Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (773)

Search Parameters:
Keywords = timber species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9589 KiB  
Article
An Interpretable Approach to Wood Species Identification Based on Anatomical Features in Microscopic Images
by Lei Liu, Jian Qiu, Yong Cao, Qiying Li, Songping Qian and Yongke Sun
Forests 2025, 16(8), 1328; https://doi.org/10.3390/f16081328 - 15 Aug 2025
Viewed by 362
Abstract
Wood recognition plays a vital role in the trade and conservation of rare wood species. However, the computer vision-based methods classify the wood species by the features that are not used within the framework of wood anatomy, leading to results that are not [...] Read more.
Wood recognition plays a vital role in the trade and conservation of rare wood species. However, the computer vision-based methods classify the wood species by the features that are not used within the framework of wood anatomy, leading to results that are not interpretable. This study proposes a novel wood recognition method that detects anatomical structures such as vessels, wood rays, and parenchyma in wood microscopic images. These structures are quantified and mapped to the International Association of Wood Anatomists (IAWA) features, which are then used for species classification. Experimental results on 32 wood species demonstrate the effectiveness of the approach, achieving an accuracy of 94.1%, precision of 92.6%, recall of 93.3%, and an F1-score of 92.7%. In addition to its recognition performance, the method may offer interpretable IAWA-based classification criteria in wood science. These findings suggest that the method could serve as an anatomically interpretable framework for wood species identification, contributing to the regulation of the rare timber trade and supporting the conservation of endangered tree species. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

14 pages, 2645 KiB  
Article
Genome-Wide Association Study and Candidate Gene Identification for Girth Traits in Rubber Tree
by Wenxiu Li, Zishan Zhang, Huan Ouyang, Hualin Zhang, Han Cheng, Xiaofei Zhang, Xinsheng Gao, Junjun He, Qing Yan, Yana Ye, Yingtao Yi, Pingsheng Li, Ping Luo and Ruihong Xie
Plants 2025, 14(16), 2460; https://doi.org/10.3390/plants14162460 - 8 Aug 2025
Viewed by 319
Abstract
As a key tropical economic tree species, the girth of the rubber tree (Hevea brasiliensis) not only reflects its growth rate and timber yield but also determines tapping schedules and non-productive periods. This trait critically influences both the species’ economic value [...] Read more.
As a key tropical economic tree species, the girth of the rubber tree (Hevea brasiliensis) not only reflects its growth rate and timber yield but also determines tapping schedules and non-productive periods. This trait critically influences both the species’ economic value and latex production potential. Despite recent advances in genetic analyses of girth driven by genomic technologies, the number of identified key genes remains insufficient to support molecular breeding programs. This study focuses on 138 samples of rubber tree natural accessions, integrating phenotypic data analysis, population genetic structure analysis, and genome-wide association analysis (GWAS) to identify genetic loci and candidate genes associated with girth. Population stratification divides the tested accessions into four genetic groups: Groups Ⅰ and Ⅳ exhibit high genetic purity, while Groups Ⅱ and Ⅲ display hybrid characteristics. GWAS based on a mixed linear model detects 7 and 23 SNPs significantly associated with girth at p = 4.4 × 10−8 and p = 2.22 × 10−7, respectively. The most significant SNP is located at position 44994744 on chromosome CM021229.1. Under the highly significant association threshold, 27 candidate genes were identified, 4 of which are directly related to girth. Gene Ontology (GO) annotation of these 27 candidate genes reveals their primary involvement in metabolic regulation, signal transduction, and cell component construction. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis shows they are primarily enriched in the “aminoacyl-tRNA biosynthesis” and “glycolysis/gluconeogenesis” pathways. These findings provide significant theoretical support for genetic enhancement and mechanistic analysis of rubber tree growth traits. They reveal novel SNP markers and genes that complement existing genetic resources, refining breeding strategies for elite genotype selection and ultimately contributing to enhanced rubber production. Full article
(This article belongs to the Special Issue Advances in Forest Tree Genetics and Breeding)
Show Figures

