Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,544)

Search Parameters:
Keywords = time-packing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 957 KiB  
Article
The Influence of Blood Transfusion Indexed to Patient Blood Volume on 5-Year Mortality After Coronary Artery Bypass Grafting—An EuroSCORE II Adjusted Spline Regression Analysis
by Joseph Kletzer, Maximilian Kreibich, Martin Czerny, Tim Berger, Albi Fagu, Laurin Micek, Ulrich Franke, Matthias Eschenhagen, Tau S. Hartikainen, Mirjam Wild and Dalibor Bockelmann
J. Cardiovasc. Dev. Dis. 2025, 12(8), 287; https://doi.org/10.3390/jcdd12080287 - 28 Jul 2025
Viewed by 251
Abstract
Background: While timely blood transfusion is critical for restoring oxygen-carrying capacity after coronary artery bypass grafting (CABG), allogeneic blood product transfusions are independently associated with increased long-term mortality, necessitating a risk-stratified approach to balance oxygen delivery against immunological complications and infection risks. Methods: [...] Read more.
Background: While timely blood transfusion is critical for restoring oxygen-carrying capacity after coronary artery bypass grafting (CABG), allogeneic blood product transfusions are independently associated with increased long-term mortality, necessitating a risk-stratified approach to balance oxygen delivery against immunological complications and infection risks. Methods: We retrospectively analyzed 3376 patients undergoing isolated CABG between 2005 and 2023 at a single tertiary center. Patients who died during their perioperative hospital stay within 30 days were excluded. Transfusion burden was assessed both as the absolute number of blood product units (packed red blood cells, platelet transfusion, fresh frozen plasma) and as a percentage of calculated patient blood volume. The primary outcome was all-cause mortality at 5 years. Flexible Cox regression with penalized smoothing splines, adjusted for EuroSCORE II, was used to model dose–response relationships. Results: From our cohort of 3376 patients, a total of 137 patients (4.05%) received >10 units of packed red blood cells (PRBC) perioperatively. These patients were older (median 71 vs. 68 years, p < 0.001), more often female (29% vs. 15%, p < 0.001), and had higher preoperative risk (EuroSCORE II: 2.53 vs. 1.41, p < 0.001). After 5 years, mortality was 42% in the massive transfusion group versus 10% in controls. Spline regression revealed an exponential increase in mortality with transfused units: 14 units yielded a 1.5-fold higher hazard of death (HR 1.46, 95% CI 1.31–1.64), rising to HR 2.71 (95% CI 2.12–3.47) at 30 units. When transfusion was indexed to blood volume, this relationship became linear and more tightly correlated with mortality, with lower maximum hazard ratios and narrower confidence intervals. Conclusions: Indexing transfusion burden to the percentage of patient blood volume replaced provides a more accurate and clinically actionable predictor of 5-year mortality after CABG than absolute unit counts. Our findings support a shift toward individualized, volume-based transfusion strategies to optimize patient outcomes and resource stewardship in a time of limited availability of blood products. Full article
Show Figures

Figure 1

42 pages, 10454 KiB  
Article
State-of-Charge Estimation of Medium- and High-Voltage Batteries Using LSTM Neural Networks Optimized with Genetic Algorithms
by Romel Carrera, Leonidas Quiroz, Cesar Guevara and Patricia Acosta-Vargas
Sensors 2025, 25(15), 4632; https://doi.org/10.3390/s25154632 - 26 Jul 2025
Viewed by 424
Abstract
This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48–72 V) lithium-ion battery packs under [...] Read more.
This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48–72 V) lithium-ion battery packs under standardized driving cycles (NEDC and WLTP). The proposed method enhances prediction accuracy under dynamic conditions by recalibrating the LSTM output with CC estimates through a dynamic fusion parameter α. The novelty of this approach lies in the integration of machine learning and physical modeling, optimized via evolutionary algorithms, to address limitations of standalone methods in real-time applications. The hybrid model achieved a mean absolute error (MAE) of 0.181%, outperforming conventional estimation strategies. These findings contribute to more reliable battery management systems (BMS) for electric vehicles and second-life applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

