A Novel Approach to the Design of a Solid Bismuth Microelectrode Array: Applications in the Anodic Stripping Voltammetry of Cd(II) and Pb(II)
Abstract
1. Introduction
2. Results
2.1. The Examination of Microelectrode Properties
2.2. Influence of Acetate Buffer Concentration on Cadmium and Lead Peak Currents
2.3. The Influence of Conditions for Activation Steps on Cadmium and Lead Peak Currents
2.4. The Influence of Deposition Conditions on Cadmium and Lead Peak Currents
2.5. The Optimization of Square Wave Parameters
2.6. Calibration Data
2.7. Repeatability Studies
2.8. Interference Studies
2.9. Analytical Application
3. Materials and Methods
3.1. Instrumentation
3.2. Preparation of the Sample
3.3. Reagents
3.4. The Standard Procedure of the Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Souza, J.P.; Cerveira, C.; Miceli, T.M.; Moraes, D.P.; Mesko, M.F.; Pereira, J.S.F. Evaluation of Sample Preparation Methods for Cereal Digestion for Subsequent As, Cd, Hg and Pb Determination by AAS-Based Techniques. Food Chem. 2020, 321, 126715. [Google Scholar] [CrossRef]
- Álvarez, M.A.; Carrillo, G. Simultaneous Determination of Arsenic, Cadmium, Copper, Chromium, Nickel, Lead and Thallium in Total Digested Sediment Samples and Available Fractions by Electrothermal Atomization Atomic Absorption Spectroscopy (ET AAS). Talanta 2012, 97, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Greda, K.; Welna, M.; Szymczycha-Madeja, A.; Pohl, P. Sensitive Determination of Ag, Bi, Cd, Hg, Pb, Tl, and Zn by Inductively Coupled Plasma Optical Emission Spectrometry Combined with the Microplasma-Assisted Vapor Generation. Talanta 2022, 249, 123694. [Google Scholar] [CrossRef]
- Martínez-Rubio, D.; Grindlay, G.; Llaver, M.; Wuilloud, R.G.; Mora, J. Development of Preconcentration Strategies for the Simultaneous Ultratrace Determination of As, Cd and Pb in Foods by ICP-OES: Knotted-Reactor vs. Dispersive Liquid–Liquid Microextraction. J. Anal. At. Spectrom. 2020, 35, 933–942. [Google Scholar] [CrossRef]
- Arı, A.; Arı, P.E.; Gaga, E.O. Chemical Characterization of Size-Segregated Particulate Matter (PM) by Inductively Coupled Plasma—Tandem Mass Spectrometry (ICP-MS/MS). Talanta 2020, 208, 120350. [Google Scholar] [CrossRef] [PubMed]
- Akoury, E.; Baroud, C.; El Kantar, S.; Hassan, H.; Karam, L. Determination of Heavy Metals Contamination in Thyme Products by Inductively Coupled Plasma Mass Spectrometry. Toxicol. Rep. 2022, 9, 1962–1967. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Gong, S.; Wang, X.; Fan, Y.; Li, X. Determination of Hg, As, Pb, and Cd in Orchard Soils by Sequential Injection Vapor Generation Atomic Fluorescence Spectrometry. Anal. Lett. 2012, 45, 2257–2268. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, S.; Xiao, J.; Hu, Q.; Zhao, L. A Rapid and Multi-Element Method for the Determination of As, Cd, Ni, Pb, Sn, and Zn in Scallops Using High Definition X-Ray Fluorescence (HDXRF) Spectrometry. Food Anal. Methods 2022, 15, 2712–2724. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, G.; Zhao, Y.; Yin, J. Determination of Copper, Nickel, Cobalt, Silver, Lead, Cadmium, and Mercury Ions in Water by Solid-Phase Extraction and the RP-HPLC with UV-Vis Detection. Anal. Bioanal. Chem. 2003, 375, 831–835. [Google Scholar] [CrossRef]