Figure 1

18 pages, 1904 KiB  
Article
A Site Index-Based Approach for Arid Lands: A Multivariate Ecological Assessment for Shrubby Species
by Martín Martínez-Salvador, Alfredo Pinedo-Alvarez, Sandra Rodríguez-Piñeros, Raúl Corrales-Lerma, Ricardo D. Valdez-Cepeda, Fidel Blanco-Macias, Griselda Vazquez-Quintero, David E. Hermosillo-Rojas and Adrián Hernández-Ramos
Forests 2025, 16(8), 1295; https://doi.org/10.3390/f16081295 - 8 Aug 2025
Viewed by 530
Abstract
Development of site index models for shrubby species in arid ecosystems remains a challenge, due to the absence of dominant height–age relationships and the complexity of ecological drivers in these environments. In this study, a multivariate approach to classify site quality for Agave [...] Read more.
Development of site index models for shrubby species in arid ecosystems remains a challenge, due to the absence of dominant height–age relationships and the complexity of ecological drivers in these environments. In this study, a multivariate approach to classify site quality for Agave lechuguilla Torr, a wild non-timber species of ecological and economic importance in northern Mexico, was performed. Data were collected from 112 sampling plots where the abundance, height, basal diameter, and crown diameter for the A. lechuguilla plants were measured. Sites were grouped into three site index categories (low, medium, and high) using the Importance Value Index (IVI). Afterward a classical discriminant analysis (CDA) was applied to derive linear functions capable of classifying new sites into these predefined categories. Statistical assumptions of multivariate normality, homogeneity of covariance matrices, and low multicollinearity were met. The discriminant functions showed high classification accuracy (95.54%), with full correct classification of low and high site index categories. Additional validation through MANOVA and principal component analysis (PCA) confirmed the separation of groups and the ecological coherence of the selected variables. This approach provides a simple, practical, and replicable model for assessing shrubland site quality using field measurable features. It also offers a tool for sustainable harvesting and conservation of A. lechuguilla. Full article
Show Figures

Figure 1

25 pages, 4069 KiB  
Article
Forest Volume Estimation in Secondary Forests of the Southern Daxing’anling Mountains Using Multi-Source Remote Sensing and Machine Learning
by Penghao Ji, Wanlong Pang, Rong Su, Runhong Gao, Pengwu Zhao, Lidong Pang and Huaxia Yao
Forests 2025, 16(8), 1280; https://doi.org/10.3390/f16081280 - 5 Aug 2025
Viewed by 292
Abstract
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have [...] Read more.
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have limitations in capturing forest vertical height information and may suffer from reflectance saturation. While LiDAR data can provide more detailed vertical structural information, they come with high processing costs and limited observation range. Therefore, improving the accuracy of volume estimation through multi-source data fusion has become a crucial challenge and research focus in the field of forest remote sensing. In this study, we integrated Sentinel-2 multispectral data, Resource-3 stereoscopic imagery, UAV-based LiDAR data, and field survey data to quantitatively estimate the forest volume in Saihanwula Nature Reserve, located in Inner Mongolia, China, on the southern part of Daxing’anling Mountains. The study evaluated the performance of multi-source remote sensing features by using recursive feature elimination (RFE) to select the most relevant factors and applied four machine learning models—multiple linear regression (MLR), k-nearest neighbors (kNN), random forest (RF), and gradient boosting regression tree (GBRT)—to develop volume estimation models. The evaluation metrics include the coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (rRMSE). The results show that (1) forest Canopy Height Model (CHM) data were strongly correlated with forest volume, helping to alleviate the reflectance saturation issues inherent in spectral texture data. The fusion of CHM and spectral data resulted in an improved volume estimation model with R2 = 0.75 and RMSE = 8.16 m3/hm2, highlighting the importance of integrating multi-source canopy height information for more accurate volume estimation. (2) Volume estimation accuracy varied across different tree species. For Betula platyphylla, we obtained R2 = 0.71 and RMSE = 6.96 m3/hm2; for Quercus mongolica, R2 = 0.74 and RMSE = 6.90 m3/hm2; and for Populus davidiana, R2 = 0.51 and RMSE = 9.29 m3/hm2. The total forest volume in the Saihanwula Reserve ranges from 50 to 110 m3/hm2. (3) Among the four machine learning models, GBRT consistently outperformed others in all evaluation metrics, achieving the highest R2 of 0.86, lowest RMSE of 9.69 m3/hm2, and lowest rRMSE of 24.57%, suggesting its potential for forest biomass estimation. In conclusion, accurate estimation of forest volume is critical for evaluating forest management practices and timber resources. While this integrated approach shows promise, its operational application requires further external validation and uncertainty analysis to support policy-relevant decisions. The integration of multi-source remote sensing data provides valuable support for forest resource accounting, economic value assessment, and monitoring dynamic changes in forest ecosystems. Full article
(This article belongs to the Special Issue Mapping and Modeling Forests Using Geospatial Technologies)
Show Figures

