Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (361)

Search Parameters:
Keywords = tin (Sn) oxides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2714 KiB  
Article
Assessing the Efficacy of Chemical and Green-Synthesized CuO Nanoparticles in Combatting Clinical Candida Species: A Comparative Study
by Hiba Younis Khalaf, Ferid Ben Nasr, Bashar Sadeq Noomi, Sami Mnif and Sami Aifa
Microbiol. Res. 2025, 16(8), 178; https://doi.org/10.3390/microbiolres16080178 - 1 Aug 2025
Viewed by 137
Abstract
The most prevalent growth of Candida cells is based on biofilm development, which causes the intensification of antifungal resistance against a large range of chemicals. Nanoparticles can be synthesized using green methods via various biological extracts and reducing agents to control Candida biofilms. [...] Read more.
The most prevalent growth of Candida cells is based on biofilm development, which causes the intensification of antifungal resistance against a large range of chemicals. Nanoparticles can be synthesized using green methods via various biological extracts and reducing agents to control Candida biofilms. This study aims to compare copper oxide nanoparticles (CuONPs) synthesized through chemical methods and those synthesized using Cinnamomum verum-based green methods against Candida infections and their biofilms isolated from Iraqi patients, with the potential to improve treatment outcomes. The physical and chemical properties of these nanoparticles were characterized using Fourier-transform infrared spectroscopy (FT-IR,) scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Four strains of Candida were isolated and characterized from Iraqi patients in Tikrit Hospital and selected based on their ability to form biofilm on polystyrene microplates. The activity of green-synthesized CuONPs using cinnamon extract was compared with both undoped and doped (Fe, Sn) chemically synthesized CuONPs. Four pathogenic Candida strains (Candida glabrata, Candida lusitaniae, Candida albicans, and Candida tropicalis) were isolated from Iraqi patients, demonstrating high biofilm formation capabilities. Chemically and green-synthesized CuONPs from Cinnamomum verum showed comparable significant antiplanktonic and antibiofilm activities against all strains. Doped CuONPs with iron or tin demonstrated lower minimum inhibitory concentration (MIC) values, indicating stronger antibacterial activity, but exhibited weaker anti-adhesive properties compared to other nanoparticles. The antiadhesive activity revealed that C. albicans strain seems to produce the most resistant biofilms while C. glabrata strain seems to be more resistant towards the doped CuONPs. Moreover, C. tropicalis was the most sensitive to all the CuONPs. Remarkably, at a concentration of 100 µg/mL, all CuONPs were effective in eradicating preformed biofilms by 47–66%. The findings suggest that CuONPs could be effective in controlling biofilm formation by Candida species resistant to treatment in healthcare settings. Full article
Show Figures

Figure 1

19 pages, 5269 KiB  
Article
Three-Dimensional Ordered Porous SnO2 Nanostructures Derived from Polystyrene Sphere Templates for Ethyl Methyl Carbonate Detection in Battery Safety Applications
by Peijiang Cao, Linlong Qu, Fang Jia, Yuxiang Zeng, Deliang Zhu, Chunfeng Wang, Shun Han, Ming Fang, Xinke Liu, Wenjun Liu and Sachin T. Navale
Nanomaterials 2025, 15(15), 1150; https://doi.org/10.3390/nano15151150 - 25 Jul 2025
Viewed by 322
Abstract
As lithium-ion batteries (LIBs) gain widespread use, detecting electrolyte–vapor emissions during early thermal runaway (TR) remains critical to ensuring battery safety; yet, it remains understudied. Gas sensors integrating oxide nanostructures offer a promising solution as they possess high sensitivity and fast response, enabling [...] Read more.
As lithium-ion batteries (LIBs) gain widespread use, detecting electrolyte–vapor emissions during early thermal runaway (TR) remains critical to ensuring battery safety; yet, it remains understudied. Gas sensors integrating oxide nanostructures offer a promising solution as they possess high sensitivity and fast response, enabling rapid detection of various gas-phase indicators of battery failure. Utilizing this approach, 3D ordered tin oxide (SnO2) nanostructures were synthesized using polystyrene sphere (PS) templates of varied diameters (200–1500 nm) and precursor concentrations (0.2–0.6 mol/L) to detect key electrolyte–vapors, especially ethyl methyl carbonate (EMC), released in the early stages of TR. The 3D ordered SnO2 nanostructures with ring- and nanonet-like morphologies, formed after PS template removal, were characterized, and the effects of template size and precursor concentration on their structure and sensing performance were investigated. Among various nanostructures of SnO2, nanonets achieved by a 1000 nm PS template and 0.4 mol/L precursor showed higher mesoporosity (~28 nm) and optimal EMC detection. At 210 °C, it detected 10 ppm EMC with a response of ~7.95 and response/recovery times of 14/17 s, achieving a 500 ppb detection limit alongside excellent reproducibility/stability. This study demonstrates that precise structural control of SnO2 nanostructures using templates enables sensitive EMC detection, providing an effective sensor-based strategy to enhance LIB safety. Full article
(This article belongs to the Special Issue Trends and Prospects in Gas-Sensitive Nanomaterials)
Show Figures

