Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (495)

Search Parameters:
Keywords = tool wear rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5621 KiB  
Article
Establishing Rational Processing Parameters for Dry Finish-Milling of SLM Ti6Al4V over Metal Removal Rate and Tool Wear
by Sergey V. Panin, Andrey V. Filippov, Mengxu Qi, Zeru Ding, Qingrong Zhang and Zeli Han
Constr. Mater. 2025, 5(3), 53; https://doi.org/10.3390/constrmater5030053 - 5 Aug 2025
Abstract
The study is motivated by the application of dry finish milling for post-build processing of additive Ti6Al4V blanks, since the use of neither lubricant nor coolants has been attracting increasing attention due to its environmental benefits, non-toxicity, and the elimination of the need [...] Read more.
The study is motivated by the application of dry finish milling for post-build processing of additive Ti6Al4V blanks, since the use of neither lubricant nor coolants has been attracting increasing attention due to its environmental benefits, non-toxicity, and the elimination of the need for additional cleaning processes. For end mills, wear patterns were investigated upon finish milling of the SLM Ti6Al4V samples under various machining conditions (by varying the values of radial depth of cut and feed values at a constant level of axial depth of cut and cutting speed). When using all the applied milling modes, the identical tool wear mechanism was revealed. Built-up edges mainly developed on the leading surfaces, increasing the surface roughness on the SLM Ti6Al4V samples but protecting the cutting edges. However, abrasive wear was mainly characteristic of the flank surfaces that accelerated peeling of the protective coatings and increased wear of the end mills. The following milling parameters have been established as being close to rational ones: Vc = 60 m/min, Vf = 400 mm/min, ap = 4 mm, and ae = 0.4 mm. They affected the surface roughness of the SLM Ti6Al4V samples in the following way: max cutting thickness—8 μm; built-up edge at rake surface—50 ± 3 μm; max wear of flank surface—15 ± 1 μm; maximum adherence of workpiece. Mode III provided the maximum MRR value and negligible wear of the end mill, but its main disadvantage was the high average surface roughness on the SLM Ti6Al4V sample. Mode II was characterized by both the lowest average surface roughness and the lowest wear of the end mill, as well as an insufficient MRR value. Since these two modes differed only in their feed rates, their values should be optimized in the range from 200 to 400 mm/min. Full article
(This article belongs to the Special Issue Mineral and Metal Materials in Civil Engineering)
Show Figures

