Emerging Trends in Materials Engineering for Clean Energy Applications

A special issue of Eng (ISSN 2673-4117). This special issue belongs to the section "Materials Engineering".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 3802

Special Issue Editor

Special Issue Information

Dear Colleagues,

The Special Issue "Emerging Trends in Materials Engineering for Clean Energy Applications" aims to highlight the latest advancements in the field of materials engineering, with a focus on innovative technologies and methods for clean energy applications. This issue features original research contributions from a diverse range of institutions and experts, covering the development and optimization of new materials, their applications in energy conversion and storage, and enhancements in material performance and environmental sustainability. Key topics include, but are not limited to, hydrogen production and storage engineering, hydrogen fuel cell systems, advanced carbon capture, utilization, and storage (CCUS) engineering, high-efficiency solar power systems, innovative battery and energy storage solutions, smart grid technologies and integration, renewable energy systems and management, advanced thermal management technologies, bioenergy and biofuel engineering, sustainable transportation engineering, energy-efficient industrial processes, advanced nuclear energy systems, energy policy and economic innovations, and holistic approaches to energy sustainability and resilience.

This Special Issue not only explores new perspectives in theoretical research but also focuses on cutting-edge developments in materials engineering in practical applications.   It provides valuable insights and references for advancing clean energy technologies and meeting sustainable solutions to global energy challenges.   By showcasing researchers who are committed to pushing the boundaries of materials science, this Special Issue aims to foster innovation and interdisciplinary collaboration.   Through this publication, we hope to inspire academia and industry to develop new strategies and technologies that contribute to a sustainable future, ultimately helping to reduce the environmental impact of energy production, as well as consumption.

Dr. Qiuwan Shen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Eng is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • green energy and power engineering
  • materials engineering
  • clean energy applications
  • hydrogen energy
  • fuel cells
  • carbon capture utilization and storage (CCUS)
  • energy conversion and storage
  • renewable energy
  • battery and energy storage
  • sustainable energy
  • energy efficiency

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 2629 KiB  
Article
Analytical Solutions for Current–Voltage Properties of PSCs and Equivalent Circuit Approximation
by Marc Al Atem, Yahia Makableh and Mohamad Arnaout
Eng 2025, 6(4), 62; https://doi.org/10.3390/eng6040062 - 23 Mar 2025
Viewed by 170
Abstract
Perovksite solar cells have emerged as a promising photovoltaic technology due to their high increasing power conversion efficiency (PCE). However, challenges related to thermal instability and material toxicity, especially in lead-based perovskites, bring the need to investigate alternative materials and structural designs. This [...] Read more.
Perovksite solar cells have emerged as a promising photovoltaic technology due to their high increasing power conversion efficiency (PCE). However, challenges related to thermal instability and material toxicity, especially in lead-based perovskites, bring the need to investigate alternative materials and structural designs. This study investigated the current–voltage and power–voltage characteristics of lead-free PSCs based on tin- and germanium using a two-diode equivalent circuit model. The novelty of this work was based on the intensive evaluation of three different electron transport layers (ETLs)—titanium dioxide (TiO2), zinc oxide (ZnO), and tungsten trioxide (WO3)—under different ambient temperature conditions (5 °C, 25 °C, and 55 °C) to study their impacts on device performance and the thermal stability. SCAPS-1D simulations were used to model the electrical and optical behaviors of the proposed perovskite structures, and the results were validated by using the two-diode model. The main performance parameters that were considered were open-circuit voltage, short-circuit current, maximum power point, and fill factor. The results showed that TiO2 was better than ZnO and WO3 as an ETL, achieving a PCE of 24.83% for Sn-based perovskites, and ZnO was the better choice for Ge-based perovskites at 25 °C, with an efficiency reaching ~15.39%. The three ETL materials showed high thermal stability when analyzing them at high ambient temperatures reaching 55 °C. Full article
Show Figures

Figure 1

14 pages, 4185 KiB  
Article
Towards Sustainable Perovskite Solar Cells: Lead-Free High Efficiency Designs with Tin and Germanium
by Marc Al Atem and Yahia Makableh
Eng 2025, 6(2), 38; https://doi.org/10.3390/eng6020038 - 17 Feb 2025
Cited by 1 | Viewed by 540
Abstract
This study focuses on the development of efficient and environmentally friendly Lead-free Perovskite solar cells (PSCs) using Tin and Germanium as absorber materials. The study was performed using SCAPS-1D simulations (version 3.11) to explore the performance of PSCs. The investigation took into consideration [...] Read more.
This study focuses on the development of efficient and environmentally friendly Lead-free Perovskite solar cells (PSCs) using Tin and Germanium as absorber materials. The study was performed using SCAPS-1D simulations (version 3.11) to explore the performance of PSCs. The investigation took into consideration optimizing the electron transport layer’s (ETL) material and thickness, and TiO2, ZnO, and WO3 were investigated for this purpose. The current results show that Sn-based PSCs achieved a maximum power conversion efficiency of 23.19% with TiO2 as the ETL, while Ge-based PSCs reached a power conversion efficiency of 14.83%. Additionally, the ETL doping concentration optimization revealed that the doping concentration had little impact on the device performance. These results emphasize the potential of Sn- and Ge-based PSCs as sustainable alternatives to Lead-based technologies, offering a pathway toward safer and more efficient solar energy solutions. Full article
Show Figures