Figure 1

20 pages, 3533 KiB  
Article
Creation of Crystalline Orientation of Tin(II) Oxide Polycrystals with High Photocatalytic Activity
by Svetlana A. Kuznetsova, Olga S. Khalipova and Yu-Wen Chen
Molecules 2025, 30(13), 2870; https://doi.org/10.3390/molecules30132870 - 6 Jul 2025
Viewed by 372
Abstract
Tin(II) oxide is a promising material for photocatalytic wastewater treatment. However, the established relationships between particle size, shape, and photocatalytic activity of SnO are contradictory, indicating the influence of other factors. In this work, the effect of the SnO crystallographic texture on its [...] Read more.
Tin(II) oxide is a promising material for photocatalytic wastewater treatment. However, the established relationships between particle size, shape, and photocatalytic activity of SnO are contradictory, indicating the influence of other factors. In this work, the effect of the SnO crystallographic texture on its band gap and photocatalytic activity was shown for the first time. The relationship between the methods (microwave and hydrothermal microwave) and synthesis conditions (time, pressure, and chemical composition of the suspension) of polycrystalline tin oxide(II) and the crystallographic texture was studied. The crystallographic texture was estimated by the Harris method using the repeatability factor and the Lotgering coefficient. The formation of crystallites oriented in the growth plane (00l) was facilitated by the carbonate medium of the suspension. In the ammonia medium, crystallites were preferably formed in the plane (h0l). Increasing the time and pressure leads to the recrystallization of SnO. The band gap energy of the SnO increases from 3.0 to 3.6 eV, and the rate of photodestruction of methyl orange decreases with the growth of crystallites in the (00l) plane from 17 to 40%. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Graphical abstract

15 pages, 8310 KiB  
Article
An Architectural Battery Designed by Substituting Lithium with Second Main Group Metals (Be, Mg, Ca/Cathode) and Hybrid Oxide of Fourth Group Ones (Si, Ge, Sn/Anode) Nanomaterials Towards H2 Adsorption: A Computational Study
by Fatemeh Mollaamin and Majid Monajjemi
Nanomaterials 2025, 15(13), 959; https://doi.org/10.3390/nano15130959 - 20 Jun 2025
Viewed by 487
Abstract
Germanium/tin-containing silicon oxide [SiO–(GeO/SnO)] nanoclusters have been designed with different Si/Ge/Sn particles and characterized as electrodes for magnesium-ion batteries (MIBs) due to forming MgBe [SiO–GeO], MgBe [SiO–SnO], MgCa [SiO–GeO], and MgCa [SiO–SnO] complexes. In this work, alkaline earth metals of magnesium (Mg), beryllium [...] Read more.
Germanium/tin-containing silicon oxide [SiO–(GeO/SnO)] nanoclusters have been designed with different Si/Ge/Sn particles and characterized as electrodes for magnesium-ion batteries (MIBs) due to forming MgBe [SiO–GeO], MgBe [SiO–SnO], MgCa [SiO–GeO], and MgCa [SiO–SnO] complexes. In this work, alkaline earth metals of magnesium (Mg), beryllium (Be), and calcium (Ca) have been studied in hybrid Mg-, Be-, and Ca-ion batteries. An expanded investigation on H capture by MgBe [SiO–(GeO/SnO)] or MgCa [SiO–(GeO/SnO)] complexes was probed using computational approaches due to density state analysis of charge density differences (CDD), total density of states (TDOS), and electron localization function (ELF) for hydrogenated hybrid clusters of MgBe [SiO–GeO], MgBe [SiO–SnO], MgCa [SiO–GeO], and MgCa [SiO–SnO]. Replacing Si by Ge/Sn content can increase battery capacity through MgBe [SiO–GeO], MgBe [SiO–SnO], MgCa [SiO–GeO], and MgCa [SiO–SnO] nanoclusters for hydrogen adsorption processes and could improve the rate performances by enhancing electrical conductivity. A small portion of Mg, Be, or Ca entering the Si–Ge or Si–Sn layer to replace the alkaline earth metal sites could improve the structural stability of the electrode material at high multiplicity, thereby improving the capacity retention rate. In fact, the MgBe [SiO–GeO] remarks a small enhancement in charge transfer before and after hydrogen adsorption, confirming the good structural stability. In addition, [SiO–(GeO/SnO)] anode material could augment the capacity owing to higher surface capacitive impacts. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