Figure 1

17 pages, 302 KiB  
Article
Validity of PROMIS® Pediatric Physical Activity Parent Proxy Short Form Scale as a Physical Activity Measure for Children with Cerebral Palsy Who Are Non-Ambulatory
by Nia Toomer-Mensah, Margaret O’Neil and Lori Quinn
Behav. Sci. 2025, 15(8), 1042; https://doi.org/10.3390/bs15081042 - 31 Jul 2025
Viewed by 209
Abstract
Background: Self-report physical activity (PA) scales, accelerometry, and heart rate (HR) monitoring are reliable tools for PA measurement for children with cerebral palsy (CP); however, there are limitations for those who are primary wheelchair users. The purpose of our study was to [...] Read more.
Background: Self-report physical activity (PA) scales, accelerometry, and heart rate (HR) monitoring are reliable tools for PA measurement for children with cerebral palsy (CP); however, there are limitations for those who are primary wheelchair users. The purpose of our study was to evaluate face and construct validity of the PROMIS® Pediatric PA parent proxy short form 8a in measuring PA amount and intensity in children with CP who are non-ambulatory. Methods: Face validity: Semi-structured interviews with parents and pediatric physical therapists (PTs) were conducted about the appropriateness of each item on the PROMIS® Pediatric PA short form. Construct validity: Children with CP who were non-ambulatory participated in a one-week observational study. PA amount and intensity were examined using PA monitors (Actigraph GT9X) and HR monitors (Fitbit Charge 4). Activity counts and time in sedentary and non-sedentary intensity zones were derived and compared to the PROMIS® T-scaled score. Results: Twenty-two physical therapists (PTs) and fifteen parents participated in the interviews, and ten children completed 1-week PA observation. Eight and seven participants completed sufficient time of uninterrupted PA and HR monitor wear, respectively. Parents and PTs agreed that several questions were not appropriate for children with CP who were non-ambulatory. PA intensity via activity counts derived from wrist worn monitors showed a strong positive correlation with the PROMIS® PA measure. Conclusions: Construct validity in our small sample was established between PROMIS® scores and accelerometry activity counts when documenting PA amount and intensity; however, there were some differences on PROMIS® face validity per parent and PT respondents. Despite some concerns regarding face validity, the PROMIS® Pediatric PA parent proxy short form 8a shows promise as a valid measure of physical activity amount and intensity in non-ambulatory children with CP, warranting further investigation and refinement. Full article
14 pages, 1015 KiB  
Article
Integrating Dimensional Analysis and Machine Learning for Predictive Maintenance of Francis Turbines in Sediment-Laden Flow
by Álvaro Ospina, Ever Herrera Ríos, Jaime Jaramillo, Camilo A. Franco, Esteban A. Taborda and Farid B. Cortes
Energies 2025, 18(15), 4023; https://doi.org/10.3390/en18154023 - 29 Jul 2025
Viewed by 273
Abstract
The efficiency decline of Francis turbines, a key component of hydroelectric power generation, presents a multifaceted challenge influenced by interconnected factors such as water quality, incidence angle, erosion, and runner wear. This paper is structured into two main sections to address these issues. [...] Read more.
The efficiency decline of Francis turbines, a key component of hydroelectric power generation, presents a multifaceted challenge influenced by interconnected factors such as water quality, incidence angle, erosion, and runner wear. This paper is structured into two main sections to address these issues. The first section applies the Buckingham π theorem to establish a dimensional analysis (DA) framework, providing insights into the relationships among the operational variables and their impact on turbine wear and efficiency loss. Dimensional analysis offers a theoretical basis for understanding the relationships among operational variables and efficiency within the scope of this study. This understanding, in turn, informs the selection and interpretation of features for machine learning (ML) models aimed at the predictive maintenance of the target variable and important features for the next stage. The second section analyzes an extensive dataset collected from a Francis turbine in Colombia, a country that is heavily reliant on hydroelectric power. The dataset consisted of 60,501 samples recorded over 15 days, offering a robust basis for assessing turbine behavior under real-world operating conditions. An exploratory data analysis (EDA) was conducted by integrating linear regression and a time-series analysis to investigate efficiency dynamics. Key variables, including power output, water flow rate, and operational time, were extracted and analyzed to identify patterns and correlations affecting turbine performance. This study seeks to develop a comprehensive understanding of the factors driving Francis turbine efficiency loss and to propose strategies for mitigating wear-induced performance degradation. The synergy lies in DA’s ability to reduce dimensionality and identify meaningful features, which enhances the ML models’ interpretability, while ML leverages these features to model non-linear and time-dependent patterns that DA alone cannot address. This integrated approach results in a linear regression model with a performance (R2-Test = 0.994) and a time series using ARIMA with a performance (R2-Test = 0.999) that allows for the identification of better generalization, demonstrating the power of combining physical principles with advanced data analysis. The preliminary findings provide valuable insights into the dynamic interplay of operational parameters, contributing to the optimization of turbine operation, efficiency enhancement, and lifespan extension. Ultimately, this study supports the sustainability and economic viability of hydroelectric power generation by advancing tools for predictive maintenance and performance optimization. Full article
Show Figures

