Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (609)

Search Parameters:
Keywords = tilted surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 13994 KiB  
Article
A Semi-Autonomous Aerial Platform Enhancing Non-Destructive Tests
by Simone D’Angelo, Salvatore Marcellini, Alessandro De Crescenzo, Michele Marolla, Vincenzo Lippiello and Bruno Siciliano
Drones 2025, 9(8), 516; https://doi.org/10.3390/drones9080516 - 23 Jul 2025
Viewed by 67
Abstract
The use of aerial robots for inspection and maintenance in industrial settings demands high maneuverability, precise control, and reliable measurements. This study explores the development of a fully customized unmanned aerial manipulator (UAM), composed of a tilting drone and an articulated robotic arm, [...] Read more.
The use of aerial robots for inspection and maintenance in industrial settings demands high maneuverability, precise control, and reliable measurements. This study explores the development of a fully customized unmanned aerial manipulator (UAM), composed of a tilting drone and an articulated robotic arm, designed to perform non-destructive in-contact inspections of iron structures. The system is intended to operate in complex and potentially hazardous environments, where autonomous execution is supported by shared-control strategies that include human supervision. A parallel force–impedance control framework is implemented to enable smooth and repeatable contact between a sensor for ultrasonic testing (UT) and the inspected surface. During interaction, the arm applies a controlled push to create a vacuum seal, allowing accurate thickness measurements. The control strategy is validated through repeated trials in both indoor and outdoor scenarios, demonstrating consistency and robustness. The paper also addresses the mechanical and control integration of the complex robotic system, highlighting the challenges and solutions in achieving a responsive and reliable aerial platform. The combination of semi-autonomous control and human-in-the-loop operation significantly improves the effectiveness of inspection tasks in hard-to-reach environments, enhancing both human safety and task performance. Full article
(This article belongs to the Special Issue Unmanned Aerial Manipulation with Physical Interaction)
Show Figures

Figure 1

19 pages, 3810 KiB  
Article
Compact and High-Efficiency Linear Six-Element mm-Wave Antenna Array with Integrated Power Divider for 5G Wireless Communication
by Muhammad Asfar Saeed, Augustine O. Nwajana and Muneeb Ahmad
Electronics 2025, 14(15), 2933; https://doi.org/10.3390/electronics14152933 - 23 Jul 2025
Viewed by 126
Abstract
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × [...] Read more.
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × 6 linear series-fed microstrip patch antenna array for 5G millimeter-wave communication operating at 28 GHz. The proposed antenna is fabricated on a low-loss Rogers RO3003 substrate and incorporates an integrated symmetric two-way microstrip power divider to ensure balanced feeding and phase uniformity across elements. The antenna achieves a simulated peak gain of 11.5 dBi and a broad simulated impedance bandwidth of 30.21%, with measured results confirming strong impedance matching and a return loss better than −20 dB. The far-field radiation patterns demonstrate a narrow, highly directive beam in the E-plane, and the H-plane results reveal beam tilting behavior, validating the antenna’s capability for passive beam steering through feedline geometry and element spacing (~0.5λ). Surface current distribution analysis confirms uniform excitation and efficient radiation, further validating the design’s stability. The fabricated prototype shows excellent agreement with the simulation, with minor discrepancies attributed to fabrication tolerances. These results establish the proposed antenna as a promising candidate for applications requiring compact, high-gain, and beam-steerable solutions, such as 5G mm-wave wireless communication systems, point-to-point wireless backhaul, and automotive radar sensing. Full article
(This article belongs to the Special Issue Advances in MIMO Systems)
Show Figures

