Simulation of Lead-Free Perovskite Solar Cells with Improved Performance
Abstract
:1. Introduction
2. Device Simulation
3. Results and Discussion
3.1. Initial Performance of CBI-Based Simulated PVSKSCs
3.2. Influence of Thickness of CBI Layer
3.3. Effects of Different HTL
3.4. Effects of Different ETLs
3.5. Effects of Thickness of ETLs
3.6. Comparison of the Photovoltaic Efficiency, Jsc, Voc, and FF of the Simulated PSCs with the Reported Literature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nate, S.; Bilan, Y.; Cherevatskyi, D.; Kharlamova, G.; Lyakh, O.; Wosiak, A. The Impact of Energy Consumption on the Three Pillars of Sustainable Development. Energies 2021, 14, 1372. [Google Scholar] [CrossRef]
- Chudy-Laskowska, K.; Pisula, T. An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation. Energies 2022, 15, 7369. [Google Scholar] [CrossRef]
- Reddy, V.J.; Hariram, N.P.; Ghazali, M.F.; Kumarasamy, S. Pathway to Sustainability: An Overview of Renewable Energy Integration in Building Systems. Sustainability 2024, 16, 638. [Google Scholar] [CrossRef]
- Azni, M.A.; Md Khalid, R.; Hasran, U.A.; Kamarudin, S.K. Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia. Sustainability 2023, 15, 4033. [Google Scholar] [CrossRef]
- Halkos, G.; Gkampoura, E.-C. Assessing Fossil Fuels and Renewables’ Impact on Energy Poverty Conditions in Europe. Energies 2023, 16, 560. [Google Scholar] [CrossRef]
- Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef]
- Bouhrim, H.; El Marjani, A.; Nechad, R.; Hajjout, I. Ocean Wave Energy Conversion: A Review. J. Mar. Sci. Eng. 2024, 12, 1922. [Google Scholar] [CrossRef]
- Itani, K.; De Bernardinis, A. Review on New-Generation Batteries Technologies: Trends and Future Directions. Energies 2023, 16, 7530. [Google Scholar] [CrossRef]
- Dash, S.K.; Chakraborty, S.; Elangovan, D. A Brief Review of Hydrogen Production Methods and Their Challenges. Energies 2023, 16, 1141. [Google Scholar] [CrossRef]
- Akinyele, D.; Olabode, E.; Amole, A. Review of Fuel Cell Technologies and Applications for Sustainable Microgrid Systems. Inventions 2020, 5, 42. [Google Scholar] [CrossRef]
- Dragonetti, C.; Colombo, A. Recent Advances in Dye-Sensitized Solar Cells. Molecules 2021, 26, 2461. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-S.; Chen, W.-H. Dye-Sensitized Solar Cells with Modified TiO2 Scattering Layer Produced by Hydrothermal Method. Materials 2025, 18, 278. [Google Scholar] [CrossRef]
- Li, Y.; Huang, W.; Zhao, D.; Wang, L.; Jiao, Z.; Huang, Q.; Wang, P.; Sun, M.; Yuan, G. Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor. Molecules 2022, 27, 1800. [Google Scholar] [CrossRef]
- Gnida, P.; Amin, M.F.; Pająk, A.K.; Jarząbek, B. Polymers in High-Efficiency Solar Cells: The Latest Reports. Polymers 2022, 14, 1946. [Google Scholar] [CrossRef]
- Ašmontas, S.; Mujahid, M. Recent Progress in Perovskite Tandem Solar Cells. Nanomaterials 2023, 13, 1886. [Google Scholar] [CrossRef]