Figure 1

19 pages, 1447 KiB  
Article
Soil Quality Indicators for Different Land Uses in the Ecuadorian Amazon Rainforest
by Thony Huera-Lucero, Antonio Lopez-Piñeiro and Carlos Bravo-Medina
Forests 2025, 16(8), 1275; https://doi.org/10.3390/f16081275 - 4 Aug 2025
Viewed by 389
Abstract
Deforestation and land-use changes lead to significant soil degradation and erosion, particularly in Amazonian ecosystems, due to the region’s climate and geology. This study characterizes soil quality using physical, chemical, and biological parameters across different land uses. It uses a soil quality index [...] Read more.
Deforestation and land-use changes lead to significant soil degradation and erosion, particularly in Amazonian ecosystems, due to the region’s climate and geology. This study characterizes soil quality using physical, chemical, and biological parameters across different land uses. It uses a soil quality index (SQI) based on a minimum data set (MDS), from 19 evaluated parameters. The land uses evaluated were cacao monoculture (CMC), agroforestry systems associated with fruit and timber species (FAFS and TAFS, respectively), and a secondary forest. The SQI was composed of six variables, bulk density (BD), soil organic matter (SOM), urease activity (UR), pH, dehydrogenase activity (DH), and leaf litter, which are considered relevant indicators that allow for an adequate evaluation of soil quality. According to the SQI assessment, FAFS has a moderate-quality rating (0.40), followed by secondary forest (0.35), TAFS (0.33), and CMC (0.30), the last three categorized as low-quality. The methods used are replicable and efficient for evaluating changes in soil properties based on different land uses and management systems in landscapes similar to those of the Ecuadorian Amazon. Also worth mentioning is the potential of agroforestry as a sustainable land-use strategy that can enhance above- and below-ground biodiversity and nutrient cycling. Therefore, implementing agroforestry practices can contribute to long-term soil conservation and the resilience of tropical ecosystems. Full article
(This article belongs to the Special Issue Forest Soil Physical, Chemical, and Biological Properties)
Show Figures

Figure 1

21 pages, 5062 KiB  
Article
Forest Management Effects on Breeding Bird Communities in Apennine Beech Stands
by Guglielmo Londi, Francesco Parisi, Elia Vangi, Giovanni D’Amico and Davide Travaglini
Ecologies 2025, 6(3), 54; https://doi.org/10.3390/ecologies6030054 - 1 Aug 2025
Viewed by 466
Abstract
Beech forests in the Italian peninsula are actively managed and they also support a high level of biodiversity. Hence, biodiversity conservation can be synergistic with timber production and carbon sequestration, enhancing the overall economic benefits of forest management. This study aimed to evaluate [...] Read more.
Beech forests in the Italian peninsula are actively managed and they also support a high level of biodiversity. Hence, biodiversity conservation can be synergistic with timber production and carbon sequestration, enhancing the overall economic benefits of forest management. This study aimed to evaluate the effect of forest management regimes on bird communities in the Italian Peninsula during 2022 through audio recordings. We studied the structure, composition, and specialization of the breeding bird community in four managed beech stands (three even-aged beech stands aged 20, 60, and 100 years old, managed by a uniform shelterwood system; one uneven-aged stand, managed by a single-tree selection system) and one uneven-aged, unmanaged beech stand in the northern Apennines (Tuscany region, Italy). Between April and June 2022, data were collected through four 1-hour audio recording sessions per site, analyzing 5 min sequences. The unmanaged stand hosted a richer (a higher number of species, p < 0.001) and more specialized (a higher number of cavity-nesting species, p < 0.001; higher Woodland Bird Community Index (WBCI) values, p < 0.001; and eight characteristic species, including at least four highly specialized ones) bird community, compared to all the managed forests; moreover, the latter were homogeneous (similar to each other). Our study suggests that the unmanaged beech forests should be a priority option for conservation, while in terms of the managed beech forests, greater attention should be paid to defining the thresholds for snags, deadwood, and large trees to be retained to enhance their biodiversity value. Studies in additional sites, conducted over more years and including multi-taxon communities, are recommended for a deeper understanding and generalizable results. Full article
Show Figures