18 pages, 2436 KiB  
Article
Photoelectrochemical and Photocatalytic Properties of SnS/TiO2 Heterostructure Thin Films Prepared by Magnetron Sputtering Method
by Yaoxin Ding, Jiahao Leng, Mingyang Zhang and Jie Shen
Inorganics 2025, 13(7), 208; https://doi.org/10.3390/inorganics13070208 - 20 Jun 2025
Viewed by 357
Abstract
Tin(II) sulfide(SnS)/titanium(IV) oxide (TiO2) heterostructure thin films were prepared by radio-frequency magnetron sputtering to investigate the enhancement effect of the formed heterojunction on the photocatalytic performance. By adjusting the sputtering time to vary the thickness of the SnS layer, the crystallinity [...] Read more.
Tin(II) sulfide(SnS)/titanium(IV) oxide (TiO2) heterostructure thin films were prepared by radio-frequency magnetron sputtering to investigate the enhancement effect of the formed heterojunction on the photocatalytic performance. By adjusting the sputtering time to vary the thickness of the SnS layer, the crystallinity and light-absorption properties of the light-absorbing layer and the quality of the heterojunction interface were effectively controlled, thereby optimizing the fabrication process of the heterojunction. It was found that when the SnS layer thickness was 244 nm and the TiO2 layer thickness was 225 nm, the heterostructure film exhibited optimal photoelectrochemical performance, generating the highest photocurrent of 3.03 µA/cm2 under visible light, which was 13.8 times that of a pure TiO2 film and 2.4 times that of a pure SnS film of the same thickness. Additionally, it demonstrated the highest degradation efficiency for methylene blue dye. The improved photoelectrochemical performance of the SnS/TiO2 heterostructure film can be primarily attributed to the following: (1) the incorporation of narrow-bandgap SnS effectively broadens the light-absorption range, improving visible-light harvesting; (2) the staggered band alignment between SnS and TiO2 forms a type-II heterojunction, significantly enhancing the charge carrier separation and transport efficiency. The present work demonstrated the feasibility of magnetron sputtering for constructing high-quality SnS/TiO2 heterostructures, providing insights into the design and fabrication of photocatalytic heterojunctions. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 3rd Edition)
Show Figures

