materials-logo

Journal Browser

Journal Browser

Innovations in Digital Dentistry: Novel Materials and Technologies

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Biomaterials".

Deadline for manuscript submissions: 20 October 2025 | Viewed by 1981

Special Issue Editors


E-Mail Website
Guest Editor
Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
Interests: dental materials; dentistry; dental ceramics; restorative materials

E-Mail Website
Guest Editor
Graduate Program in Dentistry, School of Dentistry, University of Passo Fundo, Passo Fundo, RS, Brazil
Interests: dental materials; dentistry; dental ceramics; operative dentistry; prosthodontics

Special Issue Information

Dear Colleagues,

Advancements in digital dentistry have significantly expanded the variety of dental materials available for patient rehabilitation. The digital workflow enhances collaboration among dentists, dental laboratories, and patients, improving the precision, cost-effectiveness, and overall success of rehabilitation processes. Advances in scanning technologies, CAD/CAM systems, and 3D printing have led to the development of innovative materials and techniques that are transforming dental practices through technology. Additionally, specialized artificial intelligence tools have been developed to optimize disease diagnosis, treatment planning, and execution, as well as to support dental education and research.

This Special Issue invites submissions that investigate various aspects of digital dentistry, with a focus on innovation in dental materials, new bonding techniques, additive and subtractive manufacturing technologies, and artificial intelligence tools. The aim of this initiative is to enhance the understanding of digital dentistry and its potential within contemporary dental practice.

This Special Issue focuses on the digital workflow in dentistry, which includes (but is not limited to) the following:

  • Intraoral and extraoral scanning;
  • CAD/CAM technology (subtractive manufacturing);
  • 3D printing (additive manufacturing);
  • Dental materials for subtractive and additive manufacturing;
  • Artificial Intelligence.

Dr. Marcia Borba
Dr. Paula Benetti
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • dental materials
  • intraoral scanning
  • 3D printing
  • CAD/CAM
  • artificial intelligence

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 4730 KB  
Article
Failure Prediction of Lithium Disilicate and Composition-Gradient Multilayered Zirconia Occlusal Veneers: A Fractographic and Theoretical Analysis
by Lea S. Prott, Petra C. Gierthmuehlen, Markus B. Blatz and Yu Zhang
Materials 2025, 18(18), 4287; https://doi.org/10.3390/ma18184287 - 12 Sep 2025
Viewed by 124
Abstract
This in vitro study aimed to evaluate the fatigue behavior of occlusal veneers (OVs) made of lithium disilicate and composition-gradient multilayered zirconia at different thicknesses, incorporating both experimental and theoretical analyses to predict long-term performance. Seventy-two OVs with ceramic layer thicknesses of 0.5 [...] Read more.
This in vitro study aimed to evaluate the fatigue behavior of occlusal veneers (OVs) made of lithium disilicate and composition-gradient multilayered zirconia at different thicknesses, incorporating both experimental and theoretical analyses to predict long-term performance. Seventy-two OVs with ceramic layer thicknesses of 0.5 mm, 1.0 mm, and 1.5 mm were fabricated and adhesively bonded to dentin analog composite abutments. All specimens underwent thermomechanical fatigue testing, involving cyclic loading (49 N, 1.6 Hz, 1.2 million cycles) and thermocycling (5–55 °C), simulating five years of clinical function. Fracture patterns were analyzed using light microscopy and scanning electron microscopy. A fatigue lifetime model based on plate-on-foundation theory and slow crack growth was applied to estimate cycles to radial failure. No complete fractures or debonding occurred. However, 50% of 0.5 mm zirconia OVs developed flexural radial cracks from the intaglio surface, while all lithium disilicate and zirconia veneers ≥1.0 mm remained intact. Theoretical predictions closely matched the experimental outcomes, indicating that 0.5 mm zirconia performance aligned with the lower-bound fatigue estimates for 5Y-PSZ. Results suggest that lithium disilicate offers superior fatigue resistance at minimal thickness, while thin zirconia is prone to subsurface cracking. A minimum thickness of 0.7 mm is recommended for zirconia-based OVs. Full article
(This article belongs to the Special Issue Innovations in Digital Dentistry: Novel Materials and Technologies)
Show Figures