Figure 1

81 pages, 10454 KiB  
Review
Glancing Angle Deposition in Gas Sensing: Bridging Morphological Innovations and Sensor Performances
by Shivam Singh, Kenneth Christopher Stiwinter, Jitendra Pratap Singh and Yiping Zhao
Nanomaterials 2025, 15(14), 1136; https://doi.org/10.3390/nano15141136 - 21 Jul 2025
Viewed by 119
Abstract
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic [...] Read more.
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic nanostructures, such as aligned, tilted, zigzag, helical, and multilayered nanorods, with tunable surface area and diffusion pathways optimized for gas detection. This review provides a comprehensive synthesis of recent advances in GLAD-based gas sensor design, focusing on how structural engineering and material integration converge to enhance sensor performance. Key materials strategies include the construction of heterojunctions and core–shell architectures, controlled doping, and nanoparticle decoration using noble metals or metal oxides to amplify charge transfer, catalytic activity, and redox responsiveness. GLAD-fabricated nanostructures have been effectively deployed across multiple gas sensing modalities, including resistive, capacitive, piezoelectric, and optical platforms, where their high aspect ratios, tailored porosity, and defect-rich surfaces facilitate enhanced gas adsorption kinetics and efficient signal transduction. These devices exhibit high sensitivity and selectivity toward a range of analytes, including NO2, CO, H2S, and volatile organic compounds (VOCs), with detection limits often reaching the parts-per-billion level. Emerging innovations, such as photo-assisted sensing and integration with artificial intelligence for data analysis and pattern recognition, further extend the capabilities of GLAD-based systems for multifunctional, real-time, and adaptive sensing. Finally, current challenges and future research directions are discussed, emphasizing the promise of GLAD as a scalable platform for next-generation gas sensing technologies. Full article
Show Figures

Graphical abstract

30 pages, 3010 KiB  
Article
The Concentration of Nickel and Cobalt from Agios Ioannis Laterites by Multi-Gravity Separator
by Amina Eljoudiani, Moacir Medeiros Veras, Carlos Hoffmann Sampaio, Josep Oliva Moncunill, Stylianos Tampouris and Jose Luis Cortina Pallas
Minerals 2025, 15(7), 714; https://doi.org/10.3390/min15070714 - 4 Jul 2025
Viewed by 298
Abstract
Asbolane is a secondary source of cobalt (Co) and manganese (Mn), essential for battery and alloy production. Enhancing the utilization of low-grade ores, typically containing ~1.2% Co and 14.7% Mn, is vital for conserving high-grade resources. However, fine grinding for such ores presents [...] Read more.
Asbolane is a secondary source of cobalt (Co) and manganese (Mn), essential for battery and alloy production. Enhancing the utilization of low-grade ores, typically containing ~1.2% Co and 14.7% Mn, is vital for conserving high-grade resources. However, fine grinding for such ores presents challenges for conventional gravity separation. This study investigates the effectiveness of the Multi-Gravity Separator (MGS) in processing finely disseminated asbolane ore from Agios Ioannis, Greece. The study was conducted at the Mineral Processing Laboratory of UPC/Bases Manresa. Two size fractions, D80 (−100 +50 µm and −50 µm), were tested under varying drum speeds, tilt angles, and wash water flows. Response surface methodology (RSM) was implemented using Python-optimized (version 3.15) process parameters. The results demonstrate that a concentrate with 2.6% Co and 32.5% Mn can be obtained, achieving 82.1% Co recovery. Independent and multi-objective optimizations confirm MGS as a viable method for recovering Co and Mn from complex low-grade ores, with reduced overgrinding-related energy losses essential for production. The study aimed to implement and enhance low-grade asbolane ore from a feed containing 2.6% Co and 32.5% Mn. Variables were optimized with a multi-objective target, demonstrating their effectiveness. Full article
(This article belongs to the Special Issue Recycling of Mining and Solid Wastes)
Show Figures

