Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = three-orthogonal scanning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5957 KB  
Article
Precision Cutting of CF/PEEK by UV Nanosecond Laser for On-Orbit Manufacturing Applications
by Wenqiang Wu, Bing Wei, Yu Huang and Congyi Wu
Micromachines 2026, 17(1), 93; https://doi.org/10.3390/mi17010093 - 11 Jan 2026
Viewed by 262
Abstract
On-orbit cutting is a critical process for the on-orbit manufacturing of carbon fiber reinforced polyetheretherketone composites (CF/PEEK) truss structures, with pulsed laser cutting serving as one of the feasible methods. Achieving high-quality cutting of CF/PEEK remains a major challenge for on-orbit manufacturing. Therefore, [...] Read more.
On-orbit cutting is a critical process for the on-orbit manufacturing of carbon fiber reinforced polyetheretherketone composites (CF/PEEK) truss structures, with pulsed laser cutting serving as one of the feasible methods. Achieving high-quality cutting of CF/PEEK remains a major challenge for on-orbit manufacturing. Therefore, the cutting process of CF/PEEK prepreg tape was studied by an ultraviolet (UV) nanosecond laser. A three-factor, five-level orthogonal experiment was carried out to analyze the influence of laser repetition rate (LRR), laser cutting speed (LCS), and laser scanning times (LCTs) on cutting quality. The ablation mechanism dominated by the photothermal effect between the UV nanosecond laser and CF/PEEK was analyzed, and the by-products in the cutting process were explored. Finally, the optimal cutting quality (the width of slit (Ws) = 41.69 ± 3.54 μm, the heat-affected zone (HAZ) = 87.27 ± 7.30 μm) was obtained under the process conditions of LRR 50 kHz-LCS 50 mm/s-LCT 16 times. The findings show that the WS and HAZ increase with the increase in LRR and LCT and the decrease in LCS, and the carbon fiber decomposes and escapes due to the photothermal effect. Full article
Show Figures

Figure 1

27 pages, 2936 KB  
Article
Ai-Fen Solid Dispersions: Preparation, Characterization, and Enhanced Therapeutic Efficacy in a Rat Model of Oral Ulceration
by Bing-Nan Liu, Kai-Lang Mu, Chang-Liu Shao, Ping-Xuan Xie, Jun-Li Xie, Mei-Hui He, Yu-Chen Liu, Ke Zhong, Yuan Yuan, Xiao-Min Tang and Yu-Xin Pang
Pharmaceuticals 2026, 19(1), 7; https://doi.org/10.3390/ph19010007 - 19 Dec 2025
Viewed by 347
Abstract
Background/Objectives: Recurrent oral ulceration (ROU) is the most prevalent disorder of the oral mucosa, affecting approximately 20% of the global population. Current therapies are limited by adverse effects and high recurrence rates. Ai-Fen, enriched in the anti-inflammatory monoterpenoid L-borneol (54.3% w/w [...] Read more.
Background/Objectives: Recurrent oral ulceration (ROU) is the most prevalent disorder of the oral mucosa, affecting approximately 20% of the global population. Current therapies are limited by adverse effects and high recurrence rates. Ai-Fen, enriched in the anti-inflammatory monoterpenoid L-borneol (54.3% w/w), exhibits therapeutic potential but suffers from poor aqueous solubility and low bioavailability. This study aimed to improve the physicochemical properties and in vivo efficacy of Ai-Fen through the preparation of solid dispersions. Methods: Ai-Fen solid dispersions (AF-SD) were prepared by a melt-fusion method using polyethylene glycol 6000 (PEG 6000) as the carrier. An L9(33) orthogonal design was employed to optimize three critical parameters: drug-to-carrier ratio, melting temperature, and melting duration. The resulting dispersions were systematically characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). A chemically induced ROU model in rats (n = 8 per group) was established to evaluate the effects of AF-SD on ulcer area, serum inflammatory cytokines (TNF-α, IL-6), vascular endothelial growth factor (VEGF) levels, and histopathological outcomes. Results: The optimal formulation was obtained at a drug-to-carrier ratio of 1:2, a melting temperature of 70 °C, and a melting time of 5 min. Under these conditions, L-borneol release increased 2.5-fold. DSC and PXRD confirmed complete conversion of Ai-Fen to an amorphous state, while FTIR revealed a 13 cm−1 red shift in the O-H stretching band, indicating hydrogen-bond formation. In vivo, AF-SD reduced ulcer area by 60.7% (p < 0.001) and achieved a healing rate of 74.16%. Serum TNF-α and IL-6 decreased by 55.5% and 49.6%, respectively (both p < 0.001), whereas VEGF increased by 89.6% (p < 0.001). Histological analysis confirmed marked reduction in inflammatory infiltration, accelerated re-epithelialization (score 2.50), and a 5.9-fold increase in neovascularization. Conclusions: AF-SD markedly enhanced the bioavailability of Ai-Fen through amorphization and accelerated ROU healing, likely via dual mechanisms involving suppression of nuclear factor kappa-B (NF-κB)-mediated inflammation and promotion of angiogenesis. This formulation strategy provides a promising approach for modernizing traditional herbal medicines. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