- Afre, R.A.; Pugliese, D. Perovskite Solar Cells: A Review of the Latest Advances in Materials, Fabrication Techniques, and Stability Enhancement Strategies. Micromachines 2024, 15, 192. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, H.; Sonai, G.G.; Hashmi, S.G.; Nogueira, A.F.; Lund, P.D. Progress on Electrolytes Development in Dye-Sensitized Solar Cells. Materials 2019, 12, 1998. [Google Scholar] [CrossRef]
- Gnida, P.; Schab-Balcerzak, E. Effect of Structural and Material Modifications of Dye-Sensitized Solar Cells on Photovoltaic Performance. Coatings 2024, 14, 837. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Li, F.; Yang, Z. Recent Progress in Perovskite Solar Cells: Status and Future. Coatings 2023, 13, 644. [Google Scholar] [CrossRef]
- Khalid, M.; Mallick, T.K. Stability and Performance Enhancement of Perovskite Solar Cells: A Review. Energies 2023, 16, 4031. [Google Scholar] [CrossRef]
- Chiang, S.-E.; Ke, Q.-B.; Chandel, A.; Cheng, H.-M.; Yen, Y.-S.; Shen, J.-L.; Chang, S.H. 19% Efficient P3CT-Na Based MAPbI3 Solar Cells with a Simple Double-Filtering Process. Polymers 2021, 13, 886. [Google Scholar] [CrossRef]
- Liu, C.; Hu, M.; Zhou, X.; Wu, J.; Zhang, L.; Kong, W.; Li, X.; Zhao, X.; Dai, S.; Xu, B.; et al. Efficiency and stability enhancement of perovskite solar cells by introducing CsPbI3 quantum dots as an interface engineering layer. NPG Asia Mater. 2018, 10, 552–561. [Google Scholar] [CrossRef]
- Nguyen, H.; Penukula, S.; Mahaffey, M.; Rolston, N. All inorganic CsPbI3 perovskite solar cells with reduced mobile ion concentration and film stress. MRS Commun. 2024, 14, 208–214. [Google Scholar] [CrossRef]
- Yang, T.; Gao, L.; Lu, J.; Ma, C.; Du, Y.; Wang, P.; Ding, Z.; Wang, S.; Xu, P.; Liu, D.; et al. One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells. Nat. Commun. 2023, 14, 839. [Google Scholar] [CrossRef] [PubMed]
- Kopacic, I.; Friesenbichler, B.; Hoefler, S.F.; Kunert, B.; Plank, H.; Rath, T.; Trimmel, G. Enhanced Performance of Germanium Halide Perovskite Solar Cells through Compositional Engineering. ACS Appl. Energy Mater. 2018, 1, 343–347. [Google Scholar] [CrossRef]
- Chen, K.; Wu, P.; Yang, W.; Su, R.; Luo, D.; Yang, X.; Tu, Y.; Zhu, R.; Gong, Q. Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy 2018, 49, 411–418. [Google Scholar] [CrossRef]
- Pitaro, M.; Tekelenburg, E.K.; Shao, S.; Loi, M.A. Tin Halide Perovskites: From Fundamental Properties to Solar Cells. Adv. Mater. 2022, 34, 2105844. [Google Scholar] [CrossRef] [PubMed]
- Azhari, A.W.; Then, F.S.X.; Halin, D.S.C.; Sepeai, S.; Ludin, N.A. Tin and germanium substitution in lead free perovskite solar cell: Current status and future trends. IOP Conf. Ser. Mater. Sci. Eng. 2020, 957, 012057. [Google Scholar] [CrossRef]
- Ahmad, K.; Kumar, P.; Kim, H. Recent Progress in Lead Free Tin-Halide Perovskite Materials Based Solar Cells via SCAPS Based Numerical Simulation. ChemistrySelect 2024, 9, e202402044. [Google Scholar] [CrossRef]
- Kumar, P.; Khan, M.Q.; Shabbir, M.; Ahmad, K.; Oh, T. Improving Germanium Halide Perovskite Solar Cells: Insights from SCAPS Simulation Analysis Compared to Experimental Data. ChemistrySelect 2024, 9, e202403381. [Google Scholar] [CrossRef]
