of Equilibrium Currents
Abstract
1. Introduction
2. Assumptions
2.1. Basic Equations
2.2. Current Density Modelling
3. Finite Element Method Formulation in CREATE-FXB
3.1. Picard Iterations
3.2. Nodal Formulation for
- The free boundary problem in cases where the current density is non-zero at the plasma edge;
- The derivation of the linearized plasma response to external currents and profile variations.
3.3. Accurate Calculation of the Magnetic Flux and Field
3.4. Optimization of Poloidal Field Coil Currents
3.5. Linearization
4. Results and Discussion
4.1. Envelopes for Current Density Parameterization
4.2. Circular Plasma with a Large Aspect Ratio and Discontinuous Current Density Profile
4.3. Non-Circular Low-Aspect-Ratio Plasma Equilibrium
4.4. Optimization of PF Equilibrium Currents in DTT
4.5. Software Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blum, J.; Boulbe, C.; Faugeras, B.; Heumann, H. Control Methods for the Optimization of Plasma Scenarios in a Tokamak. In System Modeling and Optimization, Proceedings of the CSMO 2015, Sophia Antipolis, France, 29 June–3 July 2015; Bociu, L., Désidéri, J.A., Habbal, A., Eds.; IFIP Advances in Information and Communication Technology; Springer: Cham, Switzerland, 2016; Volume 494. [Google Scholar] [CrossRef]
- Anand, H.; Bardsley, O.; Humphreys, D.; Lennholm, M.; Welander, A.; Xing, Z.; Barr, J.; Walker, M.; Mitchell, J.; Meyer, H. Modelling, design and simulation of plasma magnetic control for the Spherical Tokamak for Energy Production (STEP). Fusion Eng. Des. 2023, 194, 113724. [Google Scholar] [CrossRef]
- Lackner, K. Computation of ideal MHD equilibria. Comput. Phys. Commun. 1976, 12, 33–44. [Google Scholar] [CrossRef]
- Lao, L.L.; John, H.S.; Stambaugh, R.D.; Kellman, A.G.; Pfeiffer, W. Reconstruction of current profile parameters and plasma shapes in tokamaks. Nucl. Fusion 1985, 25, 1611. [Google Scholar] [CrossRef]
- Cunningham, G. High performance plasma vertical position control system for upgraded MAST. Fusion Eng. Des. 2013, 88, 3238–3247. [Google Scholar] [CrossRef]
- Ivanov, A.A.; Khayrutdinov, R.; Medvedev, S.; Poshekhonov, Y. The SPIDER code—Solution of direct and inverse problems for free boundary tokamak plasma equilibrium. Keldysh Inst. Prepr. 2009, 39, 24. [Google Scholar]
- Fable, E.; Janky, F.; Treutterer, W.; Englberger, M.; Schramm, R.; Muraca, M.; ASDEX Upgrade Team. The modeling of a tokamak plasma discharge, from first principles to a flight simulator. Plasma Phys. Control. Fusion 2022, 64, 044002. [Google Scholar] [CrossRef]
- Blum, J.; Le Foll, J.; Thooris, B. The self-consistent equilibrium and diffusion code SCED. Comput. Phys. Commun. 1981, 24, 235–254. [Google Scholar] [CrossRef]
- Miki, N.; Verrecchia, M.; Barabaschi, P.; Belov, A.; Chiocchio, S.; Elio, F.; Ioki, K.; Kikuchi, S.; Kokotkov, V.; Ohmori, J.; et al. Vertical displacement event/disruption electromagnetic analysis for the ITER-FEAT vacuum vessel and in-vessel components. Fusion Eng. Des. 2001, 58, 555–559. [Google Scholar] [CrossRef]
- Albanese, R.; Ambrosino, R.; Mattei, M. CREATE-NL+: A robust control-oriented free boundary dynamic plasma equilibrium solver. Fusion Eng. Des. 2015, 96, 664–667. [Google Scholar] [CrossRef]
- Albanese, R.; Villone, F. The linearized CREATE-L plasma response model for the control of current, position and shape in tokamaks. Nucl. Fusion 1998, 38, 723. [Google Scholar] [CrossRef]
- Portone, A. Perturbed solutions of fixed boundary MHD equilibria. Nucl. Fusion 2004, 44, 265. [Google Scholar] [CrossRef]
- Pereverzev, G.V.; Yushmanov, E.P. ASTRA. Automated System for TRansport Analysis in a Tokamak; Max Planck Institute for Plasma Physics: Garching near Munich, Germany, 2022. [Google Scholar]
- Khayrutdinov, R.R.; Lukash, V.E. Studies of plasma equilibrium and transport in a tokamak fusion device with the inverse-variable technique. J. Comput. Phys. 1993, 109, 193–201. [Google Scholar] [CrossRef]
- Luxon, J.L.; Brown, B.B. Magnetic analysis of non-circular cross-section tokamaks. Nucl. Fusion 1982, 22, 813. [Google Scholar] [CrossRef]