Figure 1

19 pages, 8053 KiB  
Article
Room-Temperature Environmental Gas Detection: Performance Comparison of Nanoparticle-Based Sensors Fabricated by Electrospray, Drop-Casting, and Dry Printing Based on Spark Ablation
by Carlos Sánchez-Vicente, José Pedro Santos, Isabel Sayago, Vincent Mazzola and Leandro Sacco
Chemosensors 2025, 13(6), 219; https://doi.org/10.3390/chemosensors13060219 - 17 Jun 2025
Viewed by 646
Abstract
Chemical nanosensors based on tin dioxide (SnO2) and zinc oxide (ZnO) nanoparticles (NPs) were developed and characterized for the detection of low concentrations of atmospheric pollutants, such as nitrogen dioxide (NO2) and carbon monoxide (CO). The sensing layers were [...] Read more.
Chemical nanosensors based on tin dioxide (SnO2) and zinc oxide (ZnO) nanoparticles (NPs) were developed and characterized for the detection of low concentrations of atmospheric pollutants, such as nitrogen dioxide (NO2) and carbon monoxide (CO). The sensing layers were prepared using three fabrication methods: drop-casting, electrospray, and spark ablation coupled with an inertial impaction printer, to compare their performance. Multiple surface characterization techniques were carried out to investigate the surface morphology and elemental composition of the deposited layers such as SEM (scanning electron microscopy) and XPS (X-ray photoelectron spectroscopy) analyses. UV light photoactivation enabled the sensors to detect ultra-low concentrations of the target gases at room temperature (100 ppb NO2 and 1 ppm CO). The measurements were conducted at 50% relative humidity to simulate real environmental conditions. All sensors were capable of detecting the target gases. Drop-casting is the simplest and most cost-effective technique, but it is also the least reproducible. In contrast, sensors based on the spark ablation technique achieved more homogeneous sensing layers, with practically no nanoparticle agglomeration, resulting in devices with lower noise and drift in their electrical response. Full article
Show Figures

Graphical abstract

10 pages, 2314 KiB  
Article
One-Step Hydrothermal Synthesis and Characterization of Highly Dispersed Sb-Doped SnO2 Nanoparticles for Supercapacitor Applications
by Viet-Hung Hoang, Duc-Long Nguyen, Nguyen Tu, Van-Dang Tran, Van-Nang Lam and Thanh-Tung Duong
Electrochem 2025, 6(2), 22; https://doi.org/10.3390/electrochem6020022 - 16 Jun 2025
Cited by 1 | Viewed by 643
Abstract
Highly dispersion antimony-doped tin oxide (ATO) nanoparticles were synthesized using a (220 °C, 2 L autoclave, medium scale) one-step hydrothermal method with Na2SnO3 and KSb(OH)6 as precursors without a post-sintering process. The particle size reduces to a few nanometers [...] Read more.
Highly dispersion antimony-doped tin oxide (ATO) nanoparticles were synthesized using a (220 °C, 2 L autoclave, medium scale) one-step hydrothermal method with Na2SnO3 and KSb(OH)6 as precursors without a post-sintering process. The particle size reduces to a few nanometers with the increase in Sb content. The resulting various Sb-doping content ATO nanoparticles were coated onto a Ti foil substrate as an electrode for further electrochemical evaluation. The findings demonstrate that the prepared 30% Sb-doped ATO nanoparticles serve as a high-conductivity electrode material with excellent reversibility, substantial specific capacitance, and superior capacitance retention. The 30% ATO electrode exhibits the highest specific capacitance of 343.2 F g−1 at a current density of 1 A g−1 and maintains 93% of its capacitance after the first 10 charge/discharge cycles. The results indicate that ATO materials prepared by the hydrothermal method are promising candidates for supercapacitor electrodes. Full article
Show Figures

Figure 1

14 pages, 2277 KiB  
Article
Investigation of Annealing Temperature Effect of Tin Oxide on the Efficiency of Planar Structure Perovskite Solar Cells
by Ahmed Hayali and Maan M. Alkaisi
Nanomaterials 2025, 15(11), 807; https://doi.org/10.3390/nano15110807 - 28 May 2025
Viewed by 593
Abstract
Tin oxide (SnO2) is an attractive candidate for the electron transport layer (ETL) in perovskite-based solar cells because of its low temperature process requirement. The ability to form ETL layers at low temperatures opens up opportunities for the use of flexible [...] Read more.
Tin oxide (SnO2) is an attractive candidate for the electron transport layer (ETL) in perovskite-based solar cells because of its low temperature process requirement. The ability to form ETL layers at low temperatures opens up opportunities for the use of flexible and low-cost materials suitable for photovoltaic applications. The ETL is necessary for the extraction of electrons and charge separation from the perovskite active layer. Herein, we present a study of the effect of annealing temperature on SnO2 used as an ETL. The annealing temperature of the SnO2 has a considerable effect on the morphology, crystallinity, grain size, and surface topography of the SnO2 layer. The surface properties of the ETL influence the structural properties of the perovskite films. In this study, the annealing temperature of the SnO2, deposited using spin coating, was changed from 90 °C to 150 °C. The SnO2 films annealed at 120 °C resulted in reduced surface defects, improved electron extraction, and produced a significant increase in the grain size of the perovskite active layers. The increase in grain size led to improved efficiency of the PSCs. Devices annealed at 120 °C yielded PSCs with an average efficiency of 15% for a 0.36 cm2 active area, while devices treated at 90 °C and 150 °C produced an average efficiency of 12%. The PSCs fabricated at low temperatures provide an effective technique for low-cost manufacturing, especially on flexible and polymer-based substrates. Full article
(This article belongs to the Special Issue Low-Dimensional Perovskite Materials and Devices)
Show Figures