Graphical abstract

19 pages, 7555 KB  
Article
Effects of Two Dental Implant Micromotor Systems for Dental Implant Placement on Implant Stability and Removal Torque: An Animal Experiment
by Keunbada Son, Young-Tak Son, Sung-Min Hwang, Jae Mok Lee, Jin-Wook Kim and Kyu-Bok Lee
Materials 2025, 18(17), 4048; https://doi.org/10.3390/ma18174048 - 29 Aug 2025
Viewed by 432
Abstract
This in vivo animal study aimed to evaluate the effects of two different implant placement micromotor systems on implant stability and removal torque. In a within-animal crossover design, twenty titanium implants (AnyOne fixture; internal type; diameter, 3.5 mm; length, 7.0 mm; Megagen, Daegu, [...] Read more.
This in vivo animal study aimed to evaluate the effects of two different implant placement micromotor systems on implant stability and removal torque. In a within-animal crossover design, twenty titanium implants (AnyOne fixture; internal type; diameter, 3.5 mm; length, 7.0 mm; Megagen, Daegu, Republic of Korea) were placed in the tibiae of five rabbits using a conventional micromotor system (NSK group: SurgicPro+; NSK, Kanuma, Japan) and a diode laser-integrated micromotor system (SAESHIN group: BLP 10; Saeshin, Daegu, Republic of Korea). Resonance frequency analysis provided the implant stability quotient (ISQ) immediately after placement and at four weeks. Micro-computed tomography quantified the bone–implant interface gap (BIG). Removal torque was measured at sacrifice. Linear mixed-effects models with a random intercept for rabbit generated adjusted means with 95% confidence intervals (CIs) (α = 0.05). Equivalence for the four-week ISQ used two one-sided tests with a margin of ±5 ISQ. The SAESHIN group achieved a higher immediate ISQ than the NSK group (difference =+6.9 ISQ; 95% CI +1.3–+12.5; p = 0.018). At four weeks, the ISQ did not differ (difference = −1.2 ISQ; 95% CI −4.3–+1.9; p = 0.42), and equivalence was supported (TOST p_lower = 0.024; p_upper = 0.019). Removal torque was comparable (difference = +4.3 N·cm; 95% CI −5.2–+13.8; p = 0.36). BIG metrics showed no between-system differences across regions. ICC indicated clustering for ISQ and torque (0.36 and 0.31). The diode laser-integrated micromotor system yielded a higher immediate ISQ under a standardized 35 N·cm seating torque, whereas the ISQ, removal torque, and BIG at four weeks were comparable to those of the conventional system. The immediate ISQ should be interpreted as stiffness under fixed torque rather than superior device-dependent interlocking. These findings support the clinical interchangeability of the two systems for early osseointegration endpoints in preclinical settings. Full article
(This article belongs to the Special Issue Innovations in Digital Dentistry: Novel Materials and Technologies)
Show Figures