Figure 1

32 pages, 5440 KiB  
Article
Spatially Explicit Tactical Planning for Redwood Harvest Optimization Under Continuous Cover Forestry in New Zealand’s North Island
by Horacio E. Bown, Francesco Latterini, Rodolfo Picchio and Michael S. Watt
Forests 2025, 16(8), 1253; https://doi.org/10.3390/f16081253 - 1 Aug 2025
Viewed by 283
Abstract
Redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) is a fast-growing, long-lived conifer native to a narrow coastal zone along the western seaboard of the United States. Redwood can accumulate very high amounts of carbon in plantation settings and continuous cover forestry [...] Read more.
Redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) is a fast-growing, long-lived conifer native to a narrow coastal zone along the western seaboard of the United States. Redwood can accumulate very high amounts of carbon in plantation settings and continuous cover forestry (CCF) represents a highly profitable option, particularly for small-scale forest growers in the North Island of New Zealand. We evaluated the profitability of conceptual CCF regimes using two case study forests: Blue Mountain (109 ha, Taranaki Region, New Zealand) and Spring Creek (467 ha, Manawatu-Whanganui Region, New Zealand). We ran a strategic harvest scheduling model for both properties and used its results to guide a tactical-spatially explicit model harvesting small 0.7 ha units over a period that spanned 35 to 95 years after planting. The internal rates of return (IRRs) were 9.16 and 10.40% for Blue Mountain and Spring Creek, respectively, exceeding those considered robust for other forest species in New Zealand. The study showed that small owners could benefit from carbon revenue during the first 35 years after planting and then switch to a steady annual income from timber, maintaining a relatively constant carbon stock under a continuous cover forestry regime. Implementing adjacency constraints with a minimum green-up period of five years proved feasible. Although small coupes posed operational problems, which were linked to roading and harvesting, these issues were not insurmountable and could be managed with appropriate operational planning. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

18 pages, 1193 KiB  
Article
The Importance of Native Trees and Forests: Smallholder Farmers’ Views in South-Western Rwanda
by Franklin Bulonvu, Gérard Imani, Myriam Mujawamariya, Beth A. Kaplin, Patrick Mutabazi and Aida Cuni-Sanchez
Forests 2025, 16(8), 1234; https://doi.org/10.3390/f16081234 - 26 Jul 2025
Viewed by 709
Abstract
Despite increasing interest in including indigenous and local people in forest restoration initiatives, their views on which species are most useful, or reasons behind not planting native tree species are often ignored. Focused on south-western Rwanda, this study addressed these knowledge gaps. We [...] Read more.
Despite increasing interest in including indigenous and local people in forest restoration initiatives, their views on which species are most useful, or reasons behind not planting native tree species are often ignored. Focused on south-western Rwanda, this study addressed these knowledge gaps. We carried out 12 focus group discussions with village elders to determine the following: main benefits provided by native forests, the native species they prefer for different uses, and the main barriers to species’ cultivation. Then, considering other key information from the literature, we performed a ranking exercise to determine which native species had the greatest potential for large-scale tree planting initiatives. Our results show that native forests provide 17 benefits to local communities, some of which cannot be replaced by plantations with exotic species. Among the 26 tree species identified as most useful for timber, firewood, medicine and fodder, ten were ranked as with the greatest potential for restoration initiatives. Of these, two had not been included in recent experimental plantations using native species in Rwanda, and none were considered among the priority species for domestication in Africa. Overall, our study highlights the need to better connect the ecological and social dimension of forest reforestation initiatives in multiple contexts. Full article
Show Figures