- Ahmad, K.; Kumar, P.; Khan, M.Q.; Alsulmi, A.; Kim, H. Improved Stability of CsBi3I10 Based Pb-Free Perovskite Solar Cells. ChemistrySelect 2023, 8, e202300520. [Google Scholar] [CrossRef]
- Ahmad, K.; Mobin, S.M. Recent Progress and Challenges in A3Sb2X9-Based Perovskite Solar Cells. ACS Omega 2020, 5, 28404–28412. [Google Scholar] [CrossRef]
- Ahmad, K.; Ansari, S.N.; Natarajan, K.; Mobin, S.M. A (CH3NH3)3Bi2I9 Perovskite Based on a Two-Step Deposition Method: Lead-Free, Highly Stable, and with Enhanced Photovoltaic Performance. ChemElectroChem 2019, 6, 1192–1198. [Google Scholar] [CrossRef]
- Ahmad, K.; Ansari, S.N.; Natarajan, K.; Mobin, S.M. Design and Synthesis of 1D-Polymeric Chain Based [(CH3NH3)3Bi2Cl9]n Perovskite: A New Light Absorber Material for Lead Free Perovskite Solar Cells. ACS Appl. Energy Mater. 2018, 1, 2405–2409. [Google Scholar] [CrossRef]
- Liang, G.-X.; Chen, X.-Y.; Chen, Z.-H.; Lan, H.-B.; Zheng, Z.-H.; Fan, P.; Tian, X.-Q.; Duan, J.-Y.; Wei, Y.-D.; Su, Z.-H. Inorganic and Pb-Free CsBi3I10 Thin Film for Photovoltaic Applications. J. Phys. Chem. C 2019, 123, 27423–27428. [Google Scholar] [CrossRef]
- Mariyappan, P.; Chowdhury, T.H.; Subashchandran, S.; Bedja, I.; Ghaithan, H.M.; Islam, A. Fabrication of lead-free CsBi3I10 based compact perovskite thin films by employing solvent engineering and anti-solvent treatment techniques: An efficient photo-conversion efficiency up to 740 nm. Sustain. Energy Fuels 2020, 4, 5042–5049. [Google Scholar] [CrossRef]
- Lan, H.; Chen, X.; Fan, P.; Liang, G. Inorganic and lead-free CsBi3I10 thin-film solar cell prepared by single-source thermal evaporation. J. Mater. Sci. Mater. Electron. 2021, 32, 11183–11192. [Google Scholar] [CrossRef]
- Kang, J.; Liu, J.; Allen, O.; Al-Mamun, M.; Liu, P.; Yin, H.; Wang, Y.; Chen, S.; Zhao, H. Fabrication of High-Quality CsBi3I10 Films via a Gas-Assisted Approach for Efficient Lead-Free Perovskite Solar Cells. Energy Technol. 2022, 10, 2200318. [Google Scholar] [CrossRef]
- Vijaya, S.; Subbiah, J.; Jones, D.J.; Anandan, S. LARP-assisted synthesis of CsBi3I10 perovskite for efficient lead-free solar cells. RSC Adv. 2023, 13, 9978–9982. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, A.; Tamboli, M.S.; Ubaidullah, M.; Jayarubi, J.; Tripathi, S.K. A modified drop-casting technique for efficient lead-free, environment-friendly thin film CsBi3I10 perovskite solar cells. Phys. B Condens. Matter 2024, 672, 415426. [Google Scholar] [CrossRef]
- Johansson, M.B.; Zhu, H.; Johansson, E.M.J. Extended Photo-Conversion Spectrum in Low-Toxic Bismuth Halide Perovskite Solar Cells. J. Phys. Chem. Lett. 2016, 7, 3467–3471. [Google Scholar] [CrossRef]
- Masawa, S.M.; Zhao, C.; Liu, J.; Xu, J.; Yao, J. Fabrication and Characterization of a Lead-Free Cesium Bismuth Iodide Perovskite through Antisolvent-Assisted Crystallization. Nanomaterials 2024, 14, 626. [Google Scholar] [CrossRef] [PubMed]