Graphical abstract

15 pages, 2677 KiB  
Article
Enzyme-Based Solid-Phase Electrochemiluminescence Sensors with Stable, Anchored Emitters for Sensitive Glucose Detection
by Chunyin Wei, Yanyan Zheng, Fei Yan and Lifang Xu
Biosensors 2025, 15(5), 332; https://doi.org/10.3390/bios15050332 - 21 May 2025
Cited by 2 | Viewed by 614
Abstract
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel [...] Read more.
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel array film (bp-SNA), enabling sensitive glucose detection. The sensor was constructed using an electrochemical-assisted self-assembly (EASA) method with various siloxane precursors to quickly modify the surface of indium tin oxide (ITO) electrodes with a bilayer SNA of different charge properties. The inner layer, including negatively charged SNA (n-SNA), attracted the positively charged ECL emitter tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) via electrostatic interaction, while the outer layer, including positively charged SNA (p-SNA), repelled it, forming a barrier that efficiently concentrated the Ru(bpy)32+ emitter in a stable manner. After modifying the amine groups on the p-SNA surface with aldehyde groups, glucose oxidase (GOx) was covalently immobilized, forming the enzyme electrode. In the presence of glucose, GOx catalyzed the conversion of glucose to hydrogen peroxide (H2O2), which acted as a quencher for the Ru(bpy)32+/triethanolamine (TPA) system, reducing the ECL signal and enabling quantitative glucose analysis. The sensor exhibited a wide linear range from 10 μM to 7.0 mM and a limit of detection (LOD) of 1 μM (S/N = 3). Glucose detection in fetal bovine serum was realized. By replacing the enzyme type on the electrode surface, this sensing strategy holds the potential to provide a universal platform for the detection of different metabolites. Full article
(This article belongs to the Special Issue Recent Developments in Nanomaterial-Based Electrochemical Biosensors)
Show Figures