21 pages, 4931 KB  
Article
Collaborative Optimization Design of Fluidity-Mechanical Properties of Grouting Material and Micro-Mechanism for Semi-Flexible Pavement
by Ping Wu, Junjie Lin, Ping Li, Zucan Jin, Fuyang Guan, Chaofan Wang and Yiduo Zhang
Coatings 2025, 15(12), 1466; https://doi.org/10.3390/coatings15121466 - 10 Dec 2025
Viewed by 273
Abstract
Semi-Flexible Pavement (SFP) combines the flexibility of asphalt concrete and the rigidity of cement concrete to provide excellent high-temperature rutting resistance in the summer. However, its application is often limited by the fluidity and mechanical properties of cement-based grouting materials. This study systematically [...] Read more.
Semi-Flexible Pavement (SFP) combines the flexibility of asphalt concrete and the rigidity of cement concrete to provide excellent high-temperature rutting resistance in the summer. However, its application is often limited by the fluidity and mechanical properties of cement-based grouting materials. This study systematically optimized the mix ratios of three types of grouting materials (cement-based, mineral-modified, and polymer-enhanced) using response surface methodology combined with orthogonal tests. The effects of water–binder ratio (W/B), sand–binder ratio (S/B), mineral admixtures and polymer additives on the key properties of grouting materials were systematically studied. By using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD), the evolution of the mixture microstructure and the mechanism of performance change were also analyzed. The test results show that the optimal mix ratio of the cement-based grouting material is W/B = 0.46 and S/B = 0.15; the optimal mix ratio of the mineral grouting material is to replace part of the cement with fly ash (9%), silica fume (6%) and microspheres (3%). Microscopic tests show that fly ash effectively inhibits bleeding; silica fume and fly ash promote the formation of calcium silicate hydrate (C-S-H) gel; microspheres optimize the rheology of the slurry; and the synergistic effect of silica fume and microspheres reduces the internal pores of the grouting material, achieving high fluidity, low bleeding rate and excellent mechanical properties of the grouting material. The polymer-reinforced grouting material is an enhanced slurry formed by adding high-performance water reducer (0.8%), rubber powder (2%) and coupling agent (0.9%) to the optimal mineral grouting material. The combined effect of rubber powder and coupling agent significantly improves the adhesive property between the grouting material and the asphalt interface, making it more suitable for the road performance of SFP in low-temperature environments. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

25 pages, 2836 KB  
Article
Synergistic Effects of Earthworm Size, Earthworm Application Timing, and Quantity on Brassica rapa var. chinensis Growth and Black Soil Pore Structure
by Baoguang Wu, Zhenyu Wang, Zhipeng Yin, Pu Chen, Yuping Liu, Shun Xu, Hao Pang and Qiuju Wang
Agriculture 2025, 15(23), 2497; https://doi.org/10.3390/agriculture15232497 - 30 Nov 2025
Viewed by 478
Abstract
Black soil, as a vital environment for food production, is currently facing severe degradation. Earthworm tillage is recognized as an effective approach to improving black soil structure; however, its optimal implementation strategy remains unclear. In this study, a pot experiment using Pak Choi [...] Read more.
Black soil, as a vital environment for food production, is currently facing severe degradation. Earthworm tillage is recognized as an effective approach to improving black soil structure; however, its optimal implementation strategy remains unclear. In this study, a pot experiment using Pak Choi (Brassica rapa L. ssp. chinensis) was conducted under an orthogonal design with three factors—earthworm size, application timing, and quantity. Combined with yield measurement, analysis of variance (ANOVA), and grey relational analysis (GRA), the effects of earthworm application on plant growth and soil structure were systematically evaluated. In addition, Computer Tomography (CT) scanning and three-dimensional reconstruction were employed to visualize the pore structures of representative soil samples. The results showed that large earthworms significantly enhanced both leaf and root biomass of Pak Choi, exhibiting a stronger promoting effect than small earthworms. Application at the sowing stage resulted in the greatest yield improvement, whereas applications at other growth stages had limited effects. The number of earthworms did not show a statistically significant impact under the experimental conditions, and its potential influence requires further verification under more refined density gradients. Overall, this study elucidates the mechanisms by which earthworm tillage improves soil structure and promotes crop growth, providing a theoretical basis for the restoration and sustainable utilization of degraded black soil. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

15 pages, 3843 KB  
Article
Optimization of Preparation Process Parameters for HVOF-Sprayed WC-10Co-4Cr Coatings and Study of Abrasive and Corrosion Performances
by Tao Liu, Jiajun Li, Haifeng Li, Jianwu Liu, Yueyu Huang, Qun Wang and Chidambaram Seshadri Ramachandran
Lubricants 2025, 13(12), 516; https://doi.org/10.3390/lubricants13120516 - 27 Nov 2025
Viewed by 503
Abstract
To enhance the abrasive wear resistance of mechanical components operating in corrosive environments, this study fabricated WC-10Co-4Cr coatings using high-velocity oxygen-fuel (HVOF) thermal spraying technology. A L9 (34) orthogonal array was designed to optimize four key process parameters (kerosene flow rate, [...] Read more.
To enhance the abrasive wear resistance of mechanical components operating in corrosive environments, this study fabricated WC-10Co-4Cr coatings using high-velocity oxygen-fuel (HVOF) thermal spraying technology. A L9 (34) orthogonal array was designed to optimize four key process parameters (kerosene flow rate, oxygen flow rate, powder feed rate, and spraying distance) at three levels each, aiming for minimal porosity. The phase composition, microstructure, hardness, abrasive wear resistance, and corrosion resistance of the coatings were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), microhardness tester, wet sand rubber wheel abrasion tester, and electrochemical workstation. The results indicated that the optimal parameters were a kerosene flow rate of 0.0073 L/s, oxygen flow rate of 15.33 L/s, powder feed rate of 1 g/s, and spraying distance of 326 mm. The coating prepared under these conditions exhibited high density with a porosity of only 0.32% and a high microhardness of 1281 HV1. Compared to the AISI 1020 steel substrate, the optimized WC-10Co-4Cr coating demonstrated a 122-fold improvement in abrasive wear resistance and a better corrosion resistance, showcasing its excellent overall performance and great potential for wear-resistant surface protection in corrosive environments. Full article
Show Figures

Figure 1

27 pages, 62283 KB  
Article
Near-Field Target Detection with Range–Angle-Coupled Matching Based on Distributed MIMO Radar
by Quanrun Cheng, Yuhong Zhang, Cao Zeng, Zhigang Zhou, Guisheng Liao and Haihong Tao
Sensors 2025, 25(22), 7003; https://doi.org/10.3390/s25227003 - 16 Nov 2025
Viewed by 754
Abstract
With respect to distributed MIMO radar systems, conventional far-field detection methods fail under near-field conditions due to significant wavefront curvature, which inevitably results in target energy loss and erroneous parameter estimation. To solve this problem, we propose a near-field target detection framework based [...] Read more.
With respect to distributed MIMO radar systems, conventional far-field detection methods fail under near-field conditions due to significant wavefront curvature, which inevitably results in target energy loss and erroneous parameter estimation. To solve this problem, we propose a near-field target detection framework based on range–angle-coupled matching in this study. Firstly, we design the linear frequency modulation by frequency division (FD-LFM) signal. In addition to offering favorable orthogonality and Doppler tolerance, the transmitter of distributed MIMO radar employs a wide beamwidth to mitigate the low scanning efficiency associated with beam positioning in distributed phased array (PA) radar systems. Secondly, we develop a three-dimensional grid-based echo model for near-field targets in range–azimuth–elevation domain. Specifically, we conceive a coherent pulse integration method via multi-dimensional matching, which enables precise delay alignment and echo accumulation across all transmit–receive pairs for accurate near-field target detection. Thirdly, we propose a parallelization scheme for distributed MIMO radar near-field processing. Our proposal not only compensates effectively for spherical wave propagation effects but also achieves real-time processing through GPU acceleration. Finally, our proposed method’s feasibility of high resolution and effectiveness of near-field detection have been verified by field experimental simulation and actual measurement processing results. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

19 pages, 12925 KB  
Article
Cobalt-Based Ceramic Wear-Resistant Cutting Pick Laser Cladding Process and Its Law Analysis
by Yiming Zhu, Chenguang Guo, Shengli Xue, Haitao Yue and Junlin Dai
Coatings 2025, 15(11), 1289; https://doi.org/10.3390/coatings15111289 - 4 Nov 2025
Viewed by 485
Abstract
As a core wear-prone component of coal mining equipment, the wear resistance of cutting picks directly affects mining efficiency and operating costs. This study addresses the premature failure of traditional hard alloy cutting picks caused by impact fatigue and abrasive wear under complex [...] Read more.
As a core wear-prone component of coal mining equipment, the wear resistance of cutting picks directly affects mining efficiency and operating costs. This study addresses the premature failure of traditional hard alloy cutting picks caused by impact fatigue and abrasive wear under complex geological conditions. By introducing WC powder, the research aims to enhance the quality of the laser cladding coating on cobalt-based reinforced cutting picks and to investigate the variation in optimal process parameters with an increasing WC ratio. Five sets of L9 orthogonal experiments were conducted using the Taguchi method. Combined with the analysis of the signal-to-noise ratio (SNR), the optimal parameters under each material ratio were obtained and experimentally verified. The errors were all within 10%, which proves the reliability and repeatability of the optimization results. Subsequently, the effects of laser power, powder feeding rate and scanning speed on coating quality were systematically evaluated. Scanning speed had the most significant effect on microhardness, while laser power predominantly influenced dilution rate. For low WC content, powder feeding rate had a greater impact on porosity; as WC content increased, laser power became the main factor affecting porosity. Grey Relational Analysis (GRA) was subsequently applied to integrate the three response targets into a single grey relational grade (GRG), optimizing the parameters for each WC ratio. And the law of mutual influence between different material ratios and their process parameters was found. Wear tests on the optimized cladding layer showed that, compared with the original and pure cobalt-based picks, wear resistance increased by 45% and 80%, respectively. These results indicate a clear correlation between WC content, process parameter optimization, and improved coating performance. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

17 pages, 4842 KB  
Article
Study on the Hybrid Effect of Basalt and Polypropylene Fibers on the Mechanical Properties of Concrete
by Lianying Ding, Zhenan Lin, Cundong Xu, Hui Xu, Bofei Li and Jiaxing Shen
Buildings 2025, 15(17), 3197; https://doi.org/10.3390/buildings15173197 - 4 Sep 2025
Cited by 4 | Viewed by 1135
Abstract
Hybrid fiber-reinforced concrete (HFRC), renowned for its significantly enhanced mechanical properties and structural integrity, is widely used in infrastructure construction and has become a key avenue of modern high-performance concrete development. The hybrid application of basalt fiber (BF) and polypropylene fiber (PPF) at [...] Read more.
Hybrid fiber-reinforced concrete (HFRC), renowned for its significantly enhanced mechanical properties and structural integrity, is widely used in infrastructure construction and has become a key avenue of modern high-performance concrete development. The hybrid application of basalt fiber (BF) and polypropylene fiber (PPF) at optimized ratios generates synergistic effects, improving both mechanical performance and material service reliability. To explore and evaluate the synergistic mechanism of BF-PPF hybrid fibers on concrete’s mechanical properties and performance, this study employs an orthogonal experimental design and mechanical testing methods, measuring the materials’ static compressive strength (loading rate: 0.6 mm/min), splitting tensile strength (loading rate: 0.12–0.14 MPa/s), dynamic elastic modulus (measured by the ultrasonic method), and dynamic compressive strength (loading rates: 0.6 mm/min, 6 mm/min, and 60 mm/min). For these tests, we prepared 100 mm × 100 mm × 100 mm cubic specimens (for static compressive, dynamic compressive, and splitting tensile tests) and 400 mm × 100 mm × 100 mm prismatic specimens (for dynamic elastic modulus tests), with three parallel specimens in each test group. In addition, the microstructure was characterized by scanning electron microscopy (SEM) to observe the fiber-matrix interaction. The results show that when the BF/PPF volume ratio is 1:2 (BF0.05PPF0.1), the concrete’s compressive strength, splitting tensile strength, and elastic modulus increase by 13.7%, 76.3%, and 116.0%, respectively, with corresponding synergistic effect indices (Q) of 0.057, 0.213, and 0.241, indicating obvious positive synergy. Under dynamic loading, hybrid combinations with higher PPF content (e.g., BF0.05PPF0.1) exhibit strain-rate-dependent enhancements in compressive strength and better impact resistance. SEM analysis reveals that fibers inhibit microcrack propagation through fiber bridging, network distribution, and pull-out resistance, while also improving the interfacial transition zone’s structure. These findings provide theoretical support for the engineering application of composite fiber-reinforced concrete materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

13 pages, 4489 KB  
Article
Fatigue Resistance of Customized Implant-Supported Restorations
by Ulysses Lenz, Renan Brandenburg dos Santos, Megha Satpathy, Jason A. Griggs and Alvaro Della Bona
Materials 2025, 18(14), 3420; https://doi.org/10.3390/ma18143420 - 21 Jul 2025
Cited by 2 | Viewed by 1048
Abstract
The design of custom abutments (CA) can affect the mechanical reliability of implant-supported restorations. The purpose of the study was to evaluate the influence of design parameters on the fatigue limit of CA and to compare optimized custom designs with the reference abutment [...] Read more.
The design of custom abutments (CA) can affect the mechanical reliability of implant-supported restorations. The purpose of the study was to evaluate the influence of design parameters on the fatigue limit of CA and to compare optimized custom designs with the reference abutment (RA). A morse-tapered dental implant, an anatomical abutment, and a connector screw were digitalized using microcomputed tomography. A cone beam computed tomography scan was obtained from one of the authors to virtually place the implant-abutment assembly in the upper central incisor. Ten design parameters were selected according to the structural geometry of the RA and the implant planning. A reverse-engineered RA model was created in SOLIDWORKS and was modified considering a Taguchi orthogonal array to generate 36 CAs with ±20% dimensional variations. Finite element analysis was conducted in ABAQUS, and fatigue limits were estimated using Fe-safe. ANOVA (α = 0.1) identified the most influential parameters. Von Mises stress values ranged from 229 MPa to 302 MPa, and 94.4% of the CAs had a higher fatigue limit than the RA. Three parameters significantly affected the fatigue performance of the implant system. The design process of custom abutments includes critical design parameters that can be optimized for longer lifetimes of implant-abutment restorations. Full article
(This article belongs to the Special Issue Innovations in Digital Dentistry: Novel Materials and Technologies)
Show Figures

Figure 1

27 pages, 15704 KB  
Article
Study on Mechanical Properties of Composite Basalt Fiber 3D-Printed Concrete Based on 3D Meso-Structure
by Shengxuan Ding, Jiren Li and Mingqiang Wang
Materials 2025, 18(14), 3379; https://doi.org/10.3390/ma18143379 - 18 Jul 2025
Cited by 1 | Viewed by 1775
Abstract
As 3D concrete printing emerges as a transformative construction method, its structural safety remains hindered by unresolved issues of mechanical anisotropy and interlayer defects. To address this, we systematically investigate the failure mechanisms and mechanical performance of basalt fiber-reinforced 3D-printed magnesite concrete. A [...] Read more.
As 3D concrete printing emerges as a transformative construction method, its structural safety remains hindered by unresolved issues of mechanical anisotropy and interlayer defects. To address this, we systematically investigate the failure mechanisms and mechanical performance of basalt fiber-reinforced 3D-printed magnesite concrete. A total of 30 cube specimens (50 mm × 50 mm × 50 mm)—comprising three types (Corner, Stripe, and R-a-p)—were fabricated and tested under compressive and splitting tensile loading along three orthogonal directions using a 2000 kN electro-hydraulic testing machine. The results indicate that 3D-printed concrete exhibits significantly lower strength than cast-in-place concrete, which is attributed to weak interfacial bonds and interlayer pores. Notably, the R-a-p specimen’s Z-direction compressive strength is 38.7% lower than its Y-direction counterpart. To complement the mechanical tests, DIC, CT scanning, and SEM analyses were conducted to explore crack development, internal defect morphology, and microstructure. A finite element model based on the experimental data successfully reproduced the observed failure processes. This study not only enhances our understanding of anisotropic behavior in 3D-printed concrete but also offers practical insights for print-path optimization and sustainable structural design. Full article
(This article belongs to the Special Issue 3D Printing Materials in Civil Engineering)
Show Figures

Figure 1

13 pages, 3560 KB  
Article
Experimental Study on the Parameter Optimization of an Ultra-High-Pressure Water Jet for Grade-A Marine Steel Based on Surface Roughness
by Wuyang Shan, Yupeng Cao, Weidong Shi, Zhengang Wang, Qingbo Zhang, Yongfei Yang and Rui Zhou
Metals 2025, 15(7), 796; https://doi.org/10.3390/met15070796 - 15 Jul 2025
Cited by 1 | Viewed by 705
Abstract
The selection of process parameters for an ultra-high-pressure water jet directly affects the adhesion ability of the subsequent coating on the ship’s surface. This study investigates the effect of jet pressure, standoff distance, and nozzle traverse speed on the surface roughness of grade-A [...] Read more.
The selection of process parameters for an ultra-high-pressure water jet directly affects the adhesion ability of the subsequent coating on the ship’s surface. This study investigates the effect of jet pressure, standoff distance, and nozzle traverse speed on the surface roughness of grade-A marine steel, aiming to optimize the process parameters and improve the quality of surface treatment. Based on single-factor experiments and orthogonal experiments, a three-factor, three-level experimental design was employed, considering jet pressure, standoff distance, and nozzle traverse speed. Scanning electron microscopy (SEM) and a confocal microscope were used to analyze the surface morphology and roughness of grade-A marine steel. The experimental results proved that surface roughness exhibited a nonlinear relationship with jet pressure, initially increasing and then decreasing as pressure rose. Conversely, surface roughness showed negative correlations with both standoff distance and nozzle traverse speed, progressively decreasing with increases in these parameters. Through hierarchical analysis, the effect hierarchy of the three factors on surface roughness was determined as follows: jet pressure > standoff distance > nozzle traverse speed. Parametric optimization revealed that a jet pressure of 150 MPa, a standoff distance of 25 mm, and a nozzle traverse speed of 180 mm/min collectively yielded a peak surface roughness of 62.549 μm. This value aligns with the pre-coating surface preparation standards for grade-A marine steel substrates, ensuring optimal adhesion for subsequent anti-corrosion treatments. Full article
(This article belongs to the Special Issue Fabricating Advanced Metallic Materials)
Show Figures

Figure 1

20 pages, 4548 KB  
Article
Experimental Study on the Effect of Hydroxyethyl Cellulose on the Friction-Reducing Performance of Thixotropic Slurries in Pipe Jacking Construction
by Xiao Yu, Yajun Cao, Fubing Tian, Chaowei Chen, Chao Chen, Wei Wang and Yaru Jiang
Materials 2025, 18(13), 3155; https://doi.org/10.3390/ma18133155 - 3 Jul 2025
Viewed by 845
Abstract
In pipe jacking construction, thixotropic slurry critically governs lubrication, friction reduction, and ground support. This study evaluated slurry performance through six parameters: specific gravity (SG), pH, fluid loss (FL), water separation rate (WSR), filter cake thickness (FCT), and funnel viscosity (FV). Orthogonal experiments [...] Read more.
In pipe jacking construction, thixotropic slurry critically governs lubrication, friction reduction, and ground support. This study evaluated slurry performance through six parameters: specific gravity (SG), pH, fluid loss (FL), water separation rate (WSR), filter cake thickness (FCT), and funnel viscosity (FV). Orthogonal experiments optimizing bentonite, carboxymethyl cellulose (CMC), and sodium carbonate (Na2CO3) ratios established 10 wt.% bentonite, 0.3 wt.% CMC, and 0.4 wt.% Na2CO3 as the optimal formulation. Subsequently, to address performance limitations in challenging conditions, this study introduces hydroxyethyl cellulose (HEC) as a novel additive, with potential advantages under high-salinity and variable pH conditions. Comparative experiments demonstrated that HEC, as a non-ionic water-soluble cellulose, not only significantly increases FV and reduces FL while maintaining SG, FCT, and WSR within acceptable thresholds, but also exhibits superior pH stability compared to CMC. Based on the aforementioned results, interface friction characterization tests were conducted on representative slurry formulations with varying FVs, quantitatively demonstrating the viscosity-dependent friction-reduction performance. Complementary scanning electron microscopy (SEM) analysis of three distinct thixotropic slurry compositions systematically revealed their microstructural characteristics, with microscopic evidence confirming the excellent compatibility between HEC and thixotropic slurry matrix. These findings highlight HEC’s potential as an effective alternative in pipe jacking, particularly in demanding geological environments. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 1801 KB  
Article
Finite Element Analysis of Biomechanical Assessment: Traditional Bilateral Pedicle Screw System vs. Novel Reverse Transdiscal Screw System for Lumbar Degenerative Disc Disease
by Utpal K. Dhar, Kamran Aghayev, Hadi Sultan, Saahas Rajendran, Chi-Tay Tsai and Frank D. Vrionis
Bioengineering 2025, 12(6), 671; https://doi.org/10.3390/bioengineering12060671 - 19 Jun 2025
Viewed by 1156
Abstract
The traditional bilateral pedicle screw system has been used for the treatment of various lumbar spine conditions including advanced degenerative disc disease. However, there is an ongoing need to develop more effective and less invasive techniques. The purpose of this study was to [...] Read more.
The traditional bilateral pedicle screw system has been used for the treatment of various lumbar spine conditions including advanced degenerative disc disease. However, there is an ongoing need to develop more effective and less invasive techniques. The purpose of this study was to compare the traditional bilateral pedicle screw system (BPSS) with the novel reverse transdiscal screw system (RTSS) for lumbar disc degenerative disease. A 3D solid lumbar L1–L5 spine model was developed and validated based on a human CT scan. Fusions were simulated at L3–L4. The first scenario comprised a transforaminal lumbar interbody cage in combination with the bilateral pedicle screw-rod system (BPSS-TLIF). In the second scenario, the same TLIF cage was combined with reverse L3–L4 transdiscal screws (RTSS-TLIF). Testing parameters included range of motion (ROM) in three orthogonal axes, hardware (cage and screw) stress, and shear load resistance. The ROM of the surgical model was reduced by approximately 90% compared to the intact model at the fused level. The RTSS model demonstrated less ROM compared to the BPSS model at the fused level for all loading conditions. Overall, the RTSS model exhibited lower stress on both screws and cage compared with the BPSS model in all biomechanical testing conditions. The RTSS model also exhibited higher anterior and posterior shear load resistance than the BPSS model. In conclusion, the RTSS model proved superior to the BPSS model in all respects. These findings indicate that the RTSS could serve as a feasible option for patients undergoing lumbar fusion, especially for adjacent segment disease, potentially enhancing surgical outcomes for disc degeneration. Full article
(This article belongs to the Special Issue Spine Biomechanics)
Show Figures

Figure 1

19 pages, 11104 KB  
Article
Microbially Induced Calcite Precipitation (MICP) Improved Drilling Fluid Optimization for Gravel Stratum
by Rui Pan, Zhou Shu, Yumin Chen, Xiaobing Sha, Xinquan Zhang and Yi Han
Processes 2025, 13(1), 162; https://doi.org/10.3390/pr13010162 - 9 Jan 2025
Viewed by 2141
Abstract
During the exploration of the gravel stratum, incidents such as wellbore leakage, stuck drilling, and unstable wellbore walls frequently occur. These issues lead to diminished drilling efficiency and prolonged construction timelines, ultimately adversely affecting the core recovery rate, resulting in a significant waste [...] Read more.
During the exploration of the gravel stratum, incidents such as wellbore leakage, stuck drilling, and unstable wellbore walls frequently occur. These issues lead to diminished drilling efficiency and prolonged construction timelines, ultimately adversely affecting the core recovery rate, resulting in a significant waste of manpower and material resources. To address the issue of hole collapse during drilling, the microbially induced calcite carbonate precipitation (MICP) technique was employed to enhance the properties of bentonite mud drilling fluids. This study analyzed the effects of three factors, i.e., bentonite, biological solution, and barite powder, on the bentonite mud bio-cementation effectiveness through an orthogonal experiment and response surface methodology (RSM). The biological mechanism was examined using scanning electron microscopy (SEM). The experimental results indicated that optimal formulation was achieved when the mass fraction of bentonite was 13.96%, the biological solution comprised 0.6% xanthan gum and 0.4% carboxymethyl cellulose, and the mass fraction of barite was 25%. This research explores the application potential of MICP in enhancing the rheological properties of bentonite mud drilling fluids, which provides new insights and technical references for optimizing their performance. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 1528 KB  
Article
1-Bit Reconfigurable Transmitarray Antenna with Out-of-Band RCS Reduction
by Binchao Zhang, Fan Yang, Shenheng Xu, Maokun Li and Weidong Hu
Appl. Sci. 2024, 14(23), 11443; https://doi.org/10.3390/app142311443 - 9 Dec 2024
Cited by 3 | Viewed by 2004
Abstract
Stealth reconfigurable transmitarray antennas (RTAs) are essential components in wireless communication and radar detection systems. Therefore, in this study, we propose a 1-bit RTA with out-of-band radar cross-section (RCS) reduction. The antenna consists of an absorptive frequency selective transmission (AFST) layer and RTA [...] Read more.
Stealth reconfigurable transmitarray antennas (RTAs) are essential components in wireless communication and radar detection systems. Therefore, in this study, we propose a 1-bit RTA with out-of-band radar cross-section (RCS) reduction. The antenna consists of an absorptive frequency selective transmission (AFST) layer and RTA layer separated by air. Specifically, the AFST layer achieves out-of-band RCS reduction and in-band transmission utilizing the first three resonant modes of a bent metallic strip with a centrally loaded resistor. Meanwhile, the RTA layer adopts a receiver–transmitter structure with an active receiving dipole and a passive orthogonal transmitting dipole. 1-bit phase shift is achieved by alternating two pin diodes integrated on the active dipole to reverse its current direction. To evaluate the proposed design, a 16 × 16-element prototype was designed, fabricated, and measured. For scattering, the bandwidth of 10 dB RCS reduction was about 52.5% and 43.8%, respectively. For radiation, the measured gain was 20.1 dBi at 7.5 GHz, corresponding to an aperture efficiency of 12.7%. The gain loss of beam scans to ±60° was about 5 dB in both two principal planes. Full article
(This article belongs to the Special Issue Recent Advances in Reflectarray and Transmitarray Antennas)
Show Figures

Graphical abstract

Back to TopTop