An Architectural Battery Designed by Substituting Lithium with Second Main Group Metals (Be, Mg, Ca/Cathode) and Hybrid Oxide of Fourth Group Ones (Si, Ge, Sn/Anode) Nanomaterials Towards H2 Adsorption: A Computational Study
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Evaluation of Charge Density Differences (CDDs)
3.2. Total Density of States
3.3. Electron Localization Function Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Du, A.; Guo, Z.; Wang, C.; Zhou, X.; Zhao, J.; Sun, F.; Dong, S.; Cui, G. Uneven stripping behavior, an unheeded killer of Mg anodes. Adv. Mater. 2022, 34, 2201886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Zhao, W.; Dou, H.; Zhao, X.; Liu, Y.; Zhang, B.; Yang, X. Defect-free metal–organic framework membrane for precise ion/solvent separation toward highly stable magnesium metal anode. Adv. Mater. 2022, 34, 2108114. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, Y.; Jiang, L.; Dong, D.; Wang, W.; Fan, J.; Lu, Y.-C. Non-nucleophilic electrolyte with non-fluorinated hybrid-solvents for long-life magnesium metal batteries. Energy Environ. Sci. 2023, 16, 265–274. [Google Scholar] [CrossRef]
- Leong, K.W.; Pan, W.; Yi, X.; Luo, S.; Zhao, X.; Zhang, Y.; Wang, Y.; Mao, J.; Chen, Y.; Xuan, J.; et al. Next-generation magnesium-ion batteries: The quasi-solid-state approach to multivalent metal ion storage. Sci. Adv. 2023, 9, eadh1181. [Google Scholar] [CrossRef]
- Wang, P.; Yan, X. Recent advances in Mg-Li and Mg-Na hybrid batteries. Energy Storage Mater. 2022, 45, 142–181. [Google Scholar] [CrossRef]
- Zhao, X.; Lehto, V.P. Challenges and prospects of nanosized silicon anodes in lithium-ion batteries. Nanotechnology 2021, 32, 042002. [Google Scholar] [CrossRef]
- Wen, Q.; Qu, F.; Yu, Z.; Graczyk-Zajac, M.; Xiong, X.; Riedel, R. Erratum to: Si-based polymer-derived ceramics for energy conversion and storage. J. Adv. Ceram. 2022, 11, 984. [Google Scholar] [CrossRef]
- Ge, M.; Cao, C.; Biesold, G.M.; Sewell, C.D.; Hao, S.M.; Huang, J.; Zhang, W.; Lai, Y.; Lin, Z. Recent advances in silicon-based electrodes: From fundamental research toward practical applications. Adv. Mater. 2021, 33, 2004577. [Google Scholar] [CrossRef]
- Shao, G.; Hanaor, D.A.H.; Wang, J.; Kober, D.; Li, S.; Wang, X.; Shen, X.; Bekheet, M.F.; Gurlo, A. Polymer-derived SiOC integrated with a graphene aerogel as a highly stable Li-ion battery anode. ACS Appl. Mater. Interfaces 2020, 12, 46045. [Google Scholar] [CrossRef]
- Mera, G.; Navrotsky, A.; Sen, S.; Kleebe, H.J.; Riedel, R. Polymer-derived SiCN and SiOC ceramics–structure and energetics at the nanoscale. J. Mater. Chem. A 2013, 1, 3826. [Google Scholar] [CrossRef]
- Wilamowska-Zawlocka, M.; Puczkarski, P.; Grabowska, Z.; Kaspar, J.; Graczyk-Zajac, M.; Riedel, R.; Sorarù, G.D. Silicon oxycarbide ceramics as anodes for lithium ion batteries: Influence of carbon content on lithium storage capacity. RSC Adv. 2016, 6, 104597–104607. [Google Scholar] [CrossRef]