Figure 1

13 pages, 4489 KB  
Article
Fatigue Resistance of Customized Implant-Supported Restorations
by Ulysses Lenz, Renan Brandenburg dos Santos, Megha Satpathy, Jason A. Griggs and Alvaro Della Bona
Materials 2025, 18(14), 3420; https://doi.org/10.3390/ma18143420 - 21 Jul 2025
Cited by 1 | Viewed by 529
Abstract
The design of custom abutments (CA) can affect the mechanical reliability of implant-supported restorations. The purpose of the study was to evaluate the influence of design parameters on the fatigue limit of CA and to compare optimized custom designs with the reference abutment [...] Read more.
The design of custom abutments (CA) can affect the mechanical reliability of implant-supported restorations. The purpose of the study was to evaluate the influence of design parameters on the fatigue limit of CA and to compare optimized custom designs with the reference abutment (RA). A morse-tapered dental implant, an anatomical abutment, and a connector screw were digitalized using microcomputed tomography. A cone beam computed tomography scan was obtained from one of the authors to virtually place the implant-abutment assembly in the upper central incisor. Ten design parameters were selected according to the structural geometry of the RA and the implant planning. A reverse-engineered RA model was created in SOLIDWORKS and was modified considering a Taguchi orthogonal array to generate 36 CAs with ±20% dimensional variations. Finite element analysis was conducted in ABAQUS, and fatigue limits were estimated using Fe-safe. ANOVA (α = 0.1) identified the most influential parameters. Von Mises stress values ranged from 229 MPa to 302 MPa, and 94.4% of the CAs had a higher fatigue limit than the RA. Three parameters significantly affected the fatigue performance of the implant system. The design process of custom abutments includes critical design parameters that can be optimized for longer lifetimes of implant-abutment restorations. Full article
(This article belongs to the Special Issue Innovations in Digital Dentistry: Novel Materials and Technologies)
Show Figures

Figure 1

15 pages, 5452 KB  
Article
Roughness and Gloss of 3D-Printed Crowns Following Polishing or Varnish Application
by Silvia Rojas-Rueda, Tariq Aziz Alsahafi, Mohammed Hammamy, Neeraj Surathu, Nitish Surathu, Nathaniel C. Lawson and Taiseer A. Sulaiman
Materials 2025, 18(14), 3308; https://doi.org/10.3390/ma18143308 - 14 Jul 2025
Cited by 1 | Viewed by 533
Abstract
The aim of this study was to evaluate and compare the surface roughness and gloss—both initially and after simulated toothbrushing—of three 3D-printed crown materials subjected to different surface treatments: varnishing, polishing with diamond-impregnated rubber polishers, and polishing with a bristle brush and paste. [...] Read more.
The aim of this study was to evaluate and compare the surface roughness and gloss—both initially and after simulated toothbrushing—of three 3D-printed crown materials subjected to different surface treatments: varnishing, polishing with diamond-impregnated rubber polishers, and polishing with a bristle brush and paste. Disc-shaped specimens (n = 90) were 3D-printed using three commercially available crown resins (Rodin Sculpture, VarseoSmile TriniQ, and OnX Tough 2) and post-processed per manufacturers’ instructions. Specimens were divided into three surface treatment groups: application of a light-cured varnish, polishing with a two-step diamond-impregnated rubber polisher, or polishing with a bristle brush and abrasive paste. Surface roughness and gloss were measured after treatment and again following 20,000 cycles of simulated toothbrushing. Additional specimens were prepared for Vickers microhardness testing and determination of filler weight percentage (wt%). Statistical comparisons were performed using two-way ANOVA with significance set at p < 0.05. Results: The varnish provided the statistically lowest roughness of all surface treatments for all materials. The bristle brush and abrasive paste polishing protocol produced the greatest gloss for the softest material (VarseoSmile TriniQ) and lowest gloss for the hardest material (Rodin Sculpture), whereas the two-step diamond-impregnated rubber polisher produced an equivalent gloss on all materials. Following toothbrushing, roughness was minimally affected; however, gloss was considerably reduced. Conclusions: All tested polishing and varnishing methods achieved clinically acceptable surface roughness (Ra < 0.2 µm) that persisted after simulated toothbrushing. Notably, the two-step diamond-impregnated rubber polisher produced consistent gloss across all materials, while the bristle brush and abrasive paste polishing protocol performed better on softer materials, and varnish application resulted in equal or superior gloss and roughness retention compared to polishing. Full article
(This article belongs to the Special Issue Innovations in Digital Dentistry: Novel Materials and Technologies)
Show Figures

Figure 1

Back to TopTop