Figure 1

22 pages, 4895 KiB  
Article
Ore Genesis of the Huanggang Iron-Tin-Polymetallic Deposit, Inner Mongolia: Constraints from Fluid Inclusions, H–O–C Isotopes, and U-Pb Dating of Garnet and Zircon
by Hanwen Xue, Keyong Wang, Qingfei Sun, Junchi Chen, Xue Wang and Haoming Li
Minerals 2025, 15(5), 518; https://doi.org/10.3390/min15050518 - 14 May 2025
Viewed by 511
Abstract
The Huanggang iron-tin deposit, located in the southern Greater Khingan Range, is one of the largest Fe-Sn deposits in Northern China (NE China). Iron-tin mineralization occurs mainly in the contact zone between granitoid intrusions and the marble of the Huanggang and Dashizhai formations. [...] Read more.
The Huanggang iron-tin deposit, located in the southern Greater Khingan Range, is one of the largest Fe-Sn deposits in Northern China (NE China). Iron-tin mineralization occurs mainly in the contact zone between granitoid intrusions and the marble of the Huanggang and Dashizhai formations. Six mineralization stages are identified: (I) anhydrous skarn, (II) hydrous skarn, (III) cassiterite-quartz-calcite, (IV) pyrite-arsenopyrite-quartz-fluorite, (V) polymetallic sulfides-quartz, and (VI) carbonate ones. Fluid inclusions (FIs) analysis reveals that Stage I garnet and Stage II–III quartz host liquid-rich (VL-type), vapor-rich two-phase (LV-type), and halite-bearing three-phase (SL-type) inclusions. Stage IV quartz and fluorite, along with Stage V quartz, are dominated by VL- and LV-type inclusions, while Stage VI calcite contains exclusively VL-type inclusions. The FIs in Stages I to VI homogenized at 392–513, 317–429, 272–418, 224–347, 201–281, and 163–213 °C, with corresponding salinities of 3.05–56.44, 2.56–47.77, 2.89–45.85, 1.39–12.42, 0.87–10.62, and 4.48–8.54 wt% NaCl equiv., respectively. The H–O–C isotopes data imply that fluids of the anhydrous skarn stage (δD = −101.2 to −91.4‰, δ18OH2O = 5.0 to 6.0‰) were of magmatic origin, the fluids of hydrous skarn and oxide stages (δD = −106.3 to −104.7‰, δ18OH2O = 4.3 to 4.9‰) were characterized by fluid mixing with minor meteoric water, while the fluids of sulfide stages (δD = −117.4 to −108.6‰, δ18OH2O = −3.4 to 0.3‰, δ13CV-PDB= −12.2 to −10.9‰, and δ18OV-SMOW = −2.2 to −0.7‰) were characterized by mixing of significant amount of meteoric water. The ore-forming fluids evolved from a high-temperature, high-salinity NaCl−H2O boiling system to a low-temperature, low-salinity NaCl−H2O mixing system. The garnet U-Pb dating constrains the formation of skarn to 132.1 ± 4.7 Ma (MSWD = 0.64), which aligns, within analytical uncertainty, with the weighted-mean U−Pb age of zircon grains in ore-related K-feldspar granite (132.6 ± 0.9 Ma; MSWD = 1.5). On the basis of these findings, the Huanggang deposit, formed in the Early Cretaceous, is a typical skarn-type system, in which ore precipitation was principally controlled by fluid boiling and mixing. Full article
Show Figures

Figure 1

18 pages, 4516 KiB  
Article
Fabrication and Optoelectronic Properties of Advanced Quinary Amorphous Oxide Semiconductor InGaZnSnO Thin Film
by Hongyu Wu, Liang Fang, Zhiyi Li, Fang Wu, Shufang Zhang, Gaobin Liu, Hong Zhang, Wanjun Li and Wenlin Feng
Materials 2025, 18(9), 2090; https://doi.org/10.3390/ma18092090 - 2 May 2025
Viewed by 508
Abstract
As the typical representative of amorphous oxide semiconductors (AOS), quaternary indium gallium zinc oxide (IGZO) has been applied as the active layer of thin-film transistors (TFTs), but their mobility is still low (usually ~10 cm2/Vs). IGTO is reported to have larger [...] Read more.
As the typical representative of amorphous oxide semiconductors (AOS), quaternary indium gallium zinc oxide (IGZO) has been applied as the active layer of thin-film transistors (TFTs), but their mobility is still low (usually ~10 cm2/Vs). IGTO is reported to have larger mobility owing to the addition of Tin (Sn) in IZO. So, whether Sn doping can increase the optoelectronic properties of IGZO is a new topic worth studying. In this study, four series of quinary InGaZnSnO (IGZTO) oxide thin films were deposited on glass substrates using a high-purity IGZTO (In:Ga:Zn:Sn:O = 1:0.5:1.5:0.25:x, atomic ratio) ceramic target by RF magnetron sputtering. The effects of fabrication parameters (sputtering power, argon gas flow, and target-to-substrate distance) and film thickness on the microstructure, optical, and electrical properties of IGZTO thin films were investigated. The results show that all IGZTO thin films deposited at room temperature (RT) are amorphous and have a smooth and uniform surface with a low roughness (RMS of 0.441 nm, RA of 0.332 nm). They exhibit good average visible light transmittance (89.02~90.69%) and an optical bandgap of 3.47~3.56 eV. When the sputtering power is 90 W, the argon gas flow rate is 50 sccm, and the target-to-substrate distance is 60 mm, the IGZTO films demonstrate optimal electrical properties: carrier concentration (3.66 × 1019 cm−3), Hall mobility (29.91 cm2/Vs), and resistivity (0.54 × 10−2 Ω·cm). These results provide a valuable reference for the property modulation of IGZTO films and the potential application in optoelectronic devices such as TFTs. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Graphical abstract