Figure 1

13 pages, 2675 KiB  
Article
Material Removal in Mycelium-Bonded Composites Through Laser Processing
by Maciej Sydor, Grzegorz Pinkowski and Agata Bonenberg
J. Compos. Sci. 2025, 9(8), 389; https://doi.org/10.3390/jcs9080389 - 23 Jul 2025
Viewed by 421
Abstract
Mycelium-bonded composites (MBCs), or myco-composites, represent a novel engineered material that combines natural lignocellulosic substrates with a fungal matrix. As a sustainable alternative to plastics, MBCs are gaining increasing interest; however, their large-scale industrial adoption remains limited, partly due to low social acceptance [...] Read more.
Mycelium-bonded composites (MBCs), or myco-composites, represent a novel engineered material that combines natural lignocellulosic substrates with a fungal matrix. As a sustainable alternative to plastics, MBCs are gaining increasing interest; however, their large-scale industrial adoption remains limited, partly due to low social acceptance resulting from their unattractive appearance. Laser engraving provides a promising method for fabricating intricate patterns and functional surfaces on MBCs, minimizing tool wear, material loss, and environmental impact, while enhancing esthetic and engineering properties. This study investigates the influence of CO2 laser parameters on the material removal rate during the engraving of myco-composites, focusing on the effects of variable laser power, beam defocus, and head feed rate on engraving outcomes. The results demonstrate that laser power and beam focus significantly impact material removal in mycelium-bonded composites. Specifically, increasing the laser power results in greater material removal, which is more pronounced when the beam is focused due to higher energy density. In contrast, a beam defocused by 1 mm produces less intense material removal. These findings highlight the critical role of beam focus—surpassing the influence of power alone—in determining engraving quality, particularly on irregular or uneven surfaces. Moreover, reducing the laser head feed rate at a constant power level increases the material removal rate linearly; however, it also results in excessive charring and localized overheating, revealing the low thermal tolerance of myco-composites. These insights are essential for optimizing laser processing techniques to fully realize the potential of mycelium-bonded composites as sustainable engineering materials, simultaneously maintaining their appearance and functional properties. Full article
(This article belongs to the Special Issue Advances in Laser Fabrication of Composites)
Show Figures

Figure 1

16 pages, 3807 KiB  
Article
Optimization of Machining Efficiency of Aluminum Honeycomb Structures by Hybrid Milling Assisted by Longitudinal Ultrasonic Vibrations
by Oussama Beldi, Tarik Zarrouk, Ahmed Abbadi, Mohammed Nouari, Mohammed Abbadi, Jamal-Eddine Salhi and Mohammed Barboucha
Processes 2025, 13(8), 2348; https://doi.org/10.3390/pr13082348 - 23 Jul 2025
Viewed by 323
Abstract
The use of aluminum honeycomb structures is fast expanding in advanced sectors such as the aeronautics, aerospace, marine, and automotive industries. However, processing these structures represents a major challenge for producing parts that meet the strict standards. To address this issue, an innovative [...] Read more.
The use of aluminum honeycomb structures is fast expanding in advanced sectors such as the aeronautics, aerospace, marine, and automotive industries. However, processing these structures represents a major challenge for producing parts that meet the strict standards. To address this issue, an innovative manufacturing method using longitudinal ultrasonic vibration-assisted cutting, combined with a CDZ10 hybrid cutting tool, was developed to optimize the efficiency of traditional machining processes. To this end, a 3D numerical model was developed using the finite element method and Abaqus/Explicit 2017 software to simulate the complex interactions among the cutting tool and the thin walls of the structures. This model was validated by experimental tests, allowing the study of the influence of milling conditions such as feed rate, cutting angle, and vibration amplitude. The numerical results revealed that the hybrid technology significantly reduces the cutting force components, with a decrease ranging from 10% to 42%. In addition, it improves cutting quality by reducing plastic deformation and cell wall tearing, which prevents the formation of chips clumps on the tool edges, thus avoiding early wear of the tool. These outcomes offer new insights into optimizing industrial processes, particularly in fields with stringent precision and performance demands, like the aerospace sector. Full article
Show Figures