Figure 1

12 pages, 6701 KiB  
Article
Synthesis of Waste-Derived Geopolymer–Zeolite Composite with Enhanced CO2 Adsorption Capacity
by Andresa Rodrigues da Silveira, Alisson Lopes Freire, Fábio Elyseu, Regina de Fátima Peralta Muniz Moreira, Michael Peterson, Aidan Doyle, Sibele Berenice Castella Pergher, Dachamir Hotza and Agenor De Noni, Jr.
Eng 2024, 5(4), 3439-3450; https://doi.org/10.3390/eng5040179 - 18 Dec 2024
Viewed by 994
Abstract
Carbon dioxide levels in the atmosphere are related to global warming and climate change. Materials to be used for CO2 capture are an important factor in assisting humanity in overcoming this challenge. The goals of this study are to look into the [...] Read more.
Carbon dioxide levels in the atmosphere are related to global warming and climate change. Materials to be used for CO2 capture are an important factor in assisting humanity in overcoming this challenge. The goals of this study are to look into the synthesis of adsorbents from red mud (RM), fly ash (FA), and metakaolin (MK). The initial composition was chosen to induce in situ crystallization of zeolites dispersed together with a geopolymer matrix. Two aging steps were used, which combined temperature (25; 95 °C) and atmosphere (air; water). The MK + FA system crystallized zeolite sites dispersed throughout the geopolymer matrix. These crystals were identified as faujasite-Na. They were responsible for the surface area ranging from 23.2 to 238.4 m2.g−1, and CO2 adsorption from 0.83 to 2.32 mmol.g−1 at 35 °C and 1 atm. The best results were obtained by first aging at 95 °C for 120 h, followed by water aging at 25 °C for 120 h. Full article
Show Figures

Figure 1

23 pages, 17144 KiB  
Article
Fabrication of Black Silicon Antireflection Coatings to Enhance Light Harvesting in Photovoltaics
by Klodian Dhoska, Evjola Spaho and Uljan Sinani
Eng 2024, 5(4), 3358-3380; https://doi.org/10.3390/eng5040175 - 14 Dec 2024
Cited by 4 | Viewed by 949
Abstract
Black silicon has attracted significant interest for various engineering applications, including solar cells, due to its ability to create highly absorbent surfaces or interfaces for light. It enhances light absorption in crystalline solar cells, improving the efficiency of converting incident light into electricity [...] Read more.
Black silicon has attracted significant interest for various engineering applications, including solar cells, due to its ability to create highly absorbent surfaces or interfaces for light. It enhances light absorption in crystalline solar cells, improving the efficiency of converting incident light into electricity for photovoltaic applications. This research focused on fabricating nanostructures that played a critical role in enhancing light absorption in the upper layers of solar cells. These nanostructures were created using the black silicon method, forming a layer known as “black silicon”. The coating not only improved the efficiency of crystalline solar cells but also enhanced their stability. The antireflection coating, composed of nanostructures with various shapes, including conical, pillar-like, and spike-like forms, achieved a reflectivity as low as 10% in the spectral range of 400–700 nm. This corresponded to a sample with α = 0.85 and a chuck bias of 4 W. An Inductively Coupled Plasma Reactive Ion Etching (ICP RIE) machine was employed to develop and control the specific shape, size, and density of the fabricated black silicon, which was then subjected to testing. The efficiency of the black silicon photovoltaic cell was 23.3%. Full article
Show Figures

Figure 1

Review

Jump to: Research

36 pages, 3392 KiB  
Review
Proton Exchange Membrane Electrolysis Revisited: Advancements, Challenges, and Two-Phase Transport Insights in Materials and Modelling
by Ali Bayat, Prodip K. Das, Goutam Saha and Suvash C. Saha
Eng 2025, 6(4), 72; https://doi.org/10.3390/eng6040072 - 4 Apr 2025
Viewed by 398
Abstract
The transition to clean energy has accelerated the pursuit of hydrogen as a sustainable fuel. Among various production methods, proton exchange membrane electrolysis cells (PEMECs) stand out due to their ability to generate ultra-pure hydrogen with efficiencies exceeding 80% and current densities reaching [...] Read more.
The transition to clean energy has accelerated the pursuit of hydrogen as a sustainable fuel. Among various production methods, proton exchange membrane electrolysis cells (PEMECs) stand out due to their ability to generate ultra-pure hydrogen with efficiencies exceeding 80% and current densities reaching 2 A/cm2. Their compact design and rapid response to dynamic energy inputs make them ideal for integration with renewable energy sources. This review provides a comprehensive assessment of PEMEC technology, covering key internal components, system configurations, and efficiency improvements. The role of catalyst optimization, membrane advancements, and electrode architectures in enhancing performance is critically analyzed. Additionally, we examine state-of-the-art numerical modelling, comparing zero-dimensional to three-dimensional simulations and single-phase to two-phase flow dynamics. The impact of oxygen evolution and bubble dynamics on mass transport and performance is highlighted. Recent studies indicate that optimized electrode architectures can enhance mass transport efficiency by up to 20%, significantly improving PEMEC operation. Advancements in two-phase flow simulations are crucial for capturing multiphase transport effects, such as phase separation, electrolyte transport, and membrane hydration. However, challenges persist, including high catalyst costs, durability concerns, and scalable system designs. To address these, this review explores non-precious metal catalysts, nanostructured membranes, and machine-learning-assisted simulations, which have demonstrated cost reductions of up to 50% while maintaining electrochemical performance. Future research should integrate experimental validation with computational modelling to improve predictive accuracy and real-world performance. Addressing system control strategies for stable PEMEC operation under variable renewable energy conditions is essential for large-scale deployment. This review serves as a roadmap for future research, guiding the development of more efficient, durable, and economically viable PEM electrolyzers for green hydrogen production. Full article
Show Figures

Figure 1

Back to TopTop