Figure 1

18 pages, 6847 KiB  
Article
Numerical Simulation of Slope Excavation and Stability Under Earthquakes in Cataclastic Loose Rock Mass of Hydropower Station on Lancang River
by Wenjing Liu, Hui Deng and Shuo Tian
Appl. Sci. 2025, 15(13), 7480; https://doi.org/10.3390/app15137480 - 3 Jul 2025
Viewed by 401
Abstract
This study investigates the excavation of the cataclastic loose rock slope at the mixing plant on the right bank of the BDa Hydropower Station, which is situated in the upper reaches of Lancang River. The dominant structural plane of the cataclastic loose rock [...] Read more.
This study investigates the excavation of the cataclastic loose rock slope at the mixing plant on the right bank of the BDa Hydropower Station, which is situated in the upper reaches of Lancang River. The dominant structural plane of the cataclastic loose rock mass was obtained using unmanned aerial vehicle tilt photography and 3D point cloud technology. The actual 3D numerical model of the study area was developed using the 3DEC discrete element numerical simulation software. The excavation response characteristics and overall stability of the cataclastic loose rock slope were analyzed. The support effect was evaluated considering the preliminary shaft micropile and Macintosh reinforced mat as slope support measures, and the stability was assessed by applying seismic waves. The results showed the main deformation and failure area after slope cleaning excavation at the junction of the cataclastic loose rock mass and Qedl deposits in the shallow surface of the excavation face. Moreover, the maximum total displacement could reach 18.3 cm. Subsequently, the overall displacement of the slope was significantly reduced, and the maximum total displacement decreased to 2.78 cm. The support effect was significant. Under an earthquake load, the slope with support exhibited considerable displacement in the shallow surface of the excavation slope, with collapse deformation primarily occurring through shear failure. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

13 pages, 2552 KiB  
Article
The Diagnosis of and Preoperative Planning for Rapidly Progressive Osteoarthritis of the Hip: The Role of Sagittal Spinopelvic Geometry and Anterior Acetabular Wall Deficiency—A Prospective Observational Study
by Andrei Oprișan, Andrei Marian Feier, Sandor Gyorgy Zuh, Octav Marius Russu and Tudor Sorin Pop
Diagnostics 2025, 15(13), 1647; https://doi.org/10.3390/diagnostics15131647 - 27 Jun 2025
Viewed by 286
Abstract
Background/Objectives: Rapidly progressive osteoarthritis of the hip (RPOH) has unique diagnostic and surgical challenges due to rapid joint degeneration and acetabular structural alterations. This study aimed to investigate correlations between preoperative spinopelvic geometry and anterior acetabular wall bone stock deficiency in RPOH [...] Read more.
Background/Objectives: Rapidly progressive osteoarthritis of the hip (RPOH) has unique diagnostic and surgical challenges due to rapid joint degeneration and acetabular structural alterations. This study aimed to investigate correlations between preoperative spinopelvic geometry and anterior acetabular wall bone stock deficiency in RPOH patients and introduce an advanced imaging measurement techniques for cases with amputated femoral heads. Methods: A prospective observational study was conducted that enrolled 85 patients, comprising 40 with unilateral RPOH (Zazgyva Grade II or III) and 45 controls with primary osteoarthritis (OA). Preoperative spino-pelvic parameters (pelvic tilt—PT, sacral slope—SS, lumbar lordosis—LL, and T1 pelvic angle) and acetabular anterior wall characteristics (anterior center edge angle—ACEA, anterior wall index—AWI, and anterior acetabular surface area—AASA) were measured using standardized radiographic and CT imaging protocols, including a new methodology for acetabular center estimation in femoral head-amputated cases. Results: Significant differences were identified between RPOH and primary OA patients in the PT (22.5° vs. 18.9°, p = 0.032), SS (37.8° vs. 41.1°, p = 0.041), T1 pelvic angle (14.3° vs. 11.8°, p = 0.018), and anterior center edge angle (25.3° vs. 29.7°, p = 0.035). RPOH patients exhibited pronounced spinopelvic misalignment and anterior acetabular deficiencies. Conclusions: RPOH is associated with spinopelvic misalignment and anterior acetabular wall deficiency. Accurate preoperative diagnosis imaging and personalized surgical approaches specifically addressing acetabular bone stock deficiencies are mandatory in these cases. Full article
(This article belongs to the Special Issue Diagnosis and Management of Osteoarthritis)
Show Figures