Figure 1

29 pages, 3930 KiB  
Article
KAN-Based Tool Wear Modeling with Adaptive Complexity and Symbolic Interpretability in CNC Turning Processes
by Zhongyuan Che, Chong Peng, Jikun Wang, Rui Zhang, Chi Wang and Xinyu Sun
Appl. Sci. 2025, 15(14), 8035; https://doi.org/10.3390/app15148035 - 18 Jul 2025
Viewed by 319
Abstract
Tool wear modeling in CNC turning processes is critical for proactive maintenance and process optimization in intelligent manufacturing. However, traditional physics-based models lack adaptability, while machine learning approaches are often limited by poor interpretability. This study develops Kolmogorov–Arnold Networks (KANs) to address the [...] Read more.
Tool wear modeling in CNC turning processes is critical for proactive maintenance and process optimization in intelligent manufacturing. However, traditional physics-based models lack adaptability, while machine learning approaches are often limited by poor interpretability. This study develops Kolmogorov–Arnold Networks (KANs) to address the trade-off between accuracy and interpretability in lathe tool wear modeling. Three KAN variants (KAN-A, KAN-B, and KAN-C) with varying complexities are proposed, using feed rate, depth of cut, and cutting speed as input variables to model flank wear. The proposed KAN-based framework generates interpretable mathematical expressions for tool wear, enabling transparent decision-making. To evaluate the performance of KANs, this research systematically compares prediction errors, topological evolutions, and mathematical interpretations of derived symbolic formulas. For benchmarking purposes, MLP-A, MLP-B, and MLP-C models are developed based on the architectures of their KAN counterparts. A comparative analysis between KAN and MLP frameworks is conducted to assess differences in modeling performance, with particular focus on the impact of network depth, width, and parameter configurations. Theoretical analyses, grounded in the Kolmogorov–Arnold representation theorem and Cybenko’s theorem, explain KANs’ ability to approximate complex functions with fewer nodes. The experimental results demonstrate that KANs exhibit two key advantages: (1) superior accuracy with fewer parameters compared to traditional MLPs, and (2) the ability to generate white-box mathematical expressions. Thus, this work bridges the gap between empirical models and black-box machine learning in manufacturing applications. KANs uniquely combine the adaptability of data-driven methods with the interpretability of physics-based models, offering actionable insights for researchers and practitioners. Full article
Show Figures

Figure 1

14 pages, 7197 KiB  
Article
Study on Self-Sharpening Mechanism and Polishing Performance of Triethylamine Alcohol on Gel Polishing Discs
by Yang Lei, Lanxing Xu and Kaiping Feng
Micromachines 2025, 16(7), 816; https://doi.org/10.3390/mi16070816 - 16 Jul 2025
Viewed by 248
Abstract
To address the issue of surface glazing that occurs during prolonged polishing with gel tools, this study employs a triethanolamine (TEA)-based polishing fluid system to enhance the self-sharpening capability of the gel polishing disc. The inhibitory mechanism of TEA concentration on disc glazing [...] Read more.
To address the issue of surface glazing that occurs during prolonged polishing with gel tools, this study employs a triethanolamine (TEA)-based polishing fluid system to enhance the self-sharpening capability of the gel polishing disc. The inhibitory mechanism of TEA concentration on disc glazing is systematically analyzed, along with its impact on the gel disc’s frictional wear behaviour. Furthermore, the synergistic effects of process parameters on both surface quality and material removal rate (MRR) of SiC are examined. The results demonstrate that TEA concentration is a critical factor in regulating polishing performance. At an optimal concentration of 4 wt%, an ideal balance between chemical chelation and mechanical wear is achieved, effectively preventing glazing while avoiding excessive tool wear, thereby ensuring sustained self-sharpening capability and process stability. Through orthogonal experiment optimization, the best parameter combination for SiC polishing is determined: 4 wt% TEA concentration, 98 N polishing pressure, and 90 rpm rotational speed. This configuration delivers both superior surface quality and desirable MRR. Experimental data confirm that TEA significantly enhances the self-sharpening performance of gel discs through its unique complex reaction. During the rough polishing stage, the MRR increases by 34.9% to 0.85 μm/h, while the surface roughness Sa is reduced by 51.3% to 6.29 nm. After subsequent CMP fine polishing, an ultra-smooth surface with a final roughness of 2.33 nm is achieved. Full article
Show Figures