27 pages, 3540 KiB  
Article
Multi-Objective Optimization of IME-Based Acoustic Tweezers for Mitigating Node Displacements
by Hanjui Chang, Yue Sun, Fei Long and Jiaquan Li
Polymers 2025, 17(15), 2018; https://doi.org/10.3390/polym17152018 - 24 Jul 2025
Viewed by 242
Abstract
Acoustic tweezers, as advanced micro/nano manipulation tools, play a pivotal role in biomedical engineering, microfluidics, and precision manufacturing. However, piezoelectric-based acoustic tweezers face performance limitations due to multi-physical coupling effects during microfabrication. This study proposes a novel approach using injection molding with embedded [...] Read more.
Acoustic tweezers, as advanced micro/nano manipulation tools, play a pivotal role in biomedical engineering, microfluidics, and precision manufacturing. However, piezoelectric-based acoustic tweezers face performance limitations due to multi-physical coupling effects during microfabrication. This study proposes a novel approach using injection molding with embedded electronics (IMEs) technology to fabricate piezoelectric micro-ultrasonic transducers with micron-scale precision, addressing the critical issue of acoustic node displacement caused by thermal–mechanical coupling in injection molding—a problem that impairs wave transmission efficiency and operational stability. To optimize the IME process parameters, a hybrid multi-objective optimization framework integrating NSGA-II and MOPSO is developed, aiming to simultaneously minimize acoustic node displacement, volumetric shrinkage, and residual stress distribution. Key process variables—packing pressure (80–120 MPa), melt temperature (230–280 °C), and packing time (15–30 s)—are analyzed via finite element modeling (FEM) and validated through in situ tie bar elongation measurements. The results show a 27.3% reduction in node displacement amplitude and a 19.6% improvement in wave transmission uniformity compared to conventional methods. This methodology enhances acoustic tweezers’ operational stability and provides a generalizable framework for multi-physics optimization in MEMS manufacturing, laying a foundation for next-generation applications in single-cell manipulation, lab-on-a-chip systems, and nanomaterial assembly. Full article
(This article belongs to the Collection Feature Papers in Polymer Processing and Engineering)
Show Figures

Figure 1

15 pages, 1224 KiB  
Article
Degradation-Aware Bi-Level Optimization of Second-Life Battery Energy Storage System Considering Demand Charge Reduction
by Ali Hassan, Guilherme Vieira Hollweg, Wencong Su, Xuan Zhou and Mengqi Wang
Energies 2025, 18(15), 3894; https://doi.org/10.3390/en18153894 - 22 Jul 2025
Viewed by 263
Abstract
Many electric vehicle (EV) batteries will retire in the next 5–10 years around the globe. These batteries are retired when no longer suitable for energy-intensive EV operations despite having 70–80% capacity left. The second-life use of these battery packs has the potential to [...] Read more.
Many electric vehicle (EV) batteries will retire in the next 5–10 years around the globe. These batteries are retired when no longer suitable for energy-intensive EV operations despite having 70–80% capacity left. The second-life use of these battery packs has the potential to address the increasing demand for battery energy storage systems (BESSs) for the electric grid, which will also create a robust circular economy for EV batteries. This article proposes a two-layered energy management algorithm (monthly layer and daily layer) for demand charge reduction for an industrial consumer using photovoltaic (PV) panels and BESSs made of retired EV batteries. In the proposed algorithm, the monthly layer (ML) calculates the optimal dispatch for the whole month and feeds the output to the daily layer (DL), which optimizes the BESS dispatch, BESSs’ degradation, and energy imported/exported from/to the grid. The effectiveness of the proposed algorithm is tested as a case study of an industrial load using a real-world demand charge and Real-Time Pricing (RTP) tariff. Compared with energy management with no consideration of degradation or demand charge reduction, this algorithm results in 71% less degradation of BESS and 57.3% demand charge reduction for the industrial consumer. Full article
Show Figures