Figure 1

29 pages, 5173 KiB  
Article
A Quantitative Evaluation of UAV Flight Parameters for SfM-Based 3D Reconstruction of Buildings
by Inho Jo, Yunku Lee, Namhyuk Ham, Juhyung Kim and Jae-Jun Kim
Appl. Sci. 2025, 15(13), 7196; https://doi.org/10.3390/app15137196 - 26 Jun 2025
Viewed by 278
Abstract
This study aims to address the critical lack of standardized guidelines for unmanned aerial vehicle (UAV) image acquisition strategies utilizing structure-from-motion (SfM) by focusing on 3D building exterior modeling. A comprehensive experimental analysis was conducted to systematically investigate and quantitatively evaluate the effects [...] Read more.
This study aims to address the critical lack of standardized guidelines for unmanned aerial vehicle (UAV) image acquisition strategies utilizing structure-from-motion (SfM) by focusing on 3D building exterior modeling. A comprehensive experimental analysis was conducted to systematically investigate and quantitatively evaluate the effects of various shooting patterns and parameters on SfM reconstruction quality and processing efficiency. This study implemented a systematic experimental framework to test various UAV flight patterns, including circular, surface, and aerial configurations. Under controlled environmental conditions on representative building structures, key variables were manipulated, and all collected data were processed through a consistent SfM pipeline based on the SIFT algorithm. Quantitative evaluation results using various analytical methodologies (multiple regression analysis, Kruskal–Wallis test, random forest feature importance, principal component analysis including K-means clustering, response surface methodology (RSM), preference ranking technique based on similarity to the ideal solution (TOPSIS), and Pareto optimization) revealed that the basic shooting pattern ‘type’ has a significant and statistically significant influence on all major SfM performance metrics (reprojection error, final point count, computation time, reconstruction completeness; Kruskal–Wallis p < 0.001). Additionally, within the patterns, clear parameter sensitivity and complex nonlinear relationships were identified (e.g., overlapping variables play a decisive role in determining the point count and completeness of surface patterns, with an adjusted R2 ≈ 0.70; the results of circular patterns are strongly influenced by the interaction between radius and tilt angle on reprojection error and point count, with an adjusted R2 ≈ 0.80). Furthermore, composite pattern analysis using TOPSIS identified excellent combinations that balanced multiple criteria, and Pareto optimization explicitly quantified the inherent trade-offs between conflicting objectives (e.g., time vs. accuracy, number of points vs. completeness). In conclusion, this study clearly demonstrates that hierarchical strategic approaches are essential for optimizing UAV-SfM data collection. Additionally, it provides important empirical data, a validated methodological framework, and specific quantitative guidelines for standardizing UAV data collection workflows, thereby improving existing empirical or case-specific approaches. Full article
(This article belongs to the Special Issue Applications in Computer Vision and Image Processing)
Show Figures

Figure 1

19 pages, 41225 KiB  
Article
High-Precision Reconstruction of Water Areas Based on High-Resolution Stereo Pairs of Satellite Images
by Junyan Ye, Ruiqiu Xu, Yixiao Wang and Xu Huang
Remote Sens. 2025, 17(13), 2139; https://doi.org/10.3390/rs17132139 - 22 Jun 2025
Viewed by 320
Abstract
The use of high-resolution satellite stereo pairs for dense image matching is a core technology for the low-cost generation of large-scale digital surface models (DSMs). However, water areas in satellite imagery often exhibit weak texture characteristics. This leads to serious issues in reconstructing [...] Read more.
The use of high-resolution satellite stereo pairs for dense image matching is a core technology for the low-cost generation of large-scale digital surface models (DSMs). However, water areas in satellite imagery often exhibit weak texture characteristics. This leads to serious issues in reconstructing water surface DSMs with traditional dense matching methods, such as significant holes and abnormal undulations. These problems significantly impact the intelligent application of satellite DSM products. To address these issues, this study innovatively proposes a water region DSM reconstruction method, boundary plane-constrained surface water stereo reconstruction (BPC-SWSR). The algorithm constructs a water surface reconstruction model with constraints on the plane’s tilt angle and boundary, combining effective ground matching data from the shoreline and the plane constraints of the water surface. This method achieves the seamless planar reconstruction of the water region, effectively solving the technical challenges of low geometric accuracy in water surface DSMs. This article conducts experiments on 10 high-resolution satellite stereo image pairs, covering three types of water bodies: river, lake, and sea. Ground truth water surface elevations were obtained through a manual tie point selection followed by forward intersection and planar fitting in water surface areas, establishing a rigorous validation framework. The DSMs generated by the proposed algorithm were compared with those generated by state-of-the-art dense matching algorithms and the industry-leading software Reconstruction Master version 6.0. The proposed algorithm achieves a mean RMSE of 2.279 m and a variance of 0.6613 m2 in water surface elevation estimation, significantly outperforming existing methods with average RMSE and a variance of 229.2 m and 522.5 m2, respectively. This demonstrates the algorithm’s ability to generate more accurate and smoother water surface models. Furthermore, the algorithm still achieves excellent reconstruction results when processing different types of water areas, confirming its wide applicability in real-world scenarios. Full article
Show Figures