Figure 1

26 pages, 15469 KiB  
Article
A Research Method to Investigate the Effect of Vibration Suppression on Thin-Walled Parts of Aluminum Alloy 6061 Based on Cutting Fluid Spraying (CFS)
by Yonglin Min, Xiao Liu, Gaofeng Hu, Gang Jin, Yuanhao Ma, Yipu Bian, Yihan Xie, Mengpan Hu and Desheng Li
Machines 2025, 13(7), 594; https://doi.org/10.3390/machines13070594 - 9 Jul 2025
Viewed by 276
Abstract
This study aims to address the issues of high tool wear rate, severe deterioration of machining accuracy, and surface integrity in thin-walled part cutting processes, which are caused by vibration. To do so, this paper proposes a thin-walled part processing vibration control method [...] Read more.
This study aims to address the issues of high tool wear rate, severe deterioration of machining accuracy, and surface integrity in thin-walled part cutting processes, which are caused by vibration. To do so, this paper proposes a thin-walled part processing vibration control method based on CFS. With aluminum alloy 6061 planar thin-walled parts as the object of study, in this paper a CFS experimental platform was established, the influence of CFS on the dynamic characteristics of the thin-walled parts was analyzed, the effects of milling force and processing vibration during thin-walled part milling were investigated. The results show that compared with UCFS, CFS can significantly reduce the acceleration response amplitude of thin-walled parts and shorten their vibration decay time. When the spraying point coincides with the hammering point, the optimal vibration suppression effect is achieved at a spraying velocity V of 13 m/s, a spraying area S of 31 mm2, and a spraying angle θ of 30°; the acceleration response amplitude decreases by 76.2%, and the vibration attenuation time decreases by 74.7%. This method can provide a certain support force and damping effect for thin-walled parts by CFS, thus reducing the milling force and machining vibration. Full article
Show Figures

Figure 1

15 pages, 4173 KiB  
Article
Optimization of Chip Morphology in Deep Hole Trepanning of Titanium Alloy
by Fan Xie, Xiaolan Han, Lipeng Qiu and Haikuan Ma
Processes 2025, 13(7), 2082; https://doi.org/10.3390/pr13072082 - 1 Jul 2025
Viewed by 263
Abstract
Deep hole trepanning of large-diameter titanium alloy rods presents several challenges, including chip breaking, chip clogging, tool wear, and chipping. To address these issues, an optimized multi-tooth trepanning design was developed. An L9 orthogonal experimental array was employed to assess the influence of [...] Read more.
Deep hole trepanning of large-diameter titanium alloy rods presents several challenges, including chip breaking, chip clogging, tool wear, and chipping. To address these issues, an optimized multi-tooth trepanning design was developed. An L9 orthogonal experimental array was employed to assess the influence of cutting speed, feed rate, and cutting fluid pressure on the chip volume ratio and to determine optimal process parameters. Results indicate that the impact of process parameters on the chip volume ratio of the first and third cutting teeth follows the order of cutting speed, feed rate, and cutting fluid pressure. Optimal chip morphology for internal chip removal is achieved with a cutting speed of 63.3 m·min−1, a feed rate of 0.18 mm·r−1, and a cutting fluid pressure of 4 MPa. Conversely, improper parameter matching can result in numerous long spiral chips, causing adhesive wear, diffusion wear of the multi-tooth drill, and severe chipping of the cutting edge. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