Figure 1

22 pages, 4525 KiB  
Article
Comparison of Ultrasound-Microwave-Assisted and Hot Reflux Extractions of Polysaccharides from Alpinia officinarum Hance: Optimization, Characterization, and Antioxidant Activity
by Haibao Tang, Baogang Zhou, Mengge Sun, Yihan Wang, Ran Cheng, Tao Tan and Dongsheng Yang
Molecules 2025, 30(14), 3031; https://doi.org/10.3390/molecules30143031 - 19 Jul 2025
Viewed by 311
Abstract
Alpinia officinarum Hance exhibits various bioactivities, with polysaccharides being one of its key bioactive components. However, the relationship between the structural characteristics of these polysaccharides and their bioactivities remains unclear and underexplored. In this study, to optimize the extraction process, a Response Surface [...] Read more.
Alpinia officinarum Hance exhibits various bioactivities, with polysaccharides being one of its key bioactive components. However, the relationship between the structural characteristics of these polysaccharides and their bioactivities remains unclear and underexplored. In this study, to optimize the extraction process, a Response Surface Methodology-based design combined with single-factor experiments was applied to determine the optimal conditions for the ultrasonic-microwave-assisted extraction of polysaccharides from A. officinarum. The primary structural characteristics and antioxidant activities of two polysaccharide fractions, PAOR-1 extracted by ultrasonic-microwave-assisted extraction and PAOR-2 extracted by hot reflux extraction (HRE), were systematically compared. The optimal extraction conditions, including a liquid–solid ratio of 1:50, extraction time of 19 mins, and ultrasonic power of 410 W, yielded a maximum polysaccharide extraction rate of 18.28% ± 2.23%. The extracted polysaccharides were characterized as acidic polysaccharides with a three-dimensional structure. PAOR-1 and PAOR-2 have different monosaccharide compositions, surface morphologies, and thermal stabilities. The antioxidant activity in vitro studies suggest that PAOR-1 may have higher antioxidant activity than PAOR-2 due to its higher content of uronic acids, lower relative molecular mass, and a more closely packed spatial configuration. These findings provide a theoretical basis for the development and utilization of AOR. Full article
(This article belongs to the Collection Advances in Food Chemistry)
Show Figures

Figure 1

16 pages, 1420 KiB  
Article
Light-Driven Quantum Dot Dialogues: Oscillatory Photoluminescence in Langmuir–Blodgett Films
by Tefera Entele Tesema
Nanomaterials 2025, 15(14), 1113; https://doi.org/10.3390/nano15141113 - 18 Jul 2025
Viewed by 290
Abstract
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm [...] Read more.
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm laser illumination on the red absorption edge of the blue-emitting smaller QDs (QD450), the red-emitting larger QDs (QD645) exhibited oscillatory temporal dynamics in their photoluminescence (PL), characterized by a pronounced blueshift in the emission peak wavelength and an abrupt decrease in peak intensity. Conversely, excitation by a 405 nm laser on the blue absorption edge induced a drastic redshift in the emission wavelength over time. These significant shifts in emission spectra are attributed to photon- and anisotropic-strain-assisted interlayer atom transfer. The findings provide new insights into strain-driven atomic rearrangements and their impact on the photophysical behavior of QD systems. Full article
Show Figures

Graphical abstract

33 pages, 3983 KiB  
Article
Digital Twin-Driven SimLean-TRIZ Framework in Cold Room Door Production
by Thenarasu M, Sumesh Arangot, Narassima M S, Olivia McDermott and Arjun Panicker
Modelling 2025, 6(3), 67; https://doi.org/10.3390/modelling6030067 - 14 Jul 2025
Viewed by 427
Abstract
The study aims to increase productivity in the cold room door manufacturing industry by addressing non-value-adding operations, identifying bottlenecks, and reducing processing time through digital twin (DT)-based simulation. The goal is to eliminate the need for supply chain outsourcing and increase overall efficiency. [...] Read more.
The study aims to increase productivity in the cold room door manufacturing industry by addressing non-value-adding operations, identifying bottlenecks, and reducing processing time through digital twin (DT)-based simulation. The goal is to eliminate the need for supply chain outsourcing and increase overall efficiency. The research involves developing a DT of the existing production process for five distinct categories of cold room doors: flush door, single door, double door, face-mounted door, and sliding door. Simulation was used to uncover problems at multiple stations, encompassing curing, welding, and packing. Lean principles were used to identify the causes of inefficiency, and the process was improved using TRIZ principles. These changes produced a 42.90% improvement in productivity, a 20% dependence reduction on outsourcing and an increase of 10.5% added inventory to the shortage demand level. The approach presented is provided for a particular manufacturer of cold room doors, but the methods and techniques used are generally applicable to other manufacturing companies to support systematic innovation. Combining DT simulation, lean techniques and TRIZ principles, this study presents a strong approach to addressing the productivity challenges in manufacturing. The incorporation of these methods has brought considerable operational efficiency and has minimised dependency on external outsourcing. Full article
Show Figures