- Albanese, R.; Iaiunese, A.; Zumbolo, P. Solution of Grad-Shafranov equation with linear triangular finite elements providing magnetic field continuity with a second order accuracy. Comput. Phys. Commun. 2023, 291, 108804. [Google Scholar] [CrossRef]
- Freidberg, J.P. Ideal magnetohydrodynamic theory of magnetic fusion systems. Rev. Mod. Phys. 1982, 54, 801–902. [Google Scholar] [CrossRef]
- Wesson, J.; Campbell, D.J. Tokamaks; Clarendon Press: Oxford, UK, 2004; ISBN 9780198509226. [Google Scholar]
- Mc Carthy, P.J. Analytical solutions to the Grad–Shafranov equation for tokamak equilibrium with dissimilar source functions. Phys. Plasmas 1999, 6, 3554–3560. [Google Scholar] [CrossRef]
- Quarteroni, A. Il metodo di Galerkin-elementi finiti per problemi ellittici. In Modellistica Numerica per Problemi Differenziali; Springer: Milano, Italy, 2006; pp. 37–96. [Google Scholar]
- Neittaanmäki, P.; Saranen, J. On finite element approximation of the gradient for solution of Poisson equation. Numer. Math. 1981, 37, 333–337. [Google Scholar] [CrossRef]
- Jardin, S.C. A triangular finite element with first-derivative continuity applied to fusion MHD applications. J. Comput. Phys. 2004, 200, 133–152. [Google Scholar] [CrossRef]
- Lazarus, E.A.; Lister, J.B.; Neilson, G.H. Control of the vertical instability in tokamaks. Nucl. Fusion 1990, 30, 111. [Google Scholar] [CrossRef]
- Albanese, R.; Ambrosino, R.; Castaldo, A.; Loschiavo, V.P. Optimization of the PF coil system in axisymmetric fusion devices. Fusion Eng. Des. 2018, 133, 163–172. [Google Scholar] [CrossRef]
- Byrd, P.F.; Friedman, M.D. Handbook of Elliptic Integrals for Engineers and Physicists; Springer: Berlin/Heidelberg, Germany, 2013; Volume 67. [Google Scholar]
- Schnack, D.D. Toroidal Equilibrium; The Grad–Shafranov Equation. In Lectures in Magnetohydrodynamics; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2009; Volume 780, pp. 107–120. [Google Scholar] [CrossRef]
- European Research Roadmap to the Realisation of Fusion Energy. November 2018. Available online: https://euro-fusion.org/wp-content/uploads/2022/10/2018_Research_roadmap_long_version_01.pdf (accessed on 2 May 2019).
- Castaldo, A.; Albanese, R.; Ambrosino, R.; Crisanti, F. Plasma Scenarios for the DTT Tokamak with Optimized Poloidal Field Coil Current Waveforms. Energies 2022, 15, 1702. [Google Scholar] [CrossRef]







| Case 1 | Case 2 | Case 3 | |
|---|---|---|---|
| 936 | 3727 | 98,076 | |
| 1783 | 7288 | 195,118 | |
| (first-order, nodal formulation) 1 | 0.51% | 0.20% | 0.15% |
| (second-order, nodal formulation) | 1.93% | 0.35% | 0.08% |
| (first-order, nodal formulation) 2 | 4.24% | 2.32% | 0.48% |
| (second-order, nodal formulation) | 1.30% | 0.71% | 0.24% |
| (first-order, standard formulation) | 4.16% | 2.34% | 0.46% |
| (second-order, standard formulation) | 1.65% | 0.71% | 0.30% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albanese, R.; Neri, M.; Zumbolo, P. CREATE-FXB, a Fixed Boundary Code Based on Finite Element Methods for the Solution of the Grad–Shafranov Equation and Optimization of Equilibrium Currents. Energies 2025, 18, 5663. https://doi.org/10.3390/en18215663
Albanese R, Neri M, Zumbolo P. CREATE-FXB, a Fixed Boundary Code Based on Finite Element Methods for the Solution of the Grad–Shafranov Equation and Optimization of Equilibrium Currents. Energies. 2025; 18(21):5663. https://doi.org/10.3390/en18215663
Chicago/Turabian StyleAlbanese, Raffaele, Marco Neri, and Pasquale Zumbolo. 2025. "CREATE-FXB, a Fixed Boundary Code Based on Finite Element Methods for the Solution of the Grad–Shafranov Equation and Optimization of Equilibrium Currents" Energies 18, no. 21: 5663. https://doi.org/10.3390/en18215663
APA StyleAlbanese, R., Neri, M., & Zumbolo, P. (2025). CREATE-FXB, a Fixed Boundary Code Based on Finite Element Methods for the Solution of the Grad–Shafranov Equation and Optimization of Equilibrium Currents. Energies, 18(21), 5663. https://doi.org/10.3390/en18215663