22 pages, 20537 KiB  
Article
Er:YAG Laser Applications for Debonding Different Ceramic Restorations: An In Vitro Study
by Ruxandra Elena Luca, Anișoara Giumancă-Borozan, Iosif Hulka, Ioana-Roxana Munteanu, Carmen Darinca Todea and Mariana Ioana Miron
Medicina 2025, 61(7), 1189; https://doi.org/10.3390/medicina61071189 - 30 Jun 2025
Viewed by 401
Abstract
Background and Objectives: Conventional methods for removing cemented fixed prosthetic restorations (FPRs) are unreliable and lead to unsatisfactory outcomes. At their best, they allow the tooth to be saved at the expense of a laborious process that also wears down rotating tools [...] Read more.
Background and Objectives: Conventional methods for removing cemented fixed prosthetic restorations (FPRs) are unreliable and lead to unsatisfactory outcomes. At their best, they allow the tooth to be saved at the expense of a laborious process that also wears down rotating tools and handpieces and occasionally results in abutment fractures. Restorations are nearly never reusable in any of these situations. Erbium-doped yttrium-aluminum-garnet (Er:YAG) and erbium-chromium yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers casafely and effectively remove FPRs, according to scientific studiesre. This study sets out to examine the impact of Er:YAG laser radiation on the debonding of different ceramic restorations, comparing the behavior of various ceramic prosthetic restoration types under laser radiation action and evaluating the integrity of prosthetic restorations and dental surfaces exposed to laser radiation. Materials and Methods: The study included a total of 16 removed teeth, each prepared on opposite surfaces as abutments.y. Based on the previously defined groups, four types of ceramic restorations were included in the study: feldspathic (F), lithium disilicates (LD), layered zirconia (LZ), and monolithic zirconia (MZ). The thickness of the prosthetic restorations was measured at three points, and two different materials were used for cementation. The Er:YAG Fotona StarWalker MaQX laser was used to debond the ceramic FPR at a distance of 10 mm using an R14 sapphire tip with 275 mJ, 20 Hz, 5.5 W, with air cooling (setting 1 of 9) and water. After debonding, the debonded surface was visualized under electron microscopy. Results: A total of 23 ceramic FPRs were debonded, of which 12 were intact and the others fractured into two or three pieces. The electron microscopy images showed that debonding took place without causing any harm to the tooth structure. The various restoration types had the following success rates: 100% for the LZ and F groups, 87% for the LD group, and 0% for the MZ group. In terms of cement type, debonding ceramic FPRs cemented with RELYX was successful 75% of the time, compared to Variolink DC’s 69% success rate. Conclusions: In summary, the majority of ceramic prosthetic restorations can be successfully and conservatively debonded with Er:YAG radiation. Full article
(This article belongs to the Special Issue Advancements in Dental Medicine, Oral Anesthesiology and Surgery)
Show Figures

Figure 1

17 pages, 2351 KiB  
Article
Modeling of Nomex Honeycomb Structure Milling Assisted by Longitudinal–Torsional Vibrations with a CZ10 Combined Tool: Optimization of Tool Wear and Surface Integrity
by Tarik Zarrouk, Jamal-Eddine Salhi, Mohammed Nouari and Mohammed Barboucha
Appl. Mech. 2025, 6(3), 47; https://doi.org/10.3390/applmech6030047 - 30 Jun 2025
Cited by 1 | Viewed by 433
Abstract
Machining Nomex honeycomb cores is essential for manufacturing components that meet the stringent requirements of industrial sectors, but the complexity of this type of structure material requires specialized techniques to minimize defects, ensure optimal surface quality and extend cutting tool life. For this [...] Read more.
Machining Nomex honeycomb cores is essential for manufacturing components that meet the stringent requirements of industrial sectors, but the complexity of this type of structure material requires specialized techniques to minimize defects, ensure optimal surface quality and extend cutting tool life. For this reason, an innovative machining technology based on longitudinal–torsional ultrasonic vibration assistance has been integrated into a CZ10 combined cutting tool, with the aim of optimizing the efficiency of conventional machining processes. To this end, a three-dimensional numerical model based on the finite element method, developed using Abaqus/Explicit 2017 software, was used to simulate the complex interactions between the cutting tool and the thin walls of the structures to be machined. This study aimed to validate the numerical model through experimental tests, quantifying the surface condition, cutting force and tool wear, while evaluating the impact of key machining parameters, such as feed rate and wall thickness, on process performance. The obtained results reveal a substantial reduction in cutting forces, varying from 20 to 40%, as well as a notable improvement in surface finish and a significant extension of tool life. These conclusions open up new perspectives for the optimization of industrial processes, particularly in high-demand sectors such as aeronautics. Full article
Show Figures