- Thirumalai, M.; Kumar, S.N.; Prabhakaran, D.; Sivaraman, N.; Maheswari, M.A. Dynamically Modified C18 Silica Monolithic Column for the Rapid Determinations of Lead, Cadmium and Mercury Ions by Reversed-Phase High-Performance Liquid Chromatography. J. Chromatogr. A 2018, 1569, 62–69. [Google Scholar] [CrossRef]
- Song, Y.; Guo, F.; Zeng, P.; Liu, J.; Wang, Y.; Cheng, H. Simultaneous Measurements of Cr, Cd, Hg and Pb Species in Ng L−1 Levels by Interfacing High Performance Liquid Chromatography and Inductively Coupled Plasma Mass Spectrometry. Anal. Chim. Acta 2022, 1212, 339935. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Hu, Y.; Cheng, H.; Ye, X. Detection Techniques for Lead Ions in Water: A Review. Molecules 2023, 28, 3601. [Google Scholar] [CrossRef] [PubMed]
- Dossi, C.; Monticelli, D.; Pozzi, A.; Recchia, S. From Batch to Flow Stripping Analysis with Screen-Printed Electrodes: A Possible Way to Decentralize Trace Inorganic Analysis. Chemosensors 2018, 6, 37. [Google Scholar] [CrossRef]
- Sun, Y.-C.; Mierzwa, J.; Yang, M.-H. New Method of Gold-Film Electrode Preparation for Anodic Stripping Voltammetric Determination of Arsenic (III and V) in Seawater. Talanta 1997, 44, 1379–1387. [Google Scholar] [CrossRef]
- Economou, A. Bismuth-Film Electrodes: Recent Developments and Potentialities for Electroanalysis. TrAC Trends Anal. Chem. 2005, 24, 334–340. [Google Scholar] [CrossRef]
- Jovanovski, V.; Hrastnik, N.I.; Hočevar, S.B. Copper Film Electrode for Anodic Stripping Voltammetric Determination of Trace Mercury and Lead. Electrochem. Commun. 2015, 57, 1–4. [Google Scholar] [CrossRef]
- Finšgar, M.; Xhanari, K.; Petovar, B. Copper-Film Electrodes for Pb(II) Trace Analysis and a Detailed Electrochemical Impedance Spectroscopy Study. Microchem. J. 2019, 147, 863–871. [Google Scholar] [CrossRef]
- Gęca, I.; Ochab, M.; Korolczuk, M. An Adsorptive Stripping Voltammetry of Nickel and Cobalt at a Solid Lead Electrode. Int. J. Environ. Anal. Chem. 2016, 96, 1264–1275. [Google Scholar] [CrossRef]
- Alves, G.M.S.; Magalhães, J.M.C.S.; Soares, H.M.V.M. Simultaneous Determination of Nickel and Cobalt Using a Solid Bismuth Vibrating Electrode by Adsorptive Cathodic Stripping Voltammetry. Electroanalysis 2013, 25, 1247–1255. [Google Scholar] [CrossRef]
- Stulík, K.; Amatore, C.; Holub, K.; Marecek, V.; Kutner, W. Microelectrodes. Definitions, Characterization, and Applications (Technical Report). Pure Appl. Chem. 2000, 72, 1483–1492. [Google Scholar] [CrossRef]
- Bond, A.M. Past, Present and Future Contributions of Microelectrodes to Analytical Studies Employing Voltammetric Detection. A Review. Analyst 1994, 119, 1R–21R. [Google Scholar] [CrossRef]
- Xie, X.; Stueben, D.; Berner, Z. The Application of Microelectrodes for the Measurements of Trace Metals in Water. Anal. Lett. 2005, 38, 2281–2300. [Google Scholar] [CrossRef]
- Gęca, I.; Ochab, M.; Korolczuk, M. Application of a Solid Lead Microelectrode as a New Voltammetric Sensor for Adsorptive Stripping Voltammetry of U(VI). Talanta 2020, 207, 120309. [Google Scholar] [CrossRef]
- Gęca, I.; Ochab, M.; Korolczuk, M. Anodic Stripping Voltammetry of Tl(I) Determination with the Use of a Solid Bismuth Microelectrode. J. Electrochem. Soc. 2020, 167, 086506. [Google Scholar] [CrossRef]
- Gęca, I.; Ochab, M.; Robak, A.; Mergo, P.; Korolczuk, M. Anodic Stripping Voltammetric Determination of Se(IV) by Means of a Novel Reusable Gold Microelectrodes Array. Desalination Water Treat. 2023, 286, 248–256. [Google Scholar] [CrossRef]