Figure 1

18 pages, 2053 KiB  
Article
Optimization of Hybrid Machining of Nomex Honeycomb Structures: Effect of the CZ10 Tool and Ultrasonic Vibrations on the Cutting Process
by Oussama Beldi, Tarik Zarrouk, Ahmed Abbadi, Mohammed Nouari, Jamal-Eddine Salhi, Mohammed Abbadi and Mohamed Barboucha
Machines 2025, 13(6), 515; https://doi.org/10.3390/machines13060515 - 13 Jun 2025
Viewed by 376
Abstract
Machining Nomex honeycomb composite structures is crucial for manufacturing components that meet stringent industry requirements. However, the complex characteristics of this material require specialized machining techniques to avoid defects, ensure optimal surface quality, and preserve the integrity of the cutting tool. Thus, hybrid [...] Read more.
Machining Nomex honeycomb composite structures is crucial for manufacturing components that meet stringent industry requirements. However, the complex characteristics of this material require specialized machining techniques to avoid defects, ensure optimal surface quality, and preserve the integrity of the cutting tool. Thus, hybrid ultrasonic-vibration-assisted machining (HUSVAM) technology, using a CZ10 combined cutting tool, was introduced to overcome these limitations. To this end, a 3D numerical model based on the finite element method, developed using Abaqus/Explicit 2017 software, allows us to simulate the interaction between the cutting tool and the thin walls of the structure to be machined. The objective of this study was to validate a numerical model through experimental tests while quantifying the impact of critical machining parameters, including the rotation speed and tilt angle, on process performance, in terms of surface finish, tool wear, cutting force components and chip size. The numerical results demonstrated that HUSVAM technology allows for a significant reduction in the cutting force components, with a decrease of between 12% and 35%. Furthermore, this technology improves cutting quality by limiting the deformation and tearing of cell walls, while extending tool life through a significant reduction in wear. These improvements thus contribute to a substantial optimization of the overall efficiency of the machining process. Full article
Show Figures

Figure 1

19 pages, 3072 KiB  
Article
Ground Clearance Effects on the Aerodynamic Loading of Tilted Flat Plates in Tandem
by Dimitrios Mathioulakis, Nikolaos Vasilikos, Panagiotis Kapiris and Christina Georgantopoulou
Fluids 2025, 10(6), 155; https://doi.org/10.3390/fluids10060155 - 12 Jun 2025
Viewed by 432
Abstract
The aerodynamic loading of four as well as of six tilted flat plates-panels arranged in tandem and in close proximity to the ground is examined through force and pressure measurements. In the four-plate set up, conducted in an open-circuit wind tunnel, a movable [...] Read more.
The aerodynamic loading of four as well as of six tilted flat plates-panels arranged in tandem and in close proximity to the ground is examined through force and pressure measurements. In the four-plate set up, conducted in an open-circuit wind tunnel, a movable floor is used to vary the ground clearance, and a one-component force balance is employed to measure the drag coefficient Cd of each plate for tilt angles 10° to 90° and for two head-on wind directions, 0° and 180°. An increase in the ground clearance from 20% to 60% of the plates’ chord length, results in a Cd increase of over 40% in the downstream plates, and up to 20% in the leading one. For tilt angles below 40°, the drag on the first plate is up to 25% higher under the 180° wind direction compared to the opposite direction. Pressure distributions are also presented on a series of six much larger plates, examined in a closed-circuit wind tunnel at tilt angles ±30°. While the windward surfaces exhibit relatively uniform pressure distributions, regions of low pressure develop on their suction side, near the plates’ tips leading edge, tending to become uniform streamwise. Full article
Show Figures