Figure 1

21 pages, 3527 KiB  
Article
Research on Lithium Iron Phosphate Battery Balancing Strategy for High-Power Energy Storage System
by Ren Zhou, Junyong Lu, Yiting Wu, Hehui Zhang and Kangwei Yan
Energies 2025, 18(14), 3671; https://doi.org/10.3390/en18143671 - 11 Jul 2025
Cited by 1 | Viewed by 311
Abstract
For the problem of consistency decline during the long-term use of battery packs for high-voltage and high-power energy storage systems, a dynamic timing adjustment balancing strategy is proposed based on the charge–discharge topology. Compared with the traditional balancing strategy, the dynamic timing adjustment [...] Read more.
For the problem of consistency decline during the long-term use of battery packs for high-voltage and high-power energy storage systems, a dynamic timing adjustment balancing strategy is proposed based on the charge–discharge topology. Compared with the traditional balancing strategy, the dynamic timing adjustment balance strategy is more suitable for the transient high-frequency pulse and high-rate output of a high-power energy storage system. It gives full play to the pulse output adjustment function of the integrated charge–discharge topology. The advantages of this strategy include improving the balance between battery groups, the operating capacity of the system, and improving the continuous working ability of the system. Combined with the work condition of the high-power energy storage system, a balance control model is established, and a cycle charge–discharge test platform of battery packs is built. The effectiveness and advantages of the balance strategy of dynamic timing adjustment are verified by the experiment and simulations. The balancing time is less than 2 min, and the voltage difference is less than 6 mv. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

10 pages, 2554 KiB  
Article
Superselective Unilateral Embolization of the Sphenopalatine Artery for Severe Posterior Epistaxis: A Prospective Study on the Safety and Efficacy
by Antonio Vizzuso, Maria Vittoria Bazzocchi, Antonio Spina, Giorgia Musacchia, Andrea De Vito, Giuseppe Meccariello, Enrico Petrella, Emanuela Giampalma and Matteo Renzulli
J. Clin. Med. 2025, 14(14), 4864; https://doi.org/10.3390/jcm14144864 - 9 Jul 2025
Viewed by 250
Abstract
Objectives: Epistaxis is a common condition affecting up to 60% of the population, with approximately 6% requiring medical intervention. Posterior epistaxis is particularly challenging, often necessitating endoscopic or endovascular treatment. Sphenopalatine artery (SPA) embolization is an effective treatment option, though concerns remain about [...] Read more.
Objectives: Epistaxis is a common condition affecting up to 60% of the population, with approximately 6% requiring medical intervention. Posterior epistaxis is particularly challenging, often necessitating endoscopic or endovascular treatment. Sphenopalatine artery (SPA) embolization is an effective treatment option, though concerns remain about the risks associated with nonselective or bilateral approaches. This study evaluates the efficacy and safety of unilateral superselective SPA embolization in managing severe posterior epistaxis. Methods: A prospective study of patients undergoing unilateral superselective SPA embolization for refractory posterior epistaxis over a four-year period was conducted. Demographic data, clinical history, prior treatments, and procedural characteristics were analyzed. The primary endpoint was clinical success, defined as the absence of recurrent bleeding within 24 h post-procedure. Secondary outcomes included recurrence at one month and complication rates. Results: Thirty-two patients with severe posterior epistaxis were included. All required nasal packing prior to embolization. Half had undergone previous endoscopic cauterization. Hypertension was present in 69%, and 56% were receiving anticoagulant or antiplatelet therapy. Clinical success was achieved in 100% of cases, with no rebleeding in the first 24 h. Two patients (6%) experienced early recurrence within seven days, requiring readmission. Minor complications included nasal dryness in two cases (6%); no major complications occurred. Mean fluoroscopy time was 19.9 ± 11 min. Conclusions: Unilateral superselective SPA embolization is a safe and highly effective treatment for severe posterior epistaxis, offering high initial success and low complication rates. Its adoption may reduce the need for bilateral procedures and surgical interventions. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