- Son, C.; Son, H.; Jeong, B.-S. Enhanced Conversion Efficiency in MAPbI3 Perovskite Solar Cells through Parameters Optimization via SCAPS-1D Simulation. Appl. Sci. 2024, 14, 2390. [Google Scholar] [CrossRef]
- Pinzón, C.; Martínez, N.; Casas, G.; Alvira, F.C.; Denon, N.; Brusasco, G.; Medina Chanduví, H.; Gil Rebaza, A.V.; Cappelletti, M.A. Optimization of Inverted All-Inorganic CsPbI3 and CsPbI2Br Perovskite Solar Cells by SCAPS-1D Simulation. Solar 2022, 2, 559–571. [Google Scholar] [CrossRef]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 2000, 361–362, 527–532. [Google Scholar] [CrossRef]
- Tara, A.; Bharti, V.; Sharma, S.; Gupta, R. Device simulation of FASnI3 based perovskite solar cell with Zn(O0.3, S0.7) as electron transport layer using SCAPS-1D. Opt. Mater. 2021, 119, 111362. [Google Scholar] [CrossRef]
- Mohandes, A.; Moradi, M.; Nadgaran, H. Numerical simulation of inorganic Cs2AgBiBr6 as a lead-free perovskite using device simulation SCAPS-1D. Opt. Quant. Electron. 2021, 53, 319. [Google Scholar] [CrossRef]
- Singh, A.; Agarwal, A.; Agarwal, M. Performance evaluation of lead–free double-perovskite solar cell. Opt. Mater. 2021, 114, 110964. [Google Scholar] [CrossRef]
- Ahmmed, S.; Karim, M.A.; Rahman, M.H.; Aktar, A.; Islam, M.R.; Islam, A.; Ismail, A.B.M. Performance analysis of lead-free CsBi3I10-based perovskite solar cell through the numerical calculation. Sol. Energy 2021, 226, 54–63. [Google Scholar] [CrossRef]
- Hossain, M.I.; Alharbi, F.H.; Tabet, N. Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Sol. Energy 2015, 120, 370–380. [Google Scholar] [CrossRef]
- Singh, A.K.; Srivastava, S.; Mahapatra, A.; Baral, J.K.; Pradhan, B. Performance optimization of lead free-MASnI3 based solar cell with 27% efficiency by numerical simulation. Opt. Mater. 2021, 117, 111193. [Google Scholar] [CrossRef]
- Danladi, E.; Obagboye, L.F.; Aisida, S.; Ezema, F.I.; Okorie, O.; Bwamba, J.A.; Emmanuel, P.A.; Hussaini, A.A.; Jubu, P.R.; Ozurumba, A.C. 20.730% highly efficient lead-free CsSnI3-based perovskite solar cells with various charge transport materials: A SCAPS-1D study. Multiscale and Multidiscip. Model. Exp. Des. 2025, 8, 114. [Google Scholar] [CrossRef]
- Wang, A.; Gan, X.; Yu, J. Simulation of narrow-bandgap mixed Pb–Sn perovskite solar cells with inverted p-i-n structure. Opt. Mater. 2021, 112, 110751. [Google Scholar] [CrossRef]
- Ahmed, S.; Jannat, F.; Khan, A.K.; Alim, M.A. Numerical development of eco-friendly Cs2TiBr6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D. Optik 2021, 225, 165765. [Google Scholar] [CrossRef]
- Sachchidanand; Garg, V.; Kumar, A.; Sharma, P. Numerical simulation of novel lead-free Cs3Sb2Br9 absorber-based highly efficient perovskite solar cell. Opt. Mater. 2021, 122, 111715. [Google Scholar] [CrossRef]
- Bareth, B.K.; Tripathi, M.N.; Maravi, R. High photovoltaic performance of lead-free Cs2AgInCl6-xBrx perovskite solar cell using DFT and SCAPS-1D simulations. Mater. Today Commun. 2024, 39, 108618. [Google Scholar] [CrossRef]