Figure 1

21 pages, 1349 KiB  
Article
The Impact of Supply and Demand Shocks on Chinese Wood Market
by Yeheng Jiang, Haiying Su and Weicong Qian
Forests 2025, 16(8), 1231; https://doi.org/10.3390/f16081231 - 26 Jul 2025
Viewed by 341
Abstract
China’s timber market is very complex and heterogeneous, and is experiencing the impact of the construction of national reserve forests and the downturn in the real estate sector. By setting up a partial equilibrium model which reflects the heterogeneity of China’s wood market, [...] Read more.
China’s timber market is very complex and heterogeneous, and is experiencing the impact of the construction of national reserve forests and the downturn in the real estate sector. By setting up a partial equilibrium model which reflects the heterogeneity of China’s wood market, not only difference among domestic timber groups can be identified, but the dissimilarity of imported timber can also be differentiated from the aspects of species and sources. This model is capable of capturing the effects of macroeconomic conditions, forestry sector policies, and trade cost variations on China’s timber market structure. According to simulations of supply shocks, China’s large-diameter log capacity enhancement will have a noticeable crowding-out effect on imported timber, suggesting the diameter of logs is an important factor for market entities to make trade-offs between domestic and imported timber. Amidst both supply and demand shocks, the equilibrium quantity changes in China’s domestic small-diameter logs and imported timber are dominated by demand shocks, whereas the equilibrium quantity change in China’s domestic large-diameter logs is dominated by supply shocks; moreover, only domestic large-diameter logs realize quantity increase in double shocks; this improves China’s domestic timber supply structure, and is a good example of “opportunities in crisis” in the face of negative demand shocks. Full article
Show Figures

Figure 1

16 pages, 11002 KiB  
Article
Transcriptomic Identification of Key Genes Responding to High Heat Stress in Moso Bamboo (Phyllostachys edulis)
by Qinchao Fu, Xinlan Wen, Man Tang, Xin Zhao and Fang Liu
Genes 2025, 16(8), 855; https://doi.org/10.3390/genes16080855 - 23 Jul 2025
Viewed by 330
Abstract
Background/Objectives: Moso bamboo (Phyllostachys edulis), the most widely distributed bamboo species in China, is valued for both its shoots and timber. This species often faces challenges from high-temperature stress. To cope with this stress, Moso bamboo has evolved various adaptive mechanisms [...] Read more.
Background/Objectives: Moso bamboo (Phyllostachys edulis), the most widely distributed bamboo species in China, is valued for both its shoots and timber. This species often faces challenges from high-temperature stress. To cope with this stress, Moso bamboo has evolved various adaptive mechanisms at the physiological and molecular levels. Although numerous studies have revealed that a large number of transcription factors (TFs) and genes play important roles in the regulatory network of plant heat stress responses, the regulatory network involved in heat responses remains incompletely understood. Methods: In this study, Moso bamboo was placed in a high-temperature environment of 42 °C for 1 h and 24 h, and transcriptome sequencing was carried out to accurately identify key molecules affected by high temperature and their related biological pathways. Results: Through a differential expression analysis, we successfully identified a series of key candidate genes and transcription factors involved in heat stress responses, including members of the ethylene response factor, HSF, WRKY, MYB, and bHLH families. Notably, in addition to traditional heat shock proteins/factors, multiple genes related to lipid metabolism, antioxidant enzymes, dehydration responses, and hormone signal transduction were found to play significant roles in heat stress responses. To further verify the changes in the expression of these genes, we used qRT-PCR technology for detection, and the results strongly supported their key roles in cellular physiological processes and heat stress responses. Conclusions: This study not only deepens our understanding of plant strategies for coping with and defending against extreme abiotic stresses but also provides valuable insights for future research on heat tolerance in Moso bamboo and other plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

19 pages, 594 KiB  
Article
Influence of In Situ Polymerization on the Compressive Strength of Scots Pine (Pinus sylvestris L.) Recovered from Demolition Timber and Two Forest-Sourced Species: European Beech (Fagus sylvatica) and Black Alder (Alnus glutinosa)
by Emil Żmuda and Kamil Roman
Materials 2025, 18(15), 3439; https://doi.org/10.3390/ma18153439 - 22 Jul 2025
Viewed by 217
Abstract
This study investigated the effect of in situ polymerization on the compressive strength of demolition-derived Scots pine, European beech, and black alder wood. The treatment applied was based on previously confirmed in situ polymerization systems in wood, which are known to lead to [...] Read more.
This study investigated the effect of in situ polymerization on the compressive strength of demolition-derived Scots pine, European beech, and black alder wood. The treatment applied was based on previously confirmed in situ polymerization systems in wood, which are known to lead to polymer formation and composite-like structures. In this study, we assumed similar behavior and focused on a mechanical evaluation of the modified wood. Three different polymer systems were applied to evaluate differences in performance. After modification, the compressive strength levels increased by 60% in beech, 119% in alder, and 150% in pine, with corresponding increases in density and weight percent gain (WPG). The highest relative improvement was observed in the least dense species, pine. The findings suggest that polymer treatment can significantly enhance the mechanical properties, likely due to the incorporation of polymer into the wood matrix; however, this inference is based on indirect physical evidence. Full article
Show Figures