14 pages, 2629 KiB  
Article
Analytical Solutions for Current–Voltage Properties of PSCs and Equivalent Circuit Approximation
by Marc Al Atem, Yahia Makableh and Mohamad Arnaout
Eng 2025, 6(4), 62; https://doi.org/10.3390/eng6040062 - 23 Mar 2025
Viewed by 357
Abstract
Perovksite solar cells have emerged as a promising photovoltaic technology due to their high increasing power conversion efficiency (PCE). However, challenges related to thermal instability and material toxicity, especially in lead-based perovskites, bring the need to investigate alternative materials and structural designs. This [...] Read more.
Perovksite solar cells have emerged as a promising photovoltaic technology due to their high increasing power conversion efficiency (PCE). However, challenges related to thermal instability and material toxicity, especially in lead-based perovskites, bring the need to investigate alternative materials and structural designs. This study investigated the current–voltage and power–voltage characteristics of lead-free PSCs based on tin- and germanium using a two-diode equivalent circuit model. The novelty of this work was based on the intensive evaluation of three different electron transport layers (ETLs)—titanium dioxide (TiO2), zinc oxide (ZnO), and tungsten trioxide (WO3)—under different ambient temperature conditions (5 °C, 25 °C, and 55 °C) to study their impacts on device performance and the thermal stability. SCAPS-1D simulations were used to model the electrical and optical behaviors of the proposed perovskite structures, and the results were validated by using the two-diode model. The main performance parameters that were considered were open-circuit voltage, short-circuit current, maximum power point, and fill factor. The results showed that TiO2 was better than ZnO and WO3 as an ETL, achieving a PCE of 24.83% for Sn-based perovskites, and ZnO was the better choice for Ge-based perovskites at 25 °C, with an efficiency reaching ~15.39%. The three ETL materials showed high thermal stability when analyzing them at high ambient temperatures reaching 55 °C. Full article
Show Figures

Figure 1

29 pages, 49444 KiB  
Article
Advanced Pt/Ti(1−x)SnxO2–C Composite Supported Electrocatalyst with Functionalized Carbon for Sustainable Energy Conversion Technologies
by Cristina Silva, Zoltán Pászti, Khirdakhanim Salmanzade, Dániel Olasz, Erzsébet Dodony, György Sáfrán, Ágnes Szegedi, Zoltán Sebestyén, András Tompos and Irina Borbáth
Nanomaterials 2025, 15(5), 342; https://doi.org/10.3390/nano15050342 - 22 Feb 2025
Viewed by 891
Abstract
Sn-doped TiO2–carbon composites were identified as promising multifunctional supports for Pt electrocatalysts, in which the oxide component enhances resistance against corrosion and strong metal–support interactions at the Pt-oxide boundary ensure high stability for the Pt nanoparticles. This work is devoted to [...] Read more.
Sn-doped TiO2–carbon composites were identified as promising multifunctional supports for Pt electrocatalysts, in which the oxide component enhances resistance against corrosion and strong metal–support interactions at the Pt-oxide boundary ensure high stability for the Pt nanoparticles. This work is devoted to the study of the influence of preliminary functionalization of the carbon on the properties of Pt/Ti0.9Sn0.1O2–C catalysts. The structural, compositional and morphological differences between the samples prepared using functionalized or unmodified carbon, as well as the effect of carbon pre-modification on the electrocatalytic behavior of the synthesized Pt catalysts, were investigated using TEM, XRD, XPS, nitrogen adsorption and electrochemical measurements. The presence of oxygen-containing functional groups on carbon treated with HNO3 and glucose leads to the formation of a homogeneous coating of the carbon with dispersed crystallites of mixed oxide. Elemental mapping revealed the proximity of Sn species with highly dispersed (2–3 nm) Pt particles. Notably, the electrochemical results indicated enhanced activity in CO electrooxidation for both functionalized and unmodified carbon-containing catalysts. An improvement in the 10,000-cycle long-term stability of the catalyst prepared using functionalized carbon was evident compared to the catalyst with untreated carbon or reference Pt/C. Full article
(This article belongs to the Special Issue Nano-Enabled Materials for Clean Water and Energy Generation)
Show Figures