- Korolczuk, M.; Gęca, I.; Mazurek, A.; Mrózek, P. New Long-Term Use Solid Bismuth Microelectrode Arrays for Rapid and Sensitive Determination of Sunset Yellow in Isotonic Beverages and Water Samples by Adsorptive Stripping Voltammetry. Molecules 2025, 30, 345. [Google Scholar] [CrossRef]
- Daniele, S.; Bragato, C.; Baldo, M.A.; Ciani, I. Application of Thin-Shielded Mercury Microelectrodes in Anodic Stripping Voltammetry. Talanta 2008, 77, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.S.; Gao, C.; Choi, J.W.; Bishop, P.L.; Ahn, C.H. On-Chip Generated Mercury Microelectrode for Heavy Metal Ion Detection. Lab Chip 2005, 5, 212–217. [Google Scholar] [CrossRef]
- Bi, Z.; Salaün, P.; van den Berg, C.M.G. Determination of Lead and Cadmium in Seawater Using a Vibrating Silver Amalgam Microwire Electrode. Anal. Chim. Acta 2013, 769, 56–64. [Google Scholar] [CrossRef]
- Garnier, C.; Lesven, L.; Billon, G.; Magnier, A.; Mikkelsen, O.; Pižeta, I. Voltammetric Procedure for Trace Metal Analysis in Polluted Natural Waters Using Homemade Bare Gold-Disk Microelectrodes. Anal. Bioanal. Chem. 2006, 386, 313–323. [Google Scholar] [CrossRef]
- Peña, R.C.; Cornejo, L.; Bertotti, M.; Brett, C.M.A. Electrochemical Determination of Cd(II) and Pb(II) in Mining Effluents Using a Bismuth-Coated Carbon Fiber Microelectrode. Anal. Methods 2018, 10, 3624–3630. [Google Scholar] [CrossRef]
- Fernández, L.; Espinoza-Montero, P.; Sánchez-Sarango, M.; Bolaños-Méndez, D.; Álvarez-Paguay, J.; Domínguez-Granda, L.; Rodríguez, A.; Romero, H.; Debut, A.; Ortiz, V. Simultaneous Quantification of Lead, Cadmium and Zinc in Superficial Marine Sediments Using a Carbon-Fiber Microelectrode Modified with Bismuth Film. Sci. Rep. 2023, 13, 20232. [Google Scholar] [CrossRef]
- Silva, P.R.M.; El Khakani, M.A.; Chaker, M.; Dufresne, A.; Courchesne, F. Simultaneous Determination of Cd, Pb, and Cu Metal Trace Concentrations in Water Certified Samples and Soil Extracts by Means of Hg-Electroplated-Ir Microelectrode Array Based Sensors. Sens. Actuators B Chem. 2001, 76, 250–257. [Google Scholar] [CrossRef]
- Pei, J.; Tercier-Waeber, M.-L.; Buffle, J. Simultaneous Determination and Speciation of Zinc, Cadmium, Lead, and Copper in Natural Water with Minimum Handling and Artifacts, by Voltammetry on a Gel-Integrated Microelectrode Array. Anal. Chem. 1999, 72, 161–171. [Google Scholar] [CrossRef]
- Rehacek, V.; Hotovy, I.; Vojs, M.; Mika, F. Bismuth Film Electrodes for Heavy Metals Determination. Microsyst. Technol. 2008, 14, 491–498. [Google Scholar] [CrossRef]
- Asselin, G.M.; Paden, O.; Qiu, W.; -, al; Smith, G.D.; Nairn, J.A.; Rehacek, V.; Hotovy, I.; Vojs, M. Determination of Heavy Metals by a Mercury-Plated Diamondlike Carbon Microelectrode Array. J. Phys. Conf. Ser. 2007, 61, 982. [Google Scholar] [CrossRef]
- Wu, Z.; Jing, G.; Cui, T. Ultrasensitive Micro Sensor Based on Layer-by-Layer Self-Assembled Graphene and Bismuth Nanoparticles for Trace Lead Ions Determination. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 1083–1086. [Google Scholar] [CrossRef]
- Sanna, G.; Pilo, M.I.; Piu, P.C.; Tapparo, A.; Seeber, R. Determination of Heavy Metals in Honey by Anodic Stripping Voltammetry at Microelectrodes. Anal. Chim. Acta 2000, 415, 165–173. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, S.; Zhang, F.; Jin, B.; Yang, C. Improved Microelectrode Array Electrode Design for Heavy Metal Detection. Chemosensors 2024, 12, 51. [Google Scholar] [CrossRef]