Figure 1

19 pages, 4362 KiB  
Article
Parameter Optimization Design and Experimental Validation of a Header for Electric Rice Reaper Binders Employed in Hilly Regions
by Jinbo Ren, Difa Bao, Zhi Liang, Chongsheng Yan, Junbo Wu, Xinhui Wu and Shuhe Zheng
Agriculture 2025, 15(12), 1242; https://doi.org/10.3390/agriculture15121242 - 6 Jun 2025
Viewed by 375
Abstract
The operation of electric rice reaper binders in hilly and mountainous areas currently faces the challenges of poor conveying efficiency and high harvest losses caused by the large dispersion of rice stem posture angles. In this study, we propose a multiparameter collaborative optimization [...] Read more.
The operation of electric rice reaper binders in hilly and mountainous areas currently faces the challenges of poor conveying efficiency and high harvest losses caused by the large dispersion of rice stem posture angles. In this study, we propose a multiparameter collaborative optimization method for improving header structure in an effort to address these challenges. First, key parameters influencing lifting performance and their operational ranges were determined based on a theoretical analysis of the stem-lifting mechanism’s kinematic characteristics. A dynamic model simulating the header’s lifting process was developed by using the ADAMS multibody dynamics platform. Subsequently, we designed a quadratic regression orthogonal rotation combination experiment with three factors, i.e., the stem-lifting speed ratio coefficient, the cutter installation position, and the header tilt angle, using the stem-lifting angle as the evaluation metric. The variance in the experimental data was analyzed with Design-Expert 13.0, and response surface methodology (RSM) was applied to elucidate the parameter interaction effects. The optimal parameter combination was identified as a speed ratio coefficient of 2.14, a cutter installation position of 258.79 mm, and a header tilt angle of 62.63°, yielding a theoretical stem-lifting angle of 2.36°. Field validation tests demonstrated an actual stem-lifting angle of 2.44° (relative error: 3.39%) and a header loss rate of 0.59%, representing a 49.6% reduction compared with the pre-optimized design. These results confirm that the optimized header satisfies operational requirements for hilly terrain rice harvesting, providing both theoretical guidance and technical advancements for the design of low-loss harvesting machinery. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

13 pages, 1910 KiB  
Article
Excellent Superhydrophobic Cone-Array Surfaces with Low Contact Time of Droplet Pancake Bouncing Under Various Conditions
by Yuanjie Chen, Yucai Lin, Shile Feng and Yongmei Zheng
Fluids 2025, 10(6), 144; https://doi.org/10.3390/fluids10060144 - 28 May 2025
Viewed by 499
Abstract
Superhydrophobic surfaces with a low liquid–solid contact time have huge application prospects in anti-icing, corrosion-resistant, self-cleaning, etc. Significant attempts have been devoted to reducing the contact time through altering the hydrodynamics of the process through which the droplet contacts the superhydrophobic surface. However, [...] Read more.
Superhydrophobic surfaces with a low liquid–solid contact time have huge application prospects in anti-icing, corrosion-resistant, self-cleaning, etc. Significant attempts have been devoted to reducing the contact time through altering the hydrodynamics of the process through which the droplet contacts the superhydrophobic surface. However, these works are rarely considered to be related to the influence of environmental conditions (e.g., the pH of the droplet, salinity of the droplet, droplet viscosity, and supercooled droplet impact). Here, we report various superhydrophobic cone arrays (SCAs) with low droplet impact contact times under various conditions (pH of the droplet, salinity of the droplet, droplet viscosity, droplet temperature, etc.). We demonstrate that the low contact time of the droplet impacting cone-arrays can be optimized via the critical Weber number, pillar-to-pillar spacing, and pillar height (e.g., 11.1, 350 μm, and 300 μm, respectively). The lowest droplet contact time of ~6 ms, which is reduced by more than 60% compared to conventional bouncing, can be achieved. In addition, directional pancake bouncing behaviors can achieve the largest horizontal displacement (85% of the droplet size, ~3 mm) on a tilted SCA with optimal tilt angles. These findings offer insights into the interface effect for controlling wetting that would extend the practical applications, e.g., liquid repellency, anti-corrosion, anti-icing, heat transfer, etc. Full article
(This article belongs to the Special Issue 10th Anniversary of Fluids—Recent Advances in Fluid Mechanics)
Show Figures