- Samanta, M.; Ahmed, S.I.; Chattopadhyay, K.K.; Bose, C. Role of various transport layer and electrode materials in enhancing performance of stable environment-friendly Cs2TiBr6 solar cell. Optik 2020, 217, 164805. [Google Scholar] [CrossRef]
- Alam, I.; Mollick, R.; Ashraf, M.A. Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the charge transport layers. Phys. B Condens. Matter 2021, 618, 413187. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.; Liu, X.; Zhou, F.; Yang, W.; Fan, Y.; He, P.; Wu, J.; Wang, H.; Cheng, Y. SCAPS simulation and DFT study of lead-free perovskite solar cells based on CsGeI3. Mater. Chem. Phys. 2023, 306, 128084. [Google Scholar] [CrossRef]
- Manjunath, V.; Reddy, Y.K.; Bimli, S.; Choudhary, R.J.; Devan, R.S. 22% efficient Kusachiite solar cells of CuBi2O4 light harvester and ABO3 buffer layers: A theoretical analysis. Mater. Today Commun. 2022, 32, 104061. [Google Scholar] [CrossRef]
- Raj, A.; Kumar, M.; Kumar, A.; Singh, K.; Sharma, S.; Singh, R.C.; Pawar, M.S.; Yahya, M.Z.A.; Anshul, A. Comparative analysis of ‘La’ modified BiFeO3-based perovskite solar cell devices for high conversion efficiency. Ceram. Int. 2023, 49, 1317–1327. [Google Scholar] [CrossRef]
Parameters | FTO [46] | SnO2 [47] | TiO2 [48] | ZnO [48] | ZnSe [48] | CBI [49] | Spiro-OMeTAD [48] | P3HT [47] | Cu2O [50] | PTAA [51] |
---|---|---|---|---|---|---|---|---|---|---|
Thickness (nm) | 500 nm | 100 nm | varying | 100 nm | 100 nm | Varying | 150 nm | 150 nm | 150 nm | 150 nm |
Band gap (eV) | 3.5 | 3.5 | 3.2 | 3.3 | 2.81 | 1.75 | 3 | 2 | 2.17 | 2.95 |
Electron affinity (eV) | 4 | 4.2 | 4.2 | 4 | 4.09 | 4.2 | 2.45 | 3.2 | 3.20 | 2.3 |
Dielectric permittivity (relative) | 9 | 9 | 10 | 9 | 8.6 | 10 | 3 | 3 | 7.11 | 3.5 |
CB effective density of states (1 cm−3) | 2.2 × 1018 | 2.2 × 1018 | 2.2 × 1018 | 3.7 × 1018 | 2.2 × 1018 | 2.2 × 1018 | 2.2 × 1018 | 2.5 × 1018 | 2.02 × 1017 | 2.2 × 1018 |
VB effective density of states (1 cm−3) | 1.8 × 1019 | 1.8 × 1019 | 1.8 × 1019 | 1.8 × 1019 | 1.8 × 1019 | 1.8 × 1019 | 1.8 × 1019 | 1.8 × 1019 | 1.0 × 1019 | 1.8 × 1019 |
Electron thermal velocity (cm S−1) | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Hole thermal velocity (cm S−1) | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Electron mobility (cm2 VS−1) | 20 | 20 | 100 | 100 | 110 | 2 | 2 × 10−4 | 1 × 10−4 | 200 | 1 × 10−4 |
Hole mobility (cm2 VS−1) | 10 | 10 | 25 | 25 | 400 | 2 | 2 × 10−4 | 1 × 10−4 | 80 | 1 × 10−4 |
Shallow uniform donor density ND (1 cm−3) | 2 × 1019 | 2 × 1019 | 1 × 1019 | 5 × 1017 | 1 × 1018 | 0 | 0 | 0 | 0 | 0 |
Shallow uniform acceptor density NA (1 cm−3) | - | 0 | 0 | 0 | 0 | 1 × 1015 | 2 × 1018 | 2 × 1018 | 1 × 1018 | 1 × 1018 |
Nt | 1 × 1015 | 1 × 1015 | 1 × 1015 | 1 × 1015 | 1 × 1015 | 1 × 1014 | 1 × 1015 | 1 × 1014 | 1 × 1014 | 1 × 1015 |
Thickness of CsBi3I10 (nm) | Spiro-OMeTAD (nm) | TiO2 (nm) | FTO (nm) | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|---|---|---|
150 | 150 | 100 | 500 | 1.0613 | 10.665317 | 80.86 | 9.15 |
300 | 150 | 100 | 500 | 1.0481 | 15.208229 | 73.01 | 11.64 |
450 | 150 | 100 | 500 | 1.0282 | 17.360258 | 67.10 | 11.98 |