15 pages, 2258 KiB  
Article
Numerical Simulation of Phase Transition Process for Vertical Lift Underwater Monitoring Device Driven by Ocean Thermal Energy
by Zede Liang, Tielin Zhang and Qingqing Li
Appl. Sci. 2025, 15(13), 7616; https://doi.org/10.3390/app15137616 - 7 Jul 2025
Viewed by 228
Abstract
The energy consumption of current vertical-lifting underwater monitoring devices mainly falls into two categories: one fully supplied by battery packs; and the other partially by battery packs, with the rest from ocean thermal energy. Constrained by battery capacity, their operation time is limited, [...] Read more.
The energy consumption of current vertical-lifting underwater monitoring devices mainly falls into two categories: one fully supplied by battery packs; and the other partially by battery packs, with the rest from ocean thermal energy. Constrained by battery capacity, their operation time is limited, making long-term remote operations difficult. This study focuses on a device powered entirely by ocean thermal energy, which realizes the absorption and storage of energy through a phase change heat-exchange system, significantly extending its operation cycle and working area. A composite phase change material of n-hexadecane and graphite with a volume ratio of 9:1 is used. The Fluent software 2022 R1, based on the enthalpy-porosity method, simulates the phase change process of the device to analyze the effects of different structures and seawater temperatures. Results show that with the same phase change material volume and inner diameter of the cylindrical heat exchanger, a smaller outer diameter yields better phase change performance. Lower seawater temperature facilitates solidification. Due to natural convection in the liquid phase, the melting time is 520 s and solidification time is 4800 s, with the melting rate far exceeding the solidification rate. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

16 pages, 1925 KiB  
Article
Simulation of Pb(II) and Ni(II) Adsorption in a Packed Column: Effects of Bed Height, Flow Rate, and Initial Concentration on Performance Metrics
by Candelaria Tejada-Tovar, Ángel Villabona-Ortíz, Ángel Gonzalez-Delgado, Rodrigo Ortega-Toro and Sebastián Ortega-Puente
Processes 2025, 13(7), 2141; https://doi.org/10.3390/pr13072141 - 5 Jul 2025
Viewed by 325
Abstract
Numerous studies have been conducted employing various techniques to remove pollutants from water bodies. Among these techniques, adsorption a surface phenomenon that utilises adsorbents derived from agricultural residues has shown considerable potential for the removal of contaminants such as heavy metals. However, most [...] Read more.
Numerous studies have been conducted employing various techniques to remove pollutants from water bodies. Among these techniques, adsorption a surface phenomenon that utilises adsorbents derived from agricultural residues has shown considerable potential for the removal of contaminants such as heavy metals. However, most of these investigations have been carried out at the laboratory scale, with limited efforts directed towards predicting the performance of these systems at an industrial level. Accordingly, the present study aims to model a packed bed column at industrial scale for the removal of Pb(II) and Ni(II) ions from aqueous solutions, employing biomass derived from oil palm residues as the adsorbent material. To achieve this, Aspen Adsorption was used as a modelling and simulation tool to evaluate the impact of bed height, inlet flow rate, and initial concentration through a parametric assessment. This evaluation incorporated the Freundlich, Langmuir, and Langmuir–Freundlich isotherm models in conjunction with the Linear Driving Force (LDF) kinetic model. The results indicated that the optimal operating parameters included a column height of 5 m, a flow rate of 250 m3/day, and an initial metal concentration of 5000 mg/L. Moreover, all models demonstrated removal efficiencies of up to 94.6% for both Pb(II) and Ni(II). An increase in bed height resulted in longer breakthrough and saturation times but led to a reduction in adsorption efficiency. Conversely, higher flow rates shortened these times yet enhanced efficiency. These findings underscore the potential of computational modelling tools as predictive instruments for evaluating the performance of adsorption systems at an industrial scale. Full article
(This article belongs to the Special Issue Separation Processes for Environmental Preservation)
Show Figures