Figure 1

23 pages, 11780 KiB  
Article
Experimental Study on Surface Integrity of Nickel-Based Superalloy in Ultrasonic Elliptical Vibration Cutting
by Gaofeng Hu, Yanjie Lu, Shengming Zhou, Min Zhang, Xin He, Fenghui Zhang and Guangjun Chen
Micromachines 2025, 16(7), 728; https://doi.org/10.3390/mi16070728 - 22 Jun 2025
Viewed by 325
Abstract
Nickel-based superalloys, renowned for their exceptional high-temperature strength, oxidation resistance, and corrosion resistance, have become essential materials in the aerospace, defense, and nuclear industries. However, due to their poor machinability, common cutting processes often result in poor surface quality, difficulties in chip breaking, [...] Read more.
Nickel-based superalloys, renowned for their exceptional high-temperature strength, oxidation resistance, and corrosion resistance, have become essential materials in the aerospace, defense, and nuclear industries. However, due to their poor machinability, common cutting processes often result in poor surface quality, difficulties in chip breaking, and significant tool wear. This study investigates the surface integrity of nickel-based superalloys during ultrasonic elliptical vibration cutting. The effects of various process parameters on the surface roughness, residual stress, and microhardness are systematically analyzed. The results indicate that under ultrasonic elliptical vibration cutting conditions, the surface roughness of the workpiece increases with the ultrasonic amplitude, cutting depth, and feed rate. It initially decreases and then increases with cutting speed, and decreases with an increase in the tool tip radius. The post-cutting residual stress in the nickel-based superalloy decreases with higher cutting speed and ultrasonic amplitude, but increases with greater cutting depth and tool tip radius. The surface microhardness increases with the cutting speed up to a point, after which it decreases, while it significantly increases with a higher ultrasonic amplitude, feed rate, and cutting depth. A comparative experiment was conducted between ultrasonic elliptical vibration and conventional cutting. The research results showed that when the cutting depth was 2 µm, the surface roughness and wear decreased by 19% and 53%, respectively, and the residual compressive stress and microhardness increased by 44% and 21%, respectively. This further verified the significant advantages of ultrasonic elliptical vibration cutting in optimizing machining performance. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

18 pages, 5977 KiB  
Article
Investigation of the Applicability of Acoustic Emission Signals for Adaptive Control in CNC Wood Milling
by Miroslav Dado, Peter Koleda, František Vlašic and Jozef Salva
Appl. Sci. 2025, 15(12), 6659; https://doi.org/10.3390/app15126659 - 13 Jun 2025
Viewed by 473
Abstract
The integration of acoustic emission (AE) signals into adaptive control systems for CNC wood milling represents a promising advancement in intelligent manufacturing. This study investigated the feasibility of using AE signals for the real-time monitoring and control of CNC milling processes, focusing on [...] Read more.
The integration of acoustic emission (AE) signals into adaptive control systems for CNC wood milling represents a promising advancement in intelligent manufacturing. This study investigated the feasibility of using AE signals for the real-time monitoring and control of CNC milling processes, focusing on medium-density fiberboard (MDF) as the workpiece material. AE signals were captured using dual-channel sensors during side milling on a five-axis CNC machine, and their characteristics were analyzed across varying spindle speeds and feed rates. The results showed that AE signals were sensitive to changes in machining parameters, with higher spindle speeds and feed rates producing increased signal amplitudes and distinct frequency peaks, indicating enhanced cutting efficiency. The statistical analysis confirmed a significant relationship between AE signal magnitude and cutting conditions. However, limitations related to material variability, sensor configuration, and the narrow range of process parameters restrict the broader applicability of the findings. Despite these constraints, the results support the use of AE signals for adaptive control in wood milling, offering potential benefits such as improved machining efficiency, extended tool life, and predictive maintenance capabilities. Future research should address signal variability, tool wear, and sensor integration to enhance the reliability of AE-based control systems in industrial applications. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