- VPradeep, V.S.; Ayana, D.G.; Graczyk-Zajac, M.; Soraru, G.D.; Riedel, R. High rate capability of SiOC ceramic aerogels with tailored porosity as anode materials for Li-ion batteries. Electrochim. Acta 2015, 157, 41–45. [Google Scholar] [CrossRef]
- Guo, W.; Icin, O.; Vakifahmetoglu, C.; Kober, D.; Gurlo, A.; Bekheet, M.F. Magnesium-Ion Battery Anode from Polymer-Derived SiOC Nanobeads. Adv. Funct. Mater. 2023, 33, 2304933. [Google Scholar] [CrossRef]
- Guo, W.; Wang, J.; Gurlo, A.; Bekheet, M.F. Tin–containing Silicon Oxycarbonitride Ceramic Nanocomposites as Stable Anode for Magnesium Ion Batteries. Batter. Supercaps 2024, 7, e202400032. [Google Scholar] [CrossRef]
- Shi, C.; Huang, H.; Xia, Y.; Yu, J.; Fang, R.; Liang, C.; Zhang, J.; Gan, Y.; Zhang, W. Importing Tin Nanoparticles into Biomass-Derived Silicon Oxycarbides with High-Rate Cycling Capability Based on Supercritical Fluid Technology. Chem. A Eur. J. 2019, 25, 7719–7725. [Google Scholar] [CrossRef]
- Kravchyk, K.; Protesescu, L.; Bodnarchuk, M.I.; Krumeich, F.; Yarema, M.; Walter, M.; Guntlin, C.; Kovalenko, M.V. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. J. Am. Chem. Soc. 2013, 135, 4199–4202. [Google Scholar] [CrossRef]
- Gonzalez, J.; Sun, K.; Huang, M.; Dillon, S.; Chasiotis, I.; Lambros, J. X-ray microtomography characterization of Sn particle evolution during lithiation/delithiation in lithium ion batteries. J. Power Sources 2015, 285, 205–209. [Google Scholar] [CrossRef]
- Zhao, L.; Bi, S.; Li, J.; Wen, Y.; Zhang, H.; Zhang, D.; Lu, S.; Yin, P.; Shi, F.; Yan, J.; et al. Prussian blue analogues for advanced non-aqueous sodium ion batteries: Redox mechanisms, key challenges and modification strategies. Energy Storage Mater. 2025, 78, 104256. [Google Scholar] [CrossRef]
- Dubey, R.J.C.; Sasikumar, P.V.W.; Krumeich, F.; Blugan, G.; Kuebler, J.; Kravchyk, K.V.; Graule, T.; Kovalenko, M.V. Silicon Oxycarbide—Tin Nanocomposite as a High-Power-Density Anode for Li-Ion Batteries. Adv. Sci. 2019, 6, 1901220. [Google Scholar] [CrossRef]
- Kaspar, J.; Terzioglu, C.; Ionescu, E.; Graczyk-Zajac, M.; Hapis, S.; Kleebe, H.J.; Riedel, R. Stable SiOC/Sn nanocomposite anodes for lithium-ion batteries with outstanding cycling stability. Adv. Funct. Mater. 2014, 24, 4097–4104. [Google Scholar] [CrossRef]
- Youn, D.H.; Heller, A.; Mullins, C.B. Simple synthesis of nanostructured Sn/nitrogen-doped carbon composite using nitrilotriacetic acid as lithium ion battery anode. Chem. Mater. 2016, 28, 1343–1347. [Google Scholar] [CrossRef]
- Nazeer, W.; Farooq, A.; Younas, M.; Munir, M.; Kang, S.M. On Molecular Descriptors of Carbon Nanocones. Biomolecules 2018, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, Z.; Cole, M.T.; Wang, A.; Guo, X.; Liu, X.; Lyu, W.; Teng, H.; Qv, Y.; Liu, G.; et al. Nanocone-Shaped Carbon Nanotubes Field-Emitter Array Fabricated by Laser Ablation. Nanomaterials 2021, 11, 3244. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Cao, Y.; Guo, N.; Li, Y.; Jia, W.; Jia, D. A simple method to synthesize V2O5 nanostructures with controllable morphology for high performance Li-ion batteries. Electrochim. Acta 2016, 222, 1691–1699. [Google Scholar] [CrossRef]