Figure 1

20 pages, 6872 KiB  
Article
The Simulation of Grouting Behavior in the Pea Gravel Filling Layer Behind a Double-Shield TBM Based on the Level Set Method
by Xinlong Li, Yulong Zhang, Dongjiao Cao, Yang Liu and Lin Chen
Appl. Sci. 2025, 15(13), 7542; https://doi.org/10.3390/app15137542 - 4 Jul 2025
Viewed by 274
Abstract
In double-shield TBM tunnel construction, grouting plays a vital role in consolidating the gravel backfill and maintaining the integrity of the segmental lining. To investigate the permeation behavior of grout within the pea gravel layer, a fluid dynamics model was developed in this [...] Read more.
In double-shield TBM tunnel construction, grouting plays a vital role in consolidating the gravel backfill and maintaining the integrity of the segmental lining. To investigate the permeation behavior of grout within the pea gravel layer, a fluid dynamics model was developed in this study. The model directly simulates the flow of grout through the porous medium by solving the Navier–Stokes equations and employs the level set method to track the evolving interface between the grout and air phases. Unlike conventional continuum approaches, this model incorporates particle-scale heterogeneity, allowing for a more realistic analysis of grout infiltration through the non-uniform pore structures formed by gravel packing. Three different grouting port positions and two boundary conditions are considered in the simulation. The results indicate that under pressure boundary conditions, the grout flow rate increases rapidly in the initial stage, and then decreases and stabilizes, with the flow rate peak increasing as the grout port moves upward. Under velocity boundary conditions, the injection pressure grows slowly in the early stage but accelerates with time. Additionally, the rate of pressure change is faster when the grout port is located lower in the backfilling layer. Through theoretical analysis, the existing analytical formula was extended by introducing a gravitational correction term. When the grouting port is near the upper part of the tunnel, the analytical solution aligns well with the numerical simulation results, but as the grout port moves downward, the discrepancy between the two increases. Full article
Show Figures

Figure 1

17 pages, 6013 KiB  
Article
The Effect of Injection Molding Processing Parameters on Chrome-Plated Acrylonitrile Butadiene Styrene-Based Automotive Parts: An Industrial Scale
by Yunus Emre Polat, Mustafa Oksuz, Aysun Ekinci, Murat Ates and Ismail Aydin
Polymers 2025, 17(13), 1787; https://doi.org/10.3390/polym17131787 - 27 Jun 2025
Viewed by 549
Abstract
In recent years, plastic decorative materials have been used in the automotive industry due to their advantages such as being environmentally friendly, aesthetic, light and economically affordable. Plastic decorative materials can exhibit high strength and metallic reflection with metal coatings. Chrome plating is [...] Read more.
In recent years, plastic decorative materials have been used in the automotive industry due to their advantages such as being environmentally friendly, aesthetic, light and economically affordable. Plastic decorative materials can exhibit high strength and metallic reflection with metal coatings. Chrome plating is generally preferred in the production of decorative plastic parts in the automotive industry. In this study, the effect of injection molding processing parameters on the metal–polymer adhesion of chrome-plated acrylonitrile butadiene styrene (ABS) was investigated. The ABS-based front grille frames are fabricated by means of using an industrial-scale injection molding machine. Then, the fabricated ABS-based front grille frame was plated with chrome by means of the electroplating method. The metal–polymer adhesion was investigated as a function of the injection molding processing parameters by means of a cross-cut test and scanning electron microscope (SEM). As a result, it was determined that the optimal injection process parameters, a cooling time of 18 s, a mold temperature of 70 °C, injection rates of 45-22-22-20-15-10 mm/s, and packing pressures of 110-100-100 bar, were effective in enhancing polymer–metal adhesion for the ABS-based front grille frame. Full article
(This article belongs to the Special Issue Advances in Polymer Molding and Processing)
Show Figures