Figure 1

23 pages, 7954 KiB  
Article
A Comparative Study of the Effects of Superhydrophobic and Superhydrophilic Coatings on Dust Deposition Mitigation for Photovoltaic Module Surfaces
by Huaxu Tuo, Chuanxiao Zheng, Hao Lu, Yubo Liu, Chenyang Xu, Jiamin Cui and Yuhang Chen
Coatings 2025, 15(5), 614; https://doi.org/10.3390/coatings15050614 - 21 May 2025
Viewed by 475
Abstract
To comparatively evaluate the suitability of superhydrophobic and superhydrophilic coatings for photovoltaic (PV) module surfaces in arid and low-rainfall regions, this study investigates their dust deposition mitigation performance under anhydrous conditions and assesses the impact of dust reduction on PV power generation efficiency. [...] Read more.
To comparatively evaluate the suitability of superhydrophobic and superhydrophilic coatings for photovoltaic (PV) module surfaces in arid and low-rainfall regions, this study investigates their dust deposition mitigation performance under anhydrous conditions and assesses the impact of dust reduction on PV power generation efficiency. An experimental platform for dust deposition and a PV output measurement system were constructed to evaluate the performance of coated PV modules. The open-circuit voltage (Uoc), short-circuit current (Isc), maximum power (Pmax), and dust deposition mass were measured before and after dust exposure. Additionally, the influence of coating properties on dust deposition behavior and the correlation between dust deposition density and PV output power were systematically examined. The experimental data reveal a linear relationship between PV output power loss and dust deposition density. Dust accumulation decreases monotonically with panel tilt angle, while displaying a non-monotonic response to wind speed, peaking at 3.9 m/s. Under optimal conditions (60° tilt angle and 5.2 m/s wind speed), minimal dust deposition densities were observed: 0.25 g/m2 for superhydrophobic coated PV modules versus 1.11 g/m2 for superhydrophilic coated surfaces. Both superhydrophobic and superhydrophilic coatings demonstrated effective dust deposition inhibition in anhydrous environments. However, the dust deposition mitigation efficiency of the superhydrophobic coating (88.7%) is significantly better than that of the superhydrophilic coating (46.2%) under the working conditions of a large inclination angle (60°) and high wind speed (5.2 m/s). These findings provide critical experimental evidence for optimizing self-cleaning coating selection in PV modules deployed in arid regions. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