- Yodsin, N.; Sakagami, H.; Udagawa, T.; Ishimoto, T.; Jungsuttiwong, S.; Tachikawa, M. Metal-doped carbon nanocones as highly efficient catalysts for hydrogen storage: Nuclear quantum effect on hydrogen spillover mechanism. Mol. Catal. 2021, 504, 111486. [Google Scholar] [CrossRef]
- Taha, H.O.; El Mahdy, A.M.; Shemy, F.E.S.E.; Hassan, M.M. Hydrogen storage in SiC, GeC, and SnC nanocones functionalized with nickel, Density Functional Theory—Study. Int. J. Uantum Chem. 2023, 123, e27023. [Google Scholar] [CrossRef]
- Wei, T.; Zhou, Y.; Sun, C.; Guo, X.; Xu, S.; Chen, D.; Tang, Y. An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities. Nano Res. 2023, 17, 2763–2769. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Nanomaterials for Sustainable Energy in Hydrogen-Fuel Cell: Functionalization and Characterization of Carbon Nano-Semiconductors with Silicon, Germanium, Tin or Lead through Density Functional Theory Study. Russ. J. Phys. Chem. B 2024, 18, 607–623. [Google Scholar] [CrossRef]
- Mollaamin, F.; Shahriari, S.; Monajjemi, M. Influence of Transition Metals for Emergence of Energy Storage in Fuel Cells through Hydrogen Adsorption on the MgAl Surface. Russ. J. Phys. Chem. B 2024, 18, 398–418. [Google Scholar] [CrossRef]
- Mollaamin, F. Competitive Intracellular Hydrogen-nanocarrier Among Aluminum, Carbon, or Silicon Implantation: A Novel Technology of Eco-Friendly Energy Storage using Research Density Functional Theory. Russ. J. Phys. Chem. B 2024, 18, 805–820. [Google Scholar] [CrossRef]
- Che, H.; Liu, J.; Wang, H.; Wang, X.; Zhang, S.S.; Liao, X.-Z.; Ma, Z.-F. Rubidium and cesium ions as electrolyte additive for improving performance of hard carbon anode in sodium-ion battery. Electrochem. Commun. 2017, 83, 20–23. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, Y.; Zhang, T.; Tian, J.; Gao, F.; Zhao, Y.; Bu, X.; Quan, T. Competition between discharge reaction and side reaction for anode’s lithium during internal short circuit in lithium-ion batteries. J. Clean. Prod. 2024, 470, 143280. [Google Scholar] [CrossRef]
- Bu, X.; Zhu, Y.; Wang, C.; Li, W.; Xia, Y.; Zhao, Y. 1T-VS2@V2O3 Synergistic Nanoarchitecture-Based Lamellar Clusters as the High Conductivity Cathodes of Thermal Batteries. ACS Appl. Mater. Interfaces 2024, 16, 7200–7210. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Jiang, T.; Guan, Q.; Liu, L.; Yang, G.; Wang, P.; Zhang, Y.; Tian, L.; Li, Y.; Shi, F. Synergistic effect of Y2O3 and carbon coating of silicon anode achieved high stable lithium storage. J. Alloys Compd. 2025, 1027, 180641. [Google Scholar] [CrossRef]
- Wang, J.; Gili, A.; Grünbacher, M.; Praetz, S.; Epping, J.D.; Görke, O.; Schuck, G.; Penner, S.; Schlesiger, C.; Schomäcker, R.; et al. Silicon oxycarbonitride ceramic containing nickel nanoparticles: From design to catalytic application. Mater. Adv. 2021, 2, 1715–1730. [Google Scholar] [CrossRef]