16 pages, 5307 KiB  
Article
Revisiting an Indentation Method for Measuring Low Wear Rates Using 3D Interferometry
by Gabriela R. Piazzetta, Thomas M. Zeller, Juan M. Hernandez-Otalvaro and Giuseppe Pintaude
Metrology 2025, 5(2), 35; https://doi.org/10.3390/metrology5020035 - 8 Jun 2025
Viewed by 953
Abstract
Predicting the wear of disc cutters in Tunnel Boring Machines (TBMs) is a complex challenge due to the large scale of the machinery and the numerous operational variables involved. Laboratory-scale tests offer a controlled approach to isolating and analyzing specific wear mechanisms. However, [...] Read more.
Predicting the wear of disc cutters in Tunnel Boring Machines (TBMs) is a complex challenge due to the large scale of the machinery and the numerous operational variables involved. Laboratory-scale tests offer a controlled approach to isolating and analyzing specific wear mechanisms. However, the extremely low wear rates observed in such simulations pose challenges for conventional characterization methods, as gravimetric and profilometric techniques often lack the precision and accuracy needed to measure low wear patterns with an uneven morphology. To address this, this study revisited a methodology for quantifying low wear rates in a reciprocating wear test using AISI H13 tool steel disc cutters. This approach integrates spherical indentation marks as reference points with 3D white-light interferometry, enabling high-precision material loss measurements. Eighteen disc samples were subjected to wear testing, with 3 indentations analyzed per sample, for a total of 54 indentations. The statistical validation confirmed the method’s reproducibility and reliability. The proposed approach provides a robust alternative to existing techniques, addressing a critical gap regarding the accurate quantification of low wear rates in controlled laboratory settings. Full article
(This article belongs to the Special Issue Advances in Optical 3D Metrology)
Show Figures

Figure 1

27 pages, 6380 KiB  
Article
Effects of Alloy Composition, Hardness, and Milling Parameters on the Cutting Forces of Al-Li-Based Alloys
by Lida Radan, Victor Songmene, Agnes M. Samuel and Fawzy H. Samuel
Materials 2025, 18(12), 2683; https://doi.org/10.3390/ma18122683 - 6 Jun 2025
Viewed by 409
Abstract
This article explores how alloy composition, hardness, and machining parameters can affect the cutting forces encountered in aluminum–lithium (Al-Li)-based alloys. By analyzing Cu and Cu with Sc additions to Al-Li alloys and exposing them to various heat treatments to modify their hardness, this [...] Read more.
This article explores how alloy composition, hardness, and machining parameters can affect the cutting forces encountered in aluminum–lithium (Al-Li)-based alloys. By analyzing Cu and Cu with Sc additions to Al-Li alloys and exposing them to various heat treatments to modify their hardness, this research was designed to evaluate milling performance under various feed rates, cutting speeds, and cooling conditions. The findings indicate that increased hardness leads to higher cutting forces, with Al-Li-Cu-Sc exhibiting the greatest resistance due to scandium’s grain-refining effect and the formation of stable precipitates. Statistical analyses identify the feed rate as the main parameter controlling cutting force, along with hardness and cooling conditions. Notably, wet machining consistently reduces cutting forces, especially in Al-Li-Cu-Sc alloys, enhancing machinability when using high cutting speeds. This work underscores the significance of selecting optimal machining parameters tailored to specific alloy compositions. These findings contribute to improved process efficiency, reduced tool wear, and enhanced productivity. Given the attractive characteristics of these alloys, i.e., their low weight and high strength, the insights from this study are particularly beneficial for aerospace applications where machining performance directly impacts component quality, cost, and overall operational efficiency. Full article
Show Figures

Figure 1

Back to TopTop