Figure 1

9 pages, 2671 KiB  
Article
Wood Species Identification and Property Evaluation of Archaeological Wood Excavated from J1 at Shenduntou Site, Fanchang, Anhui, China
by Liang Xu, Weiwei Yang, Mihaela Liu, Zhigao Wang and Xinyou Liu
Forests 2025, 16(7), 1173; https://doi.org/10.3390/f16071173 - 16 Jul 2025
Viewed by 403
Abstract
The Shenduntou Site, a significant Zhou Dynasty settlement in Anhui Province, provides rare insights into early Chinese woodcraft. This study examines exceptionally preserved wooden structures from Well J1, dating to the Western Zhou period (9th–8th c. BCE). Anatomical analysis identified the timber as [...] Read more.
The Shenduntou Site, a significant Zhou Dynasty settlement in Anhui Province, provides rare insights into early Chinese woodcraft. This study examines exceptionally preserved wooden structures from Well J1, dating to the Western Zhou period (9th–8th c. BCE). Anatomical analysis identified the timber as Firmiana simplex (L.), indicating ancient selection of this locally available species for its water resistance and mechanical suitability in well construction. Comprehensive degradation assessment revealed severe structural deterioration: maximum water content (1100% ± 85% vs. modern 120% ± 8%) demonstrated extreme porosity from hydrolysis; X-ray diffraction (XRD) showed a 69.5% reduction in cellulose crystallinity (16.1% vs. modern 52.8%); Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy confirmed near-total hemicellulose degradation, partial cellulose loss, and lignin enrichment due to chemical recalcitrance; Scanning Electron Microscopy (SEM) imaging documented multiscale damage including vessel thinning, pit membrane loss, and cell wall delamination from hydrolytic, microbial, and mineral degradation. These findings reflect Western Zhou inhabitants’ pragmatic resource utilisation while highlighting advanced material deterioration that poses significant conservation challenges, providing critical insights into Zhou-era woodcraft and human–environment interactions in the lower Yangtze region. Full article
(This article belongs to the Special Issue Wood Processing, Modification and Performance)
Show Figures