- Wang, J.; Kober, D.; Shao, G.; Epping, J.D.; Görke, O.; Li, S.; Gurlo, A.; Bekheet, M.F. Stable anodes for lithium-ion batteries based on tin-containing silicon oxycarbonitride ceramic nanocomposites. Mater. Today 2022, 26, 100989. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. B 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Alaya, R.; Kourchid, K.; Althaqafi, Y.; Mbarki, M.; Rebey, A. Structural, Electronic and Optical Properties of the Ordered InP1–xBix: An Ab-Initio Study. Russ. J. Phys. Chem. B 2023, 17, 868–877. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Jordan, K.D. Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer. J. Phys. Chem. 1994, 98, 10089–10094. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dennington, R.; Keith Todd, A.; Millam John, M. GaussView; Version 6.06.16; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Xu, H.; Wu, N.; Ji, B.; Cai, J.; Yao, W.; Wang, Z.; Zhang, Y.; Zhang, X.; Guo, S.; Zhou, X.; et al. Lattice Water Deprotonation Enables Potassium-Ion Chemistries. Angew. Chem. Int. Ed. 2025, e202503904. [Google Scholar] [CrossRef]
- Xu, Z.; Qin, C.; Yu, Y.; Jiang, G.; Zhao, L. First-principles study of adsorption, dissociation, and diffusion of hydrogen on α-U (110) surface. AIP Adv. 2024, 14, 055114. [Google Scholar] [CrossRef]
- Mollaamin, F. Alkali Metals Doped on Tin-Silicon and Germanium-Silicon Oxides for Energy Storage in Hybrid Biofuel Cells: A First-Principles Study. Russ. J. Phys. Chem. B 2025, 19, 720–734. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503. [Google Scholar] [CrossRef]
- Matta, C.F.; Ayers, P.W.; Cook, R. The Physics of Electron Localization and Delocalization. In Electron Localization-Delocalization Matrices; Lecture Notes in Chemistry; Springer: Cham, Switzerland, 2024; Volume 112. [Google Scholar] [CrossRef]
- Bader, R.F.W. The zero-flux surface and the topological and quantum definitions of an atom in a molecule. Theor. Chem. Accounts 2001, 105, 276–283. [Google Scholar] [CrossRef]
- Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Savin, A.; Jepsen, O.; Flad, J.; Andersen, O.K.; Preuss, H.; von Schnering, H.G. Electron Localization in Solid-State Structures of the Elements: The Diamond Structure. Angew. Chem. Int. Ed. Engl. 1992, 31, 187–188. [Google Scholar] [CrossRef]
- Lu, B.; Song, Y.; Zhang, Q.; Pan, J.; Cheng, Y.-T.; Zhang, J. Voltage hysteresis of lithium ion batteries caused by mechanical stress. Phys. Chem. Chem. Phys. 2016, 18, 4721–4727. [Google Scholar] [CrossRef] [PubMed]
MgBe [SiO–GeO] | MgBe [SiO–GeO].H2 | MgCa [SiO–GeO] | MgCa [SiO–GeO].H2 | ||||
---|---|---|---|---|---|---|---|
Atom | Q | Atom | Q | Atom | Q | Atom | Q |
Si1 | 1.4393 | Si1 | 1.4305 | Si1 | 1.4372 | Si1 | 1.4325 |
O2 | −0.6703 | O2 | −0.6828 | O2 | −0.6788 | O2 | −0.6881 |
O3 | −0.8343 | O3 | −0.8327 | O3 | −0.8340 | O3 | −0.8329 |
Si4 | 1.3740 | Si4 | 1.3631 | Si4 | 1.366 | Si4 | 1.3546 |
Si5 | 1.4332 | Si5 | 1.4236 | Si5 | 1.4286 | Si5 | 1.4205 |
Si6 | 1.4172 | Si6 | 1.4043 | Si6 | 1.3943 | Si6 | 1.3921 |
O7 | −0.6767 | O7 | −0.6788 | O7 | −0.6763 | O7 | −0.6795 |
O8 | −0.8532 | O8 | −0.8514 | O8 | −0.8475 | O8 | −0.8450 |