Graphical abstract

24 pages, 11727 KiB  
Article
Experimental Evaluation of Residual Oil Saturation in Solvent-Assisted SAGD Using Single-Component Solvents
by Fernando Rengifo Barbosa, Amin Kordestany and Brij Maini
Energies 2025, 18(13), 3362; https://doi.org/10.3390/en18133362 - 26 Jun 2025
Viewed by 309
Abstract
The massive heavy oil reserves in the Athabasca region of northern Alberta depend on steam-assisted gravity drainage (SAGD) for their economic exploitation. Even though SAGD has been successful in highly viscous oil recovery, it is still a costly technology because of the large [...] Read more.
The massive heavy oil reserves in the Athabasca region of northern Alberta depend on steam-assisted gravity drainage (SAGD) for their economic exploitation. Even though SAGD has been successful in highly viscous oil recovery, it is still a costly technology because of the large energy input requirement. Large water and natural gas quantities needed for steam generation imply sizable greenhouse gas (GHG) emissions and extensive post-production water treatment. Several methods to make SAGD more energy-efficient and environmentally sustainable have been attempted. Their main goal is to reduce steam consumption whilst maintaining favourable oil production rates and ultimate oil recovery. Oil saturation within the steam chamber plays a critical role in determining both the economic viability and resource efficiency of SAGD operations. However, accurately quantifying the residual oil saturation left behind by SAGD remains a challenge. In this experimental research, sand pack Expanding Solvent SAGD (ES-SAGD) coinjection experiments are reported in which Pentane -C5H12, and Hexane -C6H14 were utilised as an additive to steam to produce Long Lake bitumen. Each solvent is assessed at three different constant concentrations through time using experiments simulating SAGD to quantify their impact. The benefits of single-component solvent coinjection gradually diminish as the SAGD process approaches its later stages. ES-SAGD pentane coinjection offers a smaller improvement in recovery factor (RF) (4% approx.) compared to hexane (8% approx.). Between these two single-component solvents, 15 vol% hexane offered the fastest recovery. The obtained data in this research provided compelling evidence that the coinjection of solvent under carefully controlled operating conditions, reduced overall steam requirement, energy consumption, and residual oil saturation allowing proper adjustment of oil and water relative permeability curve endpoints for field pilot reservoir simulations. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

15 pages, 1389 KiB  
Article
A Novel Approach to the Design of a Solid Bismuth Microelectrode Array: Applications in the Anodic Stripping Voltammetry of Cd(II) and Pb(II)
by Mieczyslaw Korolczuk, Iwona Gęca and Paulina Mrózek
Molecules 2025, 30(13), 2743; https://doi.org/10.3390/molecules30132743 - 26 Jun 2025
Viewed by 463
Abstract
A new type of solid bismuth microelectrode array characterized by eco-friendly properties and the simplicity of its construction is presented for the first time. The proposed array of microelectrodes consists of exactly forty-three single capillaries of an inner diameter of about 10 µm [...] Read more.
A new type of solid bismuth microelectrode array characterized by eco-friendly properties and the simplicity of its construction is presented for the first time. The proposed array of microelectrodes consists of exactly forty-three single capillaries of an inner diameter of about 10 µm filled with metallic bismuth and packed in one casing. The proposed sensor is reusable thanks to its distinctive design. The microelectrode properties of the proposed working electrodes were confirmed by comparing the analytical signals of cadmium and lead recorded from stirred and unstirred solutions during the deposition step. The practical application of the solid bismuth microelectrode array is presented by detailing the procedure for the simultaneous determination of Pb and Cd by anodic stripping voltammetry. The calibration graphs were linear from 5 × 10−9 to 2 × 10−7 mol L−1 and 2 × 10−9 to 2 × 10−7 mol L−1 for Cd(II) and Pb(II), respectively (deposition time of 60 s). The detection limits for Cd(II) and Pb(II) were equal to 2.3 × 10−9 mol L−1 and 8.9 × 10−10 mol L−1, respectively. Potential interferences were investigated. The developed procedure was successfully used for the analysis of certified water reference material and environmental water samples. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

Back to TopTop