- Palisoc, S.; Gonzales, A.J.; Pardilla, A.; Racines, L.; Natividad, M. Electrochemical Detection of Lead and Cadmium in UHT-Processed Milk Using Bismuth Nanoparticles/Nafion®-Modified Pencil Graphite Electrode. Sens. Bio-Sens. Res. 2019, 23, 100268. [Google Scholar] [CrossRef]
- Malakhova, N.A.; Stojko, N.Y.; Brainina, K.Z. Novel Approach to Bismuth Modifying Procedure for Voltammetric Thick Film Carbon Containing Electrodes. Electrochem. Commun. 2007, 9, 221–227. [Google Scholar] [CrossRef]
- Zeinu, K.M.; Hou, H.; Liu, B.; Yuan, X.; Huang, L.; Zhu, X.; Hu, J.; Yang, J.; Liang, S.; Wu, X. A Novel Hollow Sphere Bismuth Oxide Doped Mesoporous Carbon Nanocomposite Material Derived from Sustainable Biomass for Picomolar Electrochemical Detection of Lead and Cadmium. J. Mater. Chem. A 2016, 4, 13967–13979. [Google Scholar] [CrossRef]
- Salaün, P.; Gibbon-Walsh, K.; Van Den Berg, C.M.G. Beyond the Hydrogen Wave: New Frontier in the Detection of Trace Elements by Stripping Voltammetry. Anal. Chem. 2011, 83, 3848–3856. [Google Scholar] [CrossRef] [PubMed]
- Gęca, I.; Korolczuk, M. A Novel Eco-Friendly and Highly Sensitive Solid Lead–Tin Microelectrode for Trace U(VI) Determination in Natural Water Samples. Sensors 2023, 23, 2552. [Google Scholar] [CrossRef] [PubMed]
Working Electrode | Linear Range [nmol L−1] | Detection Limit [nmol L−1] | Ref. | ||
---|---|---|---|---|---|
Cd(II) | Pb(II) | Cd(II) | Pb(II) | ||
On-chip-generated HgµE | - | 100–400 | - | 100 | [26] |
Vibrating Silver amalgam µE | - | - | 0.079 | 0.008 | [27] |
Gold disk µE | 1.8–180 | 0.97–145 | - | - | [28] |
Bi/carbon fiber µE | 50–350 | 50–350 | 9.2 | 10 | [29] |
Nitrogen-doped diamond-like carbon µE array | 10–120 | 10–120 | 2.9 | 2.4 | [33] |
Hg/diamond-like carbon µE array | 16–83 | 16–83 | - | - | [34] |
Solid Bi µE array | 5–200 | 2–200 | 2.3 | 0.89 | [this work] |
Foreign Ion | Molar Excess of Foreign Ion | * Relative Signal of Cd(II) | * Relative Signal of Pb(II) |
---|---|---|---|
V(V) | 100 | 0.83 | 1.04 |
Ni(II) | 100 | 0.54 | 0.81 |
Co(II) | 100 | 0.84 | 0.86 |
Fe(III) | 100 | 0.75 | 0.91 |
Mn(II) | 100 | 0.73 | 0.87 |
Zn(II) | 100 | 0.85 | 0.99 |
Mo(VI) | 10 | 0.84 | 0.95 |
20 | 0.22 | 0.38 | |
Cu(II) | 10 | 0.21 | 0.35 |
20 | 0.06 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korolczuk, M.; Gęca, I.; Mrózek, P. A Novel Approach to the Design of a Solid Bismuth Microelectrode Array: Applications in the Anodic Stripping Voltammetry of Cd(II) and Pb(II). Molecules 2025, 30, 2743. https://doi.org/10.3390/molecules30132743
Korolczuk M, Gęca I, Mrózek P. A Novel Approach to the Design of a Solid Bismuth Microelectrode Array: Applications in the Anodic Stripping Voltammetry of Cd(II) and Pb(II). Molecules. 2025; 30(13):2743. https://doi.org/10.3390/molecules30132743
Chicago/Turabian StyleKorolczuk, Mieczyslaw, Iwona Gęca, and Paulina Mrózek. 2025. "A Novel Approach to the Design of a Solid Bismuth Microelectrode Array: Applications in the Anodic Stripping Voltammetry of Cd(II) and Pb(II)" Molecules 30, no. 13: 2743. https://doi.org/10.3390/molecules30132743
APA StyleKorolczuk, M., Gęca, I., & Mrózek, P. (2025). A Novel Approach to the Design of a Solid Bismuth Microelectrode Array: Applications in the Anodic Stripping Voltammetry of Cd(II) and Pb(II). Molecules, 30(13), 2743. https://doi.org/10.3390/molecules30132743