O9 | −0.8153 | O9 | −0.8220 | O9 | −0.8197 | O9 | −0.8221 |
O10 | −0.9649 | O10 | −0.9656 | O10 | −1.2365 | O10 | −1.2353 |
O11 | −0.8329 | O11 | −0.8361 | O11 | −0.8281 | O11 | −0.8270 |
O12 | −1.0175 | O12 | −1.0178 | O12 | −1.0194 | O12 | −1.0193 |
Si13 | 1.5445 | Si13 | 1.5476 | Si13 | 1.5089 | Si13 | 1.5121 |
O14 | −0.7512 | O14 | −0.7688 | O14 | −0.7804 | O14 | −0.7884 |
O15 | −0.7733 | O15 | −0.7962 | O15 | −0.7745 | O15 | −0.7959 |
Ge16 | 1.3562 | Ge16 | 1.3394 | Ge16 | 1.3435 | Ge16 | 1.3411 |
O17 | −0.6284 | O17 | −0.6676 | O17 | −0.6324 | O17 | −0.6341 |
O18 | −0.7884 | O18 | −0.7866 | O18 | −0.7822 | O18 | −0.7821 |
Ge19 | 1.3576 | Ge19 | 1.3384 | Ge19 | 1.3549 | Ge19 | 1.3444 |
Ge20 | 1.3304 | Ge20 | 1.3158 | Ge20 | 1.3243 | Ge20 | 1.3063 |
Ge21 | 1.3682 | Ge21 | 1.3580 | Ge21 | 1.3704 | Ge21 | 1.3623 |
O22 | −0.6836 | O22 | −0.6495 | O22 | −0.6884 | O22 | −0.6937 |
O23 | −0.7965 | O23 | −0.7968 | O23 | −0.7970 | O23 | −0.7977 |
O24 | −0.9093 | O24 | −0.9021 | O24 | −1.1820 | O24 | −1.1798 |
O25 | −0.8050 | O25 | −0.8164 | O25 | −0.8135 | O25 | −0.8152 |
O26 | −0.9793 | O26 | −0.9859 | O26 | −0.9811 | O26 | −0.9853 |
O27 | −0.8325 | O27 | −0.8270 | O27 | −0.8143 | O27 | −0.8169 |
Ge28 | 1.2053 | Ge28 | 1.2023 | Ge28 | 1.1979 | Ge28 | 1.1995 |
O29 | −0.7461 | O29 | −0.7516 | O29 | −0.7978 | O29 | −0.8025 |
O30 | −0.7284 | O30 | −0.7719 | O30 | −0.7262 | O30 | −0.7438 |
Mg31 | 1.2824 | Mg31 | 1.2834 | Mg31 | 1.2514 | Mg31 | 1.2686 |
Be32 | 0.9790 | Be32 | 0.9635 | Ca32 | 1.7324 | Ca32 | 1.6878 |
H33 | −0.0845 | H33 | −0.0824 | ||||
H34 | −0.0343 | H34 | −0.1340 | ||||
H35 | 0.1936 | H35 | 0.1901 | ||||
H36 | 0.1630 | H36 | 0.1893 |
MgBe [SiO–SnO] | MgBe [SiO–SnO].H2 | MgCa [SiO–SnO] | MgCa [SiO–SnO].H2 | ||||
---|---|---|---|---|---|---|---|
Atom | Q | Atom | Q | Atom | Q | Atom | Q |
Si1 | 1.4285 | Si1 | 1.4183 | Si1 | 1.4300 | Si1 | 1.4257 |
O2 | −0.6719 | O2 | −0.6897 | O2 | −0.6895 | O2 | −0.6988 |
O3 | −0.8351 | O3 | −0.8318 | O3 | −0.8320 | O3 | −0.8304 |
Si4 | 1.3636 | Si4 | 1.3479 | Si4 | 1.3597 | Si4 | 1.3429 |
Si5 | 1.4168 | Si5 | 1.4086 | Si5 | 1.4167 | Si5 | 1.4093 |
Si6 | 1.4029 | Si6 | 1.3881 | Si6 | 1.3827 | Si6 | 1.3819 |
O7 | −0.6886 | O7 | −0.6904 | O7 | −0.6830 | O7 | −0.6892 |
O8 | −0.8536 | O8 | −0.8503 | O8 | −0.8450 | O8 | −0.8419 |
O9 | −0.8227 | O9 | −0.8313 | O9 | −0.8304 | O9 | −0.8334 |
O10 | −0.9564 | O10 | −0.9576 | O10 | −1.2393 | O10 | −1.2369 |
O11 | −0.8390 | O11 | −0.8425 | O11 | −0.8324 | O11 | −0.8316 |
O12 | −1.0083 | O12 | −1.0051 | O12 | −1.0091 | O12 | −1.0063 |
Si13 | 1.3627 | Si13 | 1.3705 | Si13 | 1.3426 | Si13 | 1.3483 |
O14 | −0.7749 | O14 | −0.7901 | O14 | −0.8001 | O14 | −0.8099 |
O15 | −0.7646 | O15 | −0.8013 | O15 | −0.7757 | O15 | −0.8049 |
Sn16 | 1.6457 | Sn16 | 1.6109 | Sn16 | 1.6092 | Sn16 | 1.6015 |
O17 | −0.8062 | O17 | −0.8108 | O17 | −0.7944 | O17 | −0.7967 |
O18 | −0.8870 | O18 | −0.8859 | O18 | −0.8719 | O18 | −0.8711 |
Sn19 | 1.6753 | Sn19 | 1.6503 | Sn19 | 1.6533 | Sn19 | 1.6358 |
Sn20 | 1.6269 | Sn20 | 1.5864 | Sn20 | 1.5903 | Sn20 | 1.5527 |