600 | 150 | 100 | 500 | 1.0115 | 18.457598 | 62.53 | 11.67 |
750 | 150 | 100 | 500 | 0.9977 | 18.975244 | 58.92 | 11.15 |
Thickness of CBI (nm) | HTM (150 nm) | TiO2 (nm) | Thickness of FTO (nm) | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|---|---|---|
450 | Spiro-OMeTAD | 100 | 500 | 1.0282 | 17.360258 | 67.10 | 11.98 |
450 | Cu2O | 100 | 500 | 0.8323 | 18.077195 | 63.09 | 9.49 |
450 | P3HT | 100 | 500 | 0.8503 | 17.88662 | 61.55 | 9.24 |
450 | PTAA | 100 | 500 | 0.8725 | 17.869913 | 60.63 | 9.45 |
CBI (nm) | Spiro-OMeTAD (nm) | ETL (100 nm) | FTO (nm) | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|---|---|---|
450 | 100 | SnO2 | 500 | 1.0276 | 17.192006 | 67.09 | 11.85 |
450 | 100 | TiO2 | 500 | 1.0282 | 17.360258 | 67.10 | 11.98 |
450 | 100 | ZnO | 500 | 1.0278 | 17.288199 | 67.07 | 11.92 |
450 | 100 | ZnSe | 500 | 1.0279 | 17.298631 | 67.07 | 11.93 |
Thickness of CBI (nm) | Thickness of Spiro-OMeTAD (nm) | TiO2 (nm) | Thickness of FTO (nm) | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|---|---|---|
450 | 150 | 100 | 500 | 1.0282 | 17.360258 | 67.10 | 11.98 |
450 | 150 | 150 | 500 | 1.0280 | 17.289541 | 67.11 | 11.93 |
450 | 150 | 200 | 500 | 1.0280 | 17.289654 | 67.11 | 11.93 |
450 | 150 | 300 | 500 | 1.0280 | 17.289024 | 67.11 | 11.93 |
Absorber Material | ETL | HTL | Jsc (mA/cm2) | FF (%) | Voc (V) | PCE (%) | Refs. |
---|---|---|---|---|---|---|---|
CsSnI3 | TiO2 | Spiro-OMeTAD | 18.63 | 82.45 | 0.88 | 13.63 | [52] |
FA0.5MA0.5Pb0.5Sn0.5I3 (initial conditions) | C60 | PEDOT:PSS | 28.75 | 76.66 | 0.67 | 14.79 | [53] |
FASnI3 (initial device) | ZnOS | CuSCN | 24.19 | 77.63 | 0.76 | 14.46 | [46] |
Cs2TiBr6 | SnO2 | MoO3 | 8.66 | 86.45 | 1.53 | 11.49 | [54] |
Cs3Sb2Br9 | TiO2 | Spiro-OMeTAD | 13.67 | 87.61 | 1.31 | 15.69 | [55] |
Cs2AgInCl3Br3 | ZnSe | Copper barium thio stannate (CBTS) | 9.48 | 90.28 | 1.45 | 12.46 | [56] |
Cs2TiBr6 | TiO2 | NiO | 6.33 | 76.34 | 1.14 | 5.50 | [57] |
Cs2AgBiBr6 | ZnO | Cu2O | 11.16 | 43.97 | 1.05 | 5.16 | [58] |
CsGeI3 | TiO2 | - | 21.03 | 44.80 | 1.21 | 10.91 | [59] |
CuBi2O4 | SrSnO3 | - | 20.70 | 80.71 | 1.32 | 22.19 | [60] |
La-BiFeO3 | TiO2 | 22.24 | 86.67 | 1.23 | 23.87 | [61] | |
CBI | TiO2 | Spiro-OMeTAD | 17.36 | 67.10 | 1.02 | 11.98 | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Kumar, P.; Ahmad, K.; Khan, R.A. Simulation of Lead-Free Perovskite Solar Cells with Improved Performance. Crystals 2025, 15, 171. https://doi.org/10.3390/cryst15020171
Ali S, Kumar P, Ahmad K, Khan RA. Simulation of Lead-Free Perovskite Solar Cells with Improved Performance. Crystals. 2025; 15(2):171. https://doi.org/10.3390/cryst15020171
Chicago/Turabian StyleAli, Saood, Praveen Kumar, Khursheed Ahmad, and Rais Ahmad Khan. 2025. "Simulation of Lead-Free Perovskite Solar Cells with Improved Performance" Crystals 15, no. 2: 171. https://doi.org/10.3390/cryst15020171
APA StyleAli, S., Kumar, P., Ahmad, K., & Khan, R. A. (2025). Simulation of Lead-Free Perovskite Solar Cells with Improved Performance. Crystals, 15(2), 171. https://doi.org/10.3390/cryst15020171