Figure 1

18 pages, 24780 KiB  
Article
Performance of Polystyrene-Impregnated and CCA-Preserved Tropical Woods Against Subterranean Termites in PNG Field and Treatment-Induced Color Change
by Yusuf Sudo Hadi, Cossey Yosi, Paul Marai, Mahdi Mubarok, Imam Busyra Abdillah, Rohmah Pari, Gustan Pari, Abdus Syukur, Lukmanul Hakim Zaini, Dede Hermawan and Jingjing Liao
Polymers 2025, 17(14), 1945; https://doi.org/10.3390/polym17141945 - 16 Jul 2025
Viewed by 348
Abstract
Logs supplied in Papua New Guinea and Indonesia are predominantly sourced from fast-growing tree species of plantation forests. The timber primarily consists of sapwood, which is highly susceptible to biodeterioration. At a training center, CCA (chromated copper arsenate) is still used for wood [...] Read more.
Logs supplied in Papua New Guinea and Indonesia are predominantly sourced from fast-growing tree species of plantation forests. The timber primarily consists of sapwood, which is highly susceptible to biodeterioration. At a training center, CCA (chromated copper arsenate) is still used for wood preservation, while in the wood industry, ACQ (alkaline copper quaternary) is commonly applied to enhance the service life of timber. In the future, polystyrene impregnation or other non-biocidal treatments could potentially serve this purpose. This study aimed to determine the discoloration and resistance of polystyrene-impregnated and CCA-preserved woods. Wood samples, Anisoptera thurifera and Octomeles sumatrana from Papua New Guinea, and Anthocephalus cadamba and Falcataria moluccana from Indonesia, were used. The wood samples were treated with polystyrene impregnation, CCA preservation, or left untreated, then exposed at the PNG Forest Research Institute site for four months. After treatment, the color change in polystyrene-impregnated wood was minor, whereas CCA-preserved wood exhibited a noticeably different color compared to untreated wood. The average polymer loading for polystyrene-impregnated wood reached 147%, while the average CCA retention was 8.4 kg/m3. Densities of untreated-, polystyrene-, and CCA-wood were 0.42, 0.64, and 0.45 g/cm3, respectively, and moisture contents were 15.8%, 9.4%, and 13.4%, respectively. CCA preservation proved highly effective in preventing termite attacks; however, CCA is hazardous to living organisms, including humans. Polystyrene impregnation also significantly improved wood resistance to subterranean termites, as indicated by lower weight loss and a higher protection level compared to untreated wood. Additionally, polystyrene treatment is nonhazardous and safe for living organisms, making it a promising option for enhancing wood resistance to termite attacks in the future as an alternative to the biocides currently in use. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 1899 KiB  
Article
Climatic Factors in Beechnut Regeneration: From Seed Quality to Germination
by Ernesto C. Rodríguez-Ramírez and Beatriz Argüelles-Marrón
Stresses 2025, 5(3), 44; https://doi.org/10.3390/stresses5030044 - 16 Jul 2025
Viewed by 240
Abstract
Masting, or the synchronous and intermittent production of seeds, can have profound consequences for Tropical Montane Cloud Forest (TMCF) tree populations and the trophic webs that depend on their mass flowering and seeds. Over the past 80 years, the importance of Fagus mexicana [...] Read more.
Masting, or the synchronous and intermittent production of seeds, can have profound consequences for Tropical Montane Cloud Forest (TMCF) tree populations and the trophic webs that depend on their mass flowering and seeds. Over the past 80 years, the importance of Fagus mexicana Martínez (Mexican beech) masting has become apparent in terms of conservation and management, promoting regeneration, and conserving endangered tree species, as well as the conscientious development of edible beechnuts as a non-timber forest product. The establishment of the relict-endemic Mexican beech is unknown, and several microenvironmental factors could influence natural regeneration. Thus, this study was conducted in two well-preserved Mexican beech forests to assess the influence of light incidence and soil moisture on the natural germination and seedling establishment of beeches. During two masting years (2017 and 2024), we assessed in situ beechnut germination and establishment. We tested the effect of the microenvironment of the oldest beeches on beechnut germination and seedling establishment. Our study highlights the complexity of the microenvironment of old beeches influencing the early stages of establishment and provides insights into possible conservation actions aimed at mitigating the impact of environmental change and humans. Full article
Show Figures

Figure 1

21 pages, 13213 KiB  
Article
Experimental Study on Mechanical Properties of European Oak and Norway Spruce Clear Wood
by Serena Gambarelli, Josipa Bošnjak, Rey Noé Fararoni Platas and Kexin Jin
Materials 2025, 18(14), 3257; https://doi.org/10.3390/ma18143257 - 10 Jul 2025
Viewed by 359
Abstract
The trends in the building industry related to sustainability and environmental footprint make timber structures more appealing than ever. Many challenges in understanding the behaviour of structural timber can be addressed by combining experimental and numerical methods. However, sophisticated numerical tools require a [...] Read more.
The trends in the building industry related to sustainability and environmental footprint make timber structures more appealing than ever. Many challenges in understanding the behaviour of structural timber can be addressed by combining experimental and numerical methods. However, sophisticated numerical tools require a complete description of the behaviour at the material level. Even though there are vast databases on the properties of different species, there are only limited studies on the mechanical response with complete stress–strain curves for all relevant directions. In order to bridge this gap, the present study investigates the mechanical response of European oak (hardwood) and Norway spruce (softwood). Uniaxial tensile and compressive tests were performed on small clear wood specimens. The behaviour was investigated for the direction parallel (longitudinal) and perpendicular to the grain (radial and tangential). Both species exhibit brittle tensile behaviour in all material directions, in contrast to the ductile performance under compression. The tensile strength lies at 70 MPa and 80 MPa for spruce and oak, respectively, whereas both species exhibit a compressive strength of approximately 50 MPa in the longitudinal direction. Due to the narrow range of the investigated density, growth-ring angle and growth-ring width, only a limited effect of these parameters was observed on the tensile behaviour in the longitudinal direction. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

Back to TopTop