Graphical abstract

15 pages, 5437 KiB  
Article
Deposition and Characterization of Zinc–Tin Oxide Thin Films with Varying Material Compositions
by Stanka Spasova, Vladimir Dulev, Alexander Benkovsky, Vassil Palankovski, Ekaterina Radeva, Rumen Stoykov, Zoya Nenova, Hristosko Dikov, Atanas Katerski, Olga Volobujeva, Daniela Lilova and Maxim Ganchev
Coatings 2025, 15(2), 225; https://doi.org/10.3390/coatings15020225 - 13 Feb 2025
Viewed by 1181
Abstract
Zinc–tin oxide (ZTO) thin films (ZnO)x(SnO2)1−x with different material composition x (0 < x < 1) are deposited by spin coating on glass substrates at room temperature. The Differential Scanning Calorimetry (DSC) data of the precursor compounds show [...] Read more.
Zinc–tin oxide (ZTO) thin films (ZnO)x(SnO2)1−x with different material composition x (0 < x < 1) are deposited by spin coating on glass substrates at room temperature. The Differential Scanning Calorimetry (DSC) data of the precursor compounds show gradual phase transitions up to 480 °C. These data are used for an appropriate regime for thermal annealing of the layers. X-ray photoelectron spectroscopy (XPS) data show mixed oxide compound formation in states Zn2+, Sn4+ and O2− of the constituents. Optical investigation manifests high transmittance above 80% in the visible spectral range and an optical band gap of 3.3–3.7 eV. The work functions vary between 4.1 eV and 5 eV, depending on the annealing, with deviations less than 1% for surface 1 mm2 scans. Stack devices ITO/ZTO/metal with different metal contacts are formed. The I–V (current–voltage) measurements of the fabricated stacks exhibit Ohmic or nonlinear behavior, depending on the material composition and the work function levels. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 2nd Edition)
Show Figures

Figure 1

12 pages, 1742 KiB  
Article
Simulation of Lead-Free Perovskite Solar Cells with Improved Performance
by Saood Ali, Praveen Kumar, Khursheed Ahmad and Rais Ahmad Khan
Crystals 2025, 15(2), 171; https://doi.org/10.3390/cryst15020171 - 10 Feb 2025
Cited by 5 | Viewed by 1111
Abstract
At present, lead halide PVSKSCs are promising photovoltaic cells but have some limitations, including their low stability in ambient conditions and the toxicity of lead. Thus, it will be of great significance to explore lead-free perovskite materials as an alternative absorber layer. In [...] Read more.
At present, lead halide PVSKSCs are promising photovoltaic cells but have some limitations, including their low stability in ambient conditions and the toxicity of lead. Thus, it will be of great significance to explore lead-free perovskite materials as an alternative absorber layer. In recent years, the numerical simulation of perovskite solar cells (PVSKSCs) via the solar cell capacitance simulation (SCAPS) method has attracted the attention of the scientific community. In this work, we adopted SCAPS for the theoretical study of lead (Pb)-free PVSKSCs. A cesium bismuth iodide (CsBi3I10; CBI) perovskite-like material was used as an absorber layer. The thickness of the CBI layer was optimized. In addition, different electron transport layers (ETLs), such as titanium dioxide (TiO2), tin oxide (SnO2), zinc oxide (ZnO), and zinc selenide (ZnSe), and different hole transport layers, such as spiro-OMeTAD (2,2,7,7-tetrakis(N,N-di(4-methoxyphenylamine)-9,9′-spirobifluorene), poly(3-hexylthiophene-2,5-diyl) (P3HT), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA), and copper oxide (Cu2O), were explored for the simulation of CBI-based PVSKSCs. A device structure of FTO/ETL/CBI/HTL/Au was adopted for simulation studies. The simulation studies showed the improved photovoltaic performance of CBI-based PVSKSCs using spiro-OMeTAD and TiO2 as the HTL and ETL, respectively. An acceptable PCE of 11.98% with a photocurrent density (Jsc) of 17.360258 mA/cm2, a fill factor (FF) of 67.10%, and an open-circuit voltage (Voc) of 1.0282 V were achieved under the optimized conditions. It is expected that the present study will be beneficial for researchers working towards the development of CBI-based PVSKSCs. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

Back to TopTop