Sn21 | 1.6774 | Sn21 | 1.6537 | Sn21 | 1.6238 | Sn21 | 1.6110 |
O22 | −0.8309 | O22 | −0.8272 | O22 | −0.8107 | O22 | −0.8102 |
O23 | −0.8919 | O23 | −0.8907 | O23 | −0.8810 | O23 | −0.8797 |
O24 | −0.9885 | O24 | −0.9824 | O24 | −1.2527 | O24 | −1.2501 |
O25 | −0.9185 | O25 | −0.9202 | O25 | −0.9201 | O25 | −0.9219 |
O26 | −1.0596 | O26 | −1.0603 | O26 | −1.0678 | O26 | −1.0690 |
O27 | −0.9570 | O27 | −0.9598 | O27 | −0.9403 | O27 | −0.9417 |
Sn28 | 1.6716 | Sn28 | 1.6607 | Sn28 | 1.6348 | Sn28 | 1.6351 |
O29 | −0.8873 | O29 | −0.9011 | O29 | −0.9249 | O29 | −0.9273 |
O30 | −0.8926 | O30 | −0.9072 | O30 | −0.8887 | O30 | −0.9027 |
Mg31 | 1.1567 | Mg31 | 1.2116 | Mg31 | 1.1344 | Mg31 | 1.1928 |
Be32 | 0.9065 | Be32 | 0.9048 | Ca32 | 1.7117 | Ca32 | 1.6622 |
H33 | −0.0736 | H33 | −0.0707 | ||||
H34 | −0.0386 | H34 | −0.1403 | ||||
H35 | 0.1767 | H35 | 0.1734 | ||||
H36 | 0.1597 | H36 | 0.1924 |
Heteroclusters | Es × 10−3 | Eb × 10−3 | D | EHOMO | ELUMO | ∆E | C |
---|---|---|---|---|---|---|---|
MgBe [SiO–GeO] | −976.9153 | −1.4649 | 3.4528 | −5.7388 | −5.1779 | 0.5609 | 645.7713 |
MgBe [SiO–GeO].H2 | −978.3802 | 3.7950 | −5.4447 | −4.8919 | 0.5528 | ||
MgCa [SiO–GeO] | −990.5851 | −1.4469 | 0.9860 | −5.5242 | −4.9432 | 0.5809 | 543.9274 |
MgCa [SiO–GeO].H2 | −992.0320 | 2.2704 | −5.3185 | −4.7421 | 0.5764 | ||
MgBe [SiO–SnO] | −975.2794 | −1.4631 | 7.4382 | −5.2431 | −4.6503 | 0.5927 | 505.4256 |
MgBe [SiO–SnO].H2 | −976.7425 | 7.4859 | −4.9463 | −4.3148 | 0.6315 | ||
MgCa [SiO–SnO] | −988.9556 | −1.4453 | 6.3492 | −5.0786 | −4.4365 | 0.6420 | 440.8573 |
MgCa [SiO–SnO].H2 | −990.4009 | 6.1184 | −4.8506 | −4.1993 | 0.6513 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollaamin, F.; Monajjemi, M. An Architectural Battery Designed by Substituting Lithium with Second Main Group Metals (Be, Mg, Ca/Cathode) and Hybrid Oxide of Fourth Group Ones (Si, Ge, Sn/Anode) Nanomaterials Towards H2 Adsorption: A Computational Study. Nanomaterials 2025, 15, 959. https://doi.org/10.3390/nano15130959
Mollaamin F, Monajjemi M. An Architectural Battery Designed by Substituting Lithium with Second Main Group Metals (Be, Mg, Ca/Cathode) and Hybrid Oxide of Fourth Group Ones (Si, Ge, Sn/Anode) Nanomaterials Towards H2 Adsorption: A Computational Study. Nanomaterials. 2025; 15(13):959. https://doi.org/10.3390/nano15130959
Chicago/Turabian StyleMollaamin, Fatemeh, and Majid Monajjemi. 2025. "An Architectural Battery Designed by Substituting Lithium with Second Main Group Metals (Be, Mg, Ca/Cathode) and Hybrid Oxide of Fourth Group Ones (Si, Ge, Sn/Anode) Nanomaterials Towards H2 Adsorption: A Computational Study" Nanomaterials 15, no. 13: 959. https://doi.org/10.3390/nano15130959
APA StyleMollaamin, F., & Monajjemi, M. (2025). An Architectural Battery Designed by Substituting Lithium with Second Main Group Metals (Be, Mg, Ca/Cathode) and Hybrid Oxide of Fourth Group Ones (Si, Ge, Sn/Anode) Nanomaterials Towards H2 Adsorption: A Computational Study. Nanomaterials, 15(13), 959. https://doi.org/10.3390/nano15130959