17 pages, 4366 KiB  
Article
Numerical Simulation of the Effect of APCVD Reactor Tilted Ceiling Height on Silicon Epitaxial Layer Thickness Uniformity
by Ba-Phuoc Le, Jyh-Chen Chen, Chieh Hu, Wei-Jie Lin, Chun-Chin Tu and Liang-Chin Chen
Crystals 2025, 15(5), 477; https://doi.org/10.3390/cryst15050477 - 18 May 2025
Viewed by 377
Abstract
As the linewidth of semiconductor nanostructures continues to decrease, the criteria for acceptable surface homogeneity of silicon (Si) epi-films are becoming increasingly stringent. To address this challenge, the effect of different tilted ceiling heights on the Si epi thickness homogeneity in an atmospheric [...] Read more.
As the linewidth of semiconductor nanostructures continues to decrease, the criteria for acceptable surface homogeneity of silicon (Si) epi-films are becoming increasingly stringent. To address this challenge, the effect of different tilted ceiling heights on the Si epi thickness homogeneity in an atmospheric pressure chemical vapor deposition (APCVD) reactor is investigated numerically. In this study, the deposition temperature on the wafer is controlled at 1373 K. When a tilted ceiling with decreasing height along the streamwise direction is used, the average gas mixture velocity increases with the streamwise direction, which can reduce the impact of flow distortion caused by the rotation of the susceptor. At the same time, the growth of the reaction boundary layer on the wafer is suppressed, which helps with the diffusion of trichlorosilane (TCS) on the wafer surface. This makes the drop in the TCS concentration along the streamwise direction more linear, thereby improving the linearity of the growth rate on the wafer surface along the streamwise direction. Therefore, the present results for a reactor without an inlet plate show that the thickness homogeneity across the entire surface of the wafer after a complete susceptor rotation can be significantly improved by linearly reducing the ceiling height in the streamwise direction. A further increase in the inclination of the inclined ceiling leads to a further improvement in the deposition homogeneity. However, the growth rate values at the same position perpendicular to the streamwise direction are inconsistent, which is not conducive to deposition homogeneity. This shortcoming can be improved upon by using a four-inlet plate reactor with an inclined top plate and by properly selecting the position of each partition and the inlet gas mixture velocity of each inlet channel, thereby greatly increasing the deposition homogeneity of the Si epi-layer. For the cases considered in this study, the deposition thickness non-homogeneity across the wafer surface decreased from 38% to 3%. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

16 pages, 15439 KiB  
Article
Unveiling Surface Roughness Trends and Mechanical Properties in Friction Stir Welded Similar Alloys Joints Using Adaptive Thresholding and Grayscale Histogram Analysis
by Haider Khazal, Azzeddine Belaziz, Raheem Al-Sabur, Hassanein I. Khalaf and Zerrouki Abdelwahab
J. Manuf. Mater. Process. 2025, 9(5), 159; https://doi.org/10.3390/jmmp9050159 - 14 May 2025
Cited by 1 | Viewed by 767
Abstract
Surface roughness plays a vital role in determining surface integrity and function. Surface irregularities or reduced quality near the surface can contribute to material failure. Surface roughness is considered a crucial factor in estimating the fatigue life of structures welded by FSW. This [...] Read more.
Surface roughness plays a vital role in determining surface integrity and function. Surface irregularities or reduced quality near the surface can contribute to material failure. Surface roughness is considered a crucial factor in estimating the fatigue life of structures welded by FSW. This study attempts to provide a deeper understanding of the nature of the surface formation and roughness of aluminum joints during FSW processes. In order to form more efficient joints, the frictional temperature generated was monitored until reaching 450 °C, where the transverse movement of the tool and the joint welding began. Hardness and tensile tests showed that the formed joints were good, which paved the way for more reliable surface roughness measurements. The surface roughness of the weld joint was measured along the weld line at three symmetrical levels using welding parameters that included a rotational speed of 1250 rpm, a welding speed of 71 mm/min, and a tilt angle of 1.5°. The average hardness in the stir zone was measured at 64 HV, compared to 50 HV in the base material, indicating a strengthening effect induced by the welding process. In terms of tensile strength, the FSW joint exhibited a maximum force of 2.759 kN. Average roughness (Rz), arithmetic center roughness (Ra), and maximum peak-to-valley height (Rt) were measured. The results showed that along the weld line and at all levels, the roughness coefficients (Rz, Ra, and Rt) gradually increased from the beginning of the weld line to its end. The roughness Rz varies from start to finish, ranging between 9.84 μm and 16.87 μm on the RS and 8.77 μm and 13.98 μm on the AS, leveling off slightly toward the end as the heat input stabilizes. The obtained surface roughness and mechanical properties can give an in-depth understanding of the joint surface forming and increase the ability to overcome cracks and defects. Consequently, this approach, using adaptive thresholding image processing coupled with grayscale histogram analysis, yielded significant understanding of the FSW joint’s surface texture. Full article
(This article belongs to the Special Issue Advances in Dissimilar Metal Joining and Welding)
Show Figures

Figure 